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Abstract: Mitochondrial dysfunction has been implicated in the pathogenesis of inflammation and
multi-organ dysfunction in major trauma, including burn injury. Coenzyme Q10 (CoQ10) is a
metabolite of the mevalonate pathway and an essential cofactor for the electron transport in the
mitochondria. In addition, its reduced form (ubiquinol) functions as an antioxidant. Little is known
as to whether oral CoQ10 supplementation effectively increases intracellular CoQ10 levels in humans.
To study the bioavailability of CoQ10 supplementation, we conducted a randomized, double-blind,
placebo-controlled study of reduced CoQ10 (ubiquinol-10) (1800 mg/day, t.i.d.) in burn patients
at a single, tertiary-care hospital. Baseline plasma CoQ10 levels were significantly lower in burn
patients than in healthy volunteers, although plasma CoQ10/cholesterol ratio did not differ between
the groups. CoQ10 supplementation increased plasma concentrations of total and reduced CoQ10
and total CoQ10 content in peripheral blood mononuclear cells (PBMCs) in burn patients compared
with the placebo group. CoQ10 supplementation did not significantly change circulating levels of
mitochondrial DNA, inflammatory markers (e.g., interleukins, TNF-α, IFN-γ), or Sequential Organ
Failure Assessment (SOFA) scores compared with the placebo group. This study showed that a
relatively high dose of reduced CoQ10 supplementation increased the intracellular CoQ10 content in
PBMCs as well as plasma concentrations in burn patients.

Keywords: coenzyme Q10; ubiquinol; burn injury; bioavailability

1. Introduction

Coenzyme Q (CoQ) is a metabolite of the mevalonate pathway and an essential cofac-
tor for the electron transport in the mitochondria. It exists both in its reduced (ubiquinol)
and oxidized (ubiquinone) forms. CoQ10 is the major species of CoQ found in humans
and contains 10 isoprenyl side chains. Reduced CoQ10 (ubiquinol-10) is the predomi-
nant form in the human body, accounting for over 90% of the total CoQ10 in the human
circulation [1,2]. Reduced CoQ10 acts as a potent lipophilic antioxidant. It is endogenously
synthesized in all cell types that contain the mitochondria. Primary (congenital) CoQ10
deficiency due to a defect in CoQ10 biosynthesis in the cells causes serious defects in mito-
chondrial function and increased oxidative stress, which, in turn, leads to encephalopathy,
myopathy, and renal and cardiac dysfunction [3]. In contrast to primary CoQ10 deficiency,
limited knowledge is available about the pathophysiological conditions that secondar-
ily decrease CoQ10 levels in the body, although treatment with statins, inhibitors for
3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase, is capable of decreasing
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CoQ10 biosynthesis to a similar extent to the reduction in total cholesterol [4,5]. It is impor-
tant to note that mitochondrial dysfunction and damage can lead to CoQ10 deficiency [6–9]
since CoQ10 is biosynthesized in the mitochondria as well as the Golgi apparatus [10,11].
Thus, mitochondrial damage and CoQ10 deficiency may form a vicious cycle.

Mitochondrial dysfunction/disintegrity is thought to play a role in the pathogenesis
of multi-organ dysfunction in major trauma [12,13]. Since multi-organ dysfunction is a
major determinant of the clinical trajectories of patients with major trauma (e.g., burn
injury) [12,14], it is of clinical significance to prevent or mitigate mitochondrial dysfunc-
tion/disintegrity in these patient populations. Mitochondrial dysfunction per se contributes
to impairment in bioenergetics and cellular function and therefore organ dysfunction.
Moreover, when the integrity of the mitochondria is disrupted, the mitochondrial contents,
including mitochondrial DNA (mtDNA), are released into the cytosol fraction and into the
circulation [15–17]. This, in turn, induces and/or exacerbates the systemic inflammatory
response. For example, mitochondrial DNA activates toll-like receptor-9 and functions as a
damage-associated molecular pattern [15,16,18]. Therefore, improving mitochondrial func-
tion is considered to be a reasonable approach to ameliorating burn-induced multi-organ
dysfunction and systemic inflammation. Finding a suitable strategy to accomplish this goal,
however, has been a major challenge.

Previous studies by us and others have shown that plasma CoQ10 levels are lower in
patients with critical illness admitted to the intensive care unit (ICU) [19,20], in patients
with septic shock [21], and in patients with post-cardiac arrest [22] as compared with
healthy controls. In critically ill patients, low CoQ10 concentration was associated with
decreased activities of daily living score after discharge, independent of age [19]. In post-
cardiac arrest patients, low plasma CoQ10 concentration was associated with increased
mortality [22]. Moreover, our previous study has shown in mice that CoQ10 administra-
tion (40 mg/kg/day, SC) prevents mitochondrial dysfunction/disintegrity and metabolic
derangements in skeletal muscle in burned mice [23]. In particular, CoQ10 reversed burn
injury-induced defective mitochondrial respiration capacity, morphological alterations
of the mitochondria, insulin resistance, and increased lactate secretion in mouse skeletal
muscle [23]. CoQ10 also prevented increases in mtDNA in the cytosolic fraction in muscle
and in plasma in burned mice [23]. These results indicate that CoQ10 supplementation
prevents burn injury-induced mitochondrial damage in mouse skeletal muscle.

CoQ10 is a nutrient and has been used as a supplement in the general public. CoQ10
has an excellent safety profile. The safety and tolerability of CoQ10 at doses as high as
3000 mg/day for up to 8 months were reported in patients with Parkinson’s disease and
amyotrophic lateral sclerosis [24,25]. The effects and safety of CoQ10 supplementation
have been studied in many chronic human diseases [26], including heart failure [27],
hypertension [28], diabetes [29], dyslipidemia [30], neurodegenerative diseases [31,32],
statin-induced myalgia [33], and chronic fatigue syndrome [34], as well as primary CoQ10
deficiency. However, the effects and/or safety of CoQ10 supplementation has not yet been
studied in patients with major trauma (e.g., burn injury).

While the safety profile of CoQ10 has been well established, the bioavailability of
CoQ10 supplementation remains an issue. Due to its hydrophobicity and large molecular
weight, the absorption of CoQ10 is slow and limited. It takes approximately 6 h to reach the
maximum level in the circulation after single-dose oral ingestion of CoQ10, indicating a slow
absorption process [35,36]. The gastrointestinal absorption and bioavailability of reduced
CoQ10 (ubiquinol-10) are better than that of oxidized CoQ10 (ubiquinone-10) [2,37–39]. A
previous study in rats has shown that tissue uptake after intravenous injection of ubiquinol-
10 is better than that of ubiquinone-10 [40]. Of note, different doses of CoQ10 were used in
previous clinical studies, ranging from 100 mg/day to 3000 mg/day. Doses of 100 mg/day
to 300 mg/day CoQ10 have been widely used as a dietary supplement by the public in
the United States and worldwide. A previous study in patients with Parkinson’s disease
showed that 2-week supplementation with CoQ10 increased plasma CoQ10 levels in a
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dose-dependent manner and that the maximum levels of plasma CoQ10 were achieved by
2400 mg/day CoQ10 supplementation [24].

In addition to the absorption in the gastrointestinal tract, the efficiency of cellular
uptake of CoQ10 is an issue. It is thought that cells and tissues in our body may not need
to take up CoQ10 from the extracellular space since CoQ10 is endogenously synthesized
by every cell type that possesses the mitochondria. For example, high doses of CoQ10
(e.g., 30–50 mg/kg/day) are often necessary to exhibit beneficial effects in patients with
primary CoQ10 deficiency [41]. In addition, a previous study reported that reduced CoQ10
supplementation at the dose of 200 mg/day for 2 weeks failed to increase CoQ10 content
in peripheral blood mononuclear cells (PBMCs) in healthy elderly men [37], although it
significantly increased plasma CoQ10 concentrations. It is an open question how efficiently
and quickly CoQ10 is taken up by the cells after CoQ10 supplementation. It has been
proposed that higher plasma CoQ10 concentrations may be necessary to facilitate uptake by
peripheral tissues [42]. In fact, earlier studies indicated that higher doses of CoQ10 supple-
mentation (1200–2400 mg/day) are necessary to achieve beneficial effects in patients with
Huntington’s disease and Parkinson’s disease [43,44]. Here, we studied the bioavailability
of a relatively high dose of reduced CoQ10 (ubiquinol-10) (1800 mg/day) and its effects on
inflammatory markers and SOFA scores in adult burn patients. As cellular uptake of CoQ10
is inefficient, we measured total CoQ10 content in PBMCs as well as plasma CoQ10 levels.

2. Results
2.1. Study Population

There were no statistical differences in the baseline characteristics, namely age, height,
body weight, body mass index, burn size (% total body surface area [TBSA]), Revised Baux
score (an index used to assess severity of burn injury) and SOFA scores between the CoQ10
and the placebo groups (Table 1). There was no difference in length of hospital stay between
the groups (Table 1, Supplementary Table S1). No adverse events were observed in either
group. None of the patients received treatment with statins during the study period, and
there were no deaths.

Table 1. Baseline characteristics of burn patients.

Placebo
(n = 15)

CoQ10
(n = 14) p-Value *

Healthy
Volunteers

(n = 11)

Age (y.o.) 48.2 ± 18.7 49.3 ± 15.7 0.87 34.5 ± 8.5

Females, n (%) 6 (40%) 2 (14%) n/a 5 (45%)

Height (cm) 168.9 ± 7.3 173.9 ± 7.6 0.09

Body Weight (kg) 81.6 ± 13.1 78.9 ± 12.7 0.62

BMI 28.6 ± 4.5 26.3 ± 4.7 0.18

TBSA (%) 13.8 ± 10.7 19.2 ± 19.4 0.35

Revised Baux Score 67.3 ± 27.3 69.9 ± 24.9 0.62

SOFA Score 0.5 ± 0.9 0.9 ± 1.3 0.14

LOS (day) 22.7 ± 23.1 22.6 ± 13.7 0.98

Type of burn

Scald 2 2 n/a

Flame 12 11 n/a

Contact 1 1 n/a
BMI: body mass index, TBSA: total body surface area, LOS: length of stay. * p values indicate comparisons between
the placebo and the CoQ10 groups. Statistical analysis was performed using the unpaired two-tailed Student’s
t test.
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2.2. Plasma CoQ10 Concentrations and Total CoQ10 Content in PBMCs Were Lower in Burn
Patients Compared with Healthy Volunteers

Baseline CoQ10 levels in blood samples obtained prior to the inception of CoQ10 or
placebo supplementation were compared with those of healthy volunteers. The populations
of burn patients (n = 29) and healthy volunteers (n = 11) were relatively comparable overall,
although the healthy volunteers were significantly younger and a greater percentage were
females (age: 34.5 ± 8.5 years, p = 0.0110 and sex: female: 45%). Plasma concentrations
of total and reduced CoQ10 were significantly lower in burn patients than in healthy
volunteers (p = 0.0002 and p < 0.0001, respectively) (Figure 1). Reduced-to-total CoQ10
ratio was also significantly lower in burn patients than in healthy volunteers (p = 0.0108).
Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are the major carriers
of CoQ10 in the circulation and plasma total cholesterol levels correlate with plasma CoQ10
concentrations [45–47]; therefore, plasma total cholesterol levels were measured. Total
cholesterol levels were significantly lower in burn patients than in healthy volunteers
(p = 0.0372). The plasma total CoQ10-to-total cholesterol (CoQ10/cholesterol) ratio did not
significantly differ between burn patients and healthy volunteers (p = 0.3296). Baseline total
CoQ10 content in PBMCs did not significantly differ between burn patients and healthy
volunteers (p = 0.2802). However, 3 days after the inception of the supplementation, total
CoQ10 content in PBMCs in the placebo group was significantly lower compared with
healthy volunteers (p = 0.0095) (Supplementary Figure S1).
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Figure 1. Comparison of basal CoQ10 status between burn patients and healthy volunteers. (A–D)
Baseline plasma total CoQ10 concentrations (A), reduced CoQ10 concentrations (B), reduced-to-total
CoQ10 ratio (reduced/total CoQ10) (C), and total cholesterol levels (D) were significantly lower in
burn patients (n = 29) than in healthy volunteers (n = 11). (E,F) There were no statistically significant
differences in plasma total CoQ10-to-total cholesterol ratio (CoQ10/cholesterol) (E) and baseline total
CoQ10 content in PBMCs (F) between burn patients and healthy volunteers. Statistical analysis was
performed using the unpaired two-tailed Student’s t test.
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2.3. CoQ10 Supplementation Increased Plasma CoQ10 Concentrations and Reduced/Total CoQ10
Ratio in Burn Patients

Prior to the supplementation, there were no differences in baseline plasma total
CoQ10 levels (p = 0.8706), reduced CoQ10 levels (p = 0.8506), total CoQ10/cholesterol ratio
(p = 0.4740), reduced/total CoQ10 ratio (p = 0.9055), and total cholesterol levels (p = 0.5370)
between the CoQ10 and the placebo groups. CoQ10 supplementation significantly in-
creased plasma: (1) total CoQ10 levels (p < 0.0001); (2) reduced CoQ10 levels (p < 0.0001);
(3) total CoQ10/cholesterol ratio (p < 0.0001); and (4) reduced/total CoQ10 ratio (p < 0.0001)
compared with the placebo group (Figure 2). There was no difference in plasma total
cholesterol levels between the CoQ10 and the placebo groups (p = 0.5126).
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Figure 2. Effects of CoQ10 supplementation on plasma CoQ10 levels in burn patients. CoQ10
supplementation significantly increased plasma total CoQ10 concentrations (A), reduced CoQ10
concentrations (B), total CoQ10-to-total cholesterol ratio (C), and reduced-to-total CoQ10 ratio (D)
compared with the placebo group. CoQ10 supplementation did not significantly alter total cholesterol
concentrations (E). The p values in the figures indicate overall differences between the groups across
the different time points that were analyzed using a longitudinal general linear mixed-effects model.
The asterisks indicate p values between the groups at each time point, which were analyzed by
Bonferroni’s multiple comparison test. Black bar: Placebo, Red bar: CoQ10, * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. Placebo.

Three days after the inception of CoQ10 supplementation (Day 3), plasma total CoQ10
levels (p = 0.0050), reduced CoQ10 levels (p = 0.0059), and total CoQ10/cholesterol ratio
(p < 0.0001) were significantly higher in the CoQ10 group compared with healthy volun-
teers (Supplementary Figure S2). Reduced/total CoQ10 ratio did not differ between the
CoQ10 group on Day 3 of supplementation and healthy volunteers (p = 0.5064). Total
cholesterol levels were significantly lower in burn patients of the CoQ10 group on Day 3 of
supplementation compared with healthy volunteers (p = 0.0349). On the other hand, plasma
total CoQ10 levels (p = 0.0004), reduced CoQ10 levels (p = 0.0002), reduced/total CoQ10
ratio (p = 0.0058), and total cholesterol levels (p = 0.0081) remained significantly lower in
burn patients of the placebo group on Day 3 of supplementation compared with healthy
volunteers (Supplementary Figure S3). Total CoQ10/cholesterol ratio did not significantly
differ between the placebo group on Day 3 and healthy volunteers (p = 0.0832).
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2.4. CoQ10 Supplementation Increased Total CoQ10 Content in PBMCs in Burn Patients

There was no difference in baseline total CoQ10 content in PBMCs between the CoQ10
and the placebo groups in burn patients (p = 0.2421). CoQ10 supplementation signifi-
cantly increased CoQ10 content in PBMCs compared with the placebo group (p < 0.0001)
(Figure 3). Total CoQ10 content was significantly higher in the CoQ10 group on Day 3 of
supplementation compared with the placebo group (p < 0.01).
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Figure 3. Effects of CoQ10 supplementation on total CoQ10 content in PBMCs in burn patients.
CoQ10 supplementation significantly increased total CoQ10 content in PBMCs compared with the
placebo group. The p value in the figure indicates overall difference between the groups across the
different time points that was analyzed using a longitudinal general linear mixed-effects model.
The asterisks indicate p values between the groups at each time point, which were analyzed by
Bonferroni’s multiple comparison test. Black bar: Placebo, Red bar: CoQ10, * p < 0.05, ** p < 0.01,
*** p < 0.001 vs. Placebo.

Total CoQ10 content in PBMCs did not significantly differ between burn patients in the
CoQ10 group on Day 3 of supplementation and healthy volunteers (p = 0.1185), although
the average total CoQ10 content was higher in burn patients (Supplementary Figure S4).
However, on Day 6 of supplementation, total CoQ10 content in PBMCs was significantly
higher in burn patients of the CoQ10 group compared with healthy volunteers (p = 0.0019).
On the other hand, as stated above, total CoQ10 content in PBMCs was significantly lower
in burn patients of the placebo group on Day 3 of supplementation compared with healthy
volunteers (p = 0.0095) (Supplementary Figure S1).

2.5. Effects of CoQ10 Supplementation on Plasma mtDNA Levels in Burn Patients

There was no difference in baseline plasma mtDNA levels between the CoQ10 and
the placebo groups (p = 0.3400). CoQ10 supplementation did not significantly alter plasma
mtDNA levels compared with the placebo groups (p = 0.2852) (Figure 4).
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2.6. Effects of CoQ10 Supplementation on Plasma Cytokine Concentrations in Burn Patients

There were no statistically significant differences in baseline plasma levels of inter-
leukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, granulocyte colony-stimulating factor
(G-CSF), tumor necrosis factor (TNF)-α, and interferon (IFN)-γ between the CoQ10 and the
placebo groups (p > 0.10). CoQ10 supplementation did not significantly alter the plasma lev-
els of these plasma cytokines tested compared with the placebo group (p > 0.10) (Figure 5).

2.7. Effects of CoQ10 Supplementation on SOFA Score in Burn Patients

There was no statistically significant difference in baseline SOFA scores between the
CoQ10 and the placebo groups (p = 0.2184). CoQ10 supplementation did not significantly
alter SOFA scores compared with the placebo groups (p = 0.3061) (Figure 6). Since there is a
substantial individual variation in SOFA scores, we also compared SOFA scores at each
time point between the groups using the nonparametric Mann–Whitney U test and found
there were no significant differences at any time point.
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Figure 6. Effects of CoQ10 supplementation on SOFA score in burn patients. There was no significant
difference in SOFA scores between the groups. The p value in the figure indicates overall difference
between the groups across the different time points that was analyzed by a longitudinal general
linear mixed-effects model. Black bar: Placebo, Red bar: CoQ10.

3. Discussion

Here, we show that: (1) plasma total and reduced CoQ10 concentrations were lower
in burn patients than in healthy volunteers, whereas plasma total CoQ10/total cholesterol
ratio did not differ between the two groups; and (2) supplementation with reduced CoQ10
(ubiquinol-10) (1800 mg/day) increased plasma total and reduced CoQ10 concentrations
and reduced/total CoQ10 ratio, and total CoQ10 content in PBMCs in burn patients
compared with the placebo group.

Plasma concentrations of total CoQ10 in healthy volunteers in this study are quite
similar to those of healthy adults in previous studies [19,21,48,49]. Our data are in line
with previous studies by us and others showing that plasma CoQ10 concentrations are
lower in patients with septic shock [21] and critically ill patients admitted to the ICU [19,20]
compared with healthy controls. Of note, total CoQ10 content in PBMCs at 3 days after
the inception of the supplementation (Day 3) was significantly lower in burn patients of
the placebo group compared with healthy volunteers (Supplementary Figure S1), whereas
baseline (Day 0) total CoQ10 content in PBMCs did not significantly differ between burn
patients and healthy volunteers (Figure 1). It is possible that it takes 3 days for CoQ10
content in PBMCs to decline, although the intracellular half-life of CoQ10 is not known.

Our study showed that both plasma total CoQ10 and total cholesterol concentrations
were significantly lower in burn patients compared with healthy volunteers, while total
CoQ10/cholesterol ratio did not differ between burn patients and healthy volunteers.
Decreased circulating cholesterol levels in burn patients are consistent with a previous
study [50]. Both CoQ10 and cholesterol are synthesized by the mevalonate pathway. In
fact, the inhibition of the mevalonate pathway by statins, cholesterol-lowering medications,
decreases CoQ10 levels as well as cholesterol levels to a similar extent [4,5]. The similar
total CoQ10-to-total cholesterol ratios in burn patients and healthy volunteers indicate
that both CoQ10 and cholesterol were decreased to a similar degree in burn patients. A
previous study has shown that gene expression of the mevalonate pathway is suppressed
in the liver after burn injury in rats [51]. In addition, total CoQ10 content in PBMCs
was significantly lower in the placebo group on Day 3 compared with healthy volunteers
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(Supplementary Figure S1), whereas there was no significant difference on Day 0 (Figure 1).
This suggests that intracellular CoQ10 synthesis may be decreased in PBMCs after burn
injury. Together, it is tempting to speculate on the possibility that activity of the mevalonate
pathway may be decreased in burn patients, which may underlie decreases in CoQ10 and
cholesterol levels. However, further studies are required to clarify this point.

On Day 3, total CoQ10 content in PBMCs was not significantly higher in burn patients
of the CoQ10 group than that of healthy volunteers (p = 0.1185) (Supplementary Figure S4),
although total CoQ10 content in PBMCs was significantly increased from Day 0 to Day 3 in
the CoQ10 group (p = 0.0389, by the paired two-tailed Student t test). Total CoQ10 content in
PBMCs tended to increase further from Day 3 to Day 6 (p = 0.0761) and it was significantly
higher in the CoQ10 group on Day 6 compared with healthy volunteers (p = 0.0019). In
contrast, plasma concentrations of total and reduced CoQ10 were significantly increased
on Day 3 in the CoQ10 group compared with healthy volunteers. These results suggest
that it may take more time for total CoQ10 content in PBMCs to be increased by CoQ10
supplementation compared with plasma CoQ10 levels, presumably related to the inefficient
cellular uptake of CoQ10.

This study shows that CoQ10 supplementation significantly increased total CoQ10
content in PBMCs in burn patients within 3 days compared with the placebo group,
although a more overt increase in total CoQ10 content in PBMCs was observed on Day
6 of supplementation. However, previous studies have reported controversial results
about the effects of CoQ10 supplementation on CoQ10 content in PBMCs. Moreover,
it was not known how quickly CoQ10 supplementation can increase CoQ10 content in
PBMCs. A previous study reported that two-week supplementation with reduced CoQ10
(200 mg/day) did not increase CoQ10 content in PBMCs in healthy elderly men [37],
although plasma CoQ10 concentrations were significantly increased. On the other hand,
a previous case report showed that CoQ10 supplementation (300 mg/day) for 3 months
increased CoQ10 content in PBMCs in a patient with fibromyalgia [52]. In addition, in a
previous study in healthy individuals, CoQ10 supplementation (3 mg/kg BW/day) for
2 weeks slightly, but significantly, increased CoQ10 content in white blood cells, which
include PBMCs and granulocytes [53]. Combined with the lower total CoQ10 content in
PBMCs in the placebo group on Day 3 compared with healthy volunteers, our data indicate
that burn injury induced a reduction in intracellular total CoQ10 in PBMCs, which was
reversible by a relatively high dose of CoQ10 supplementation within 3 days.

Circulating mtDNA levels are increased in patients with major trauma [16,17]. Previ-
ous studies have shown that burn injury increases circulating mtDNA levels and implicated
mtDNA as an enhancer of inflammation and organ damage in rodent models of burn in-
jury [54–59]. Moreover, we have shown in mice that CoQ10 supplementation prevented the
burn-induced increase in plasma mtDNA levels [23]. However, CoQ10 supplementation
did not significantly alter plasma mtDNA levels in burn patients in this study. This is
in line with a previous finding that CoQ10 (ubiquinol-10) supplementation did not alter
circulating mtDNA levels in septic shock patients [21]. CoQ10 deficiency causes mitochon-
drial dysfunction. Increased circulating mtDNA levels are considered to be associated with
mitochondrial disintegrity [60,61] as well as with cellular damage. Therefore, we measured
plasma mtDNA levels as a biomarker that reflects mitochondrial dysfunction/disintegrity
as well as systemic inflammation. In this study, however, there was no evidence that
suggests improvement in the quality of the mitochondria by CoQ10 supplementation.

Inflammation has been implicated in the pathogenesis of many acute and chronic
human diseases, including major trauma, although an inflammatory response may be
necessary and adaptive depending on disease conditions and stages of the diseases. Previ-
ous studies have shown that circulating levels of a variety of cytokines, including IL-1β,
IL-2, IL-6, IL-8, IL-10, TNF-α, IFN-γ, and G-CSF, are elevated in burn patients compared
with healthy controls [62–70]. Some previous studies showed that CoQ10 supplementation
decreased circulating concentrations of inflammatory cytokines in chronic human diseases,
while other studies reported negative results on cytokine levels and inflammatory mark-
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ers [71,72]. In this study, CoQ10 supplementation did not significantly alter the plasma
concentrations of all the cytokines measured. These results are in line with a previous study
that CoQ10 (ubiquinol-10) supplementation did not affect plasma levels of most markers of
inflammation and endothelial dysfunction in septic shock patients [21].

This study has several limitations. The limitations include the small study size and
the single-center study. In addition, the study population was heterogeneous, particularly
in terms of size and mechanism of burn injury. Patients with burn injury of 5% TBSA or
greater from any cause were enrolled in this study. Moreover, the randomization was not
stratified by burn injury size or severity of burn injury (e.g., Revised Baux Score). Although
there were no significant differences, the average burn injury size and baseline SOFA score
were greater in the CoQ10 group than the placebo group (Table 1). Furthermore, another
limitation of this study is the lack of data collection regarding drug treatments except
for vasopressors and statins. Some medications might have influenced plasma cytokine
and cholesterol levels. These limitations may have prevented detection of differences in
inflammatory markers or outcomes between the study groups.

4. Materials and Methods
4.1. Design and Setting

This was a single-center, randomized, double-blind, placebo-controlled study of sup-
plementation with reduced CoQ10 (ubiquinol-10) (1800 mg/day, t.i.d.). The study was
conducted at Massachusetts General Hospital (MGH), which is an urban, tertiary-care teach-
ing hospital in Boston, Massachusetts, USA. The study was approved by the Institutional
Review Board (IRB) at MGH (Approved Protocol Number: 2013P001111) and patients or
appropriate surrogates provided written informed consent prior to the enrollment. The
trial was registered at Clinicaltrials.gov (Identifier: NCT02251626) and was sponsored
by Kaneka Nutrients (Pasadena, TX, USA). The study was investigator-initiated and the
sponsor was not involved in study design or conduct, and had no role in manuscript
preparation.

4.2. Study Population

Patients admitted to the MGH Burn Center were screened for eligibility between
September 2014 and March 2016. Inclusion criteria were that patients were aged ≥18 years
and <85 years, with 5% or greater of total body surface area (TBSA) burn from any cause,
receiving nutritional support with routine oral or enteral nutrition or a combination of
the two sources, and less than 72 h after burn injury. We excluded patients based on the
following criteria: (1) thyroid disease or malignancy under treatment; (2) liver disease
(serum bilirubin greater than 3 mg/dL); (3) patient or appropriate surrogates unable to
provide full informed consent; (4) previously known human immunodeficiency virus
(HIV)-positive status; and (5) pregnancy (as determined by routine admission examination).
A total of 74 patients with burn injury were screened and 30 patients were enrolled. At the
time of admission, a Revised Baux score was calculated. The formula for the Revised Baux
score is: age + percent burn (%TBSA) + 17 x (Inhalation Injury, 1 = yes, 0 = no) [73].

In addition, 11 healthy adult volunteers (≥18 years) were recruited through clinical
advertisements within Massachusetts General Hospital and blood samples were obtained.
Exclusion criteria for healthy individuals were as follows: (1) systemic disease with or
without functional limitations; (2) known pregnancy; (3) active smoking; (4) use of any
medication within 2 weeks; and (4) CoQ10 supplementation. Written informed consent
was obtained from healthy volunteers.

4.3. Supplementation with Reduced CoQ10 (Ubiquinol-10)

Enrolled patients were randomized to reduced CoQ10 (ubiquinol-10) or placebo in
a 1:1 ratio. Of those, one patient in the CoQ10 group was excluded post-randomization,
leaving 29 for the data analysis. All the enrolled patients received the standard nutritional
support. After the randomization, CoQ10 (1800 mg/day, t.i.d.) or placebo was administered
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three times per day. Enrolled patients who could eat orally took the tablets, while those
who could not eat and receive enteral feeding were given liquid form via an enteral feeding
tube. The administration was continued daily for 4 weeks or until hospital discharge,
whichever came first. Reduced CoQ10 and placebo were provided by Kaneka Nutrients.
Reduced CoQ10 was administered at a dosage of 600 mg per dose. The placebo consisted of
an identical tablet or liquid as the CoQ10. Patients, healthcare personnel, and the research
team remained blinded throughout the study period.

4.4. Blood Samples and Clinical Data Collection

A 12 mL volume of venous blood samples was withdrawn into lithium heparin- and
K2-EDTA-containing vacutainers from an existing central venous catheter or by a needle
stick, but only when the patient needs other labs drawn for their clinical care, just before the
commencement of CoQ10 supplementation or placebo, and every three days thereafter for
4 weeks or until hospital discharge, whichever came first. Blood samples were centrifuged
at 1000× g for 20 min. Then, supernatants were centrifuged twice at 5000× g for 10 min
at 4 ◦C to remove residual cellular debris. PBMCs were isolated using Polymorphprep
(Cosmo Bio USA, Carlsbad, CA, USA) according to the manufacturer’s instructions. Plasma
and PMBCs were immediately frozen and stored at −80 ◦C until analyzed.

We collected vital signs, demographic data, whether or not the patient was receiving
mechanical ventilation, vasopressors or statins, clinical data for calculation of the Sequential
Organ Failure Assessment (SOFA) score [74], length of hospital stay, and mortality at
patient discharge.

4.5. Measurement of CoQ10 Levels

CoQ10 levels were measured in heparinized plasma samples and PBMCs by high-
performance liquid chromatography with electrochemical detection, as previously de-
scribed [48,75], at the laboratory in the Division of Pathology and Laboratory Medicine,
Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of
Medicine, where analysis of CoQ10 is performed for both commercial and research pur-
poses. Plasma total CoQ10 and reduced CoQ10 concentrations were measured. Plasma
total cholesterol concentrations were measured using a colorimetric assay (Sigma-Aldrich,
St. Louis, MO, USA). The lower detection limit of total cholesterol measurement was
50 mg/dL. For the samples with values lower than the lower detection limit of total choles-
terol, one-half of the lower detection limit, 25 mg/dL, was used for statistical analysis. In
addition, 3× 106 PBMCs were used for total CoQ10 measurement, and total CoQ10 content
was normalized to mg protein in the PBMCs.

4.6. Measurement of Plasma mtDNA Levels

Plasma mtDNA levels were measured as previously described [16,76] with minor
modifications. DNA was collected from EDTA-plasma samples using a DNA extraction kit
(Blood Mini kit, Qiagen, Germantown, MD, USA, 51306) according to the manufacturer’s
instructions. mtDNA was amplified using the primers that were designed to target the
mitochondrial 16S rRNA gene (forward: 5′-GCCTTCCCCCGTAAATGATA-3′; reverse:
5′-TTATGCGATTACCGGGCTCT-3′) [76] in PCR reaction mixture containing SYBR Green
Master Mix (Life Technologies, Grand Island, NY, USA). The amplification was measured
by Mastercycler (Eppendorf, Westbury, NY, USA).

4.7. Measurement of Plasma Cytokines

Plasma concentrations of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, G-CSF, TNF-α, and
IFN-γ were measured by the Luminex assay using Cytokine 10-Plex Human Panel (Thermo
Fisher Scientific, Carlsbad, CA, USA, LHC0001M) and MAGPIX Dx system (Luminex,
Billerica, MA, USA) according to the manufacturers’ instructions.
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4.8. Statistical Analysis

Comparisons of baseline values between the CoQ10 and the placebo groups and
between burn patients and healthy volunteers were performed by unpaired two-tailed Stu-
dent’s t test. Longitudinal general linear mixed-effects modeling followed by Bonferroni’s
multiple comparison testing was performed to examine whether the mean levels of plasma
total and reduced CoQ10 concentrations, total CoQ10 content in PBMCs, mtDNA, cytokines,
and SOFA scores were different over time between the CoQ10 and the placebo groups [77].
To account for the wide variability, SOFA scores at each time point between the CoQ10
and the placebo groups were compared using the Mann–Whitney U test. Time-dependent
changes in total CoQ10 content in PBMCs between Day 0 and Day 3 and between Day 3
and Day 6 were analyzed using the paired two-tailed Student’s t test. Statistical analyses
were conducted with the use of Prism 9 (GraphPad Software, San Diego, CA, USA). Data
are expressed as mean ± SD. p < 0.05 was considered statistically significant.

5. Conclusions

Plasma CoQ10 concentrations were lower in burn patients compared with healthy vol-
unteers (Figure 1). The levels of plasma CoQ10 and cholesterol, products of the mevalonate
pathway, were decreased to a similar degree in burn patients. Overall, this randomized,
double-blind placebo-controlled study confirmed the feasibility of supplementation with a
high-dose reduced form of CoQ10 (1800 mg/day) in burn patients. Our data showed that
supplementation with reduced CoQ10 (ubiquinol-10) increased plasma CoQ10 concentra-
tions and total CoQ10 content in PBMCs in burn patients (Figures 2, 3 and 7). Moreover,
our data raise the possibility that severe burn injury may induce intracellular CoQ10 insuf-
ficiency. Further study is needed to address whether CoQ10 supplementation can result in
improved clinical outcomes in burn patients.
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