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Abstract 

Background  Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play 
a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein syn-
thesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino 
acid metabolism offers potential avenues for improving patient clinical outcomes.

Methods  A comprehensive analysis integrating 10 machine learning algorithms was executed to pinpoint amino 
acid metabolic signature. The signature was validated across both internal and external cohorts. Subsequent GSEA 
was employed to unveil the enriched gene sets and signaling pathways within high- and low-risk subgroups. TMB 
and drug sensitivity analyses were carried out via Maftools and oncoPredict R packages. CIBERSORT and ssGSEA were 
harnessed to delve into the immune landscape disparities. Single-cell transcriptomics, qPCR, and Immunohistochem-
istry were performed to corroborate the expression levels and prognostic significance of this signature.

Results  A four gene based amino acid metabolic signature with superior prognostic capabilities was identified 
by the combination of 10 machine learning methods. It showed that the novel prognostic model could effectively 
distinguish patients into high- and low-risk groups in both internal and external cohorts. Notably, the risk score 
from this novel signature showed significant correlations with TMB, drug resistance, as well as a heightened likelihood 
of immune evasion and suboptimal responses to immunotherapeutic interventions.

Conclusion  Our findings suggested that amino acid metabolism-related signature was closely related to the devel-
opment, prognosis and immune microenvironment of pancreatic cancer.
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Introduction
Pancreatic cancer is an extremely lethal malignancy with 
an unfavorable 5-year survival rate of less than 10% [1]. 
It is frequently diagnosed in advanced stages, leading to 
restricted treatment choices and grim prognosis [2]. The 
aggressive nature of pancreatic cancer is attributed to 
its rapid progression, early metastasis, and resistance to 
conventional chemical therapies [3, 4]. Tumor microen-
vironment in pancreatic cancer is distinguished by dense 
fibrosis, immune suppression, and limited vasculariza-
tion, which contribute to the aggressive behavior of the 
disease [5, 6]. Therefore, identifying reliable prognostic 
biomarkers and understanding the molecular mecha-
nisms underlying pancreatic cancer progression and the 
interactions between tumor cells and the tumor micro-
environment is essential for the development of effective 
therapeutic strategies.

Recent research has underscored the importance 
of amino acid metabolic alterations in the onset and 
advancement of cancer [7]. The primary role of amino 
acids is to serve as substrates for the synthesis of proteins. 
Amino acids can provide nitrogen and carbon skeleton 
for rapid proliferation of tumor cells, as well as metabolic 
intermediates for biosynthesis and energy production 
[8]. It can also support the needs of tumor progression 
by maintaining Redox balance and modulating epige-
netic inheritance [9]. Furthermore, amino acid metabo-
lism influences the immune microenvironment, which is 
conducive to tumor immune evasion and immunosup-
pression [10]. Alterations in amino acid metabolism have 
been shown to contribute to tumor growth, metastasis, 
and resistance to therapy [11]. Specifically, Glutamine 
provides nitrogen for nucleotide and amino acid bio-
synthesis, while maintaining mitochondrial membrane 
potential and redox balance [12]. Arginine is a precur-
sor of nitric oxide biosynthesis, which promotes wound 
healing and the release of insulin-like growth factor 1, 
and exhibits multiple immunomodulatory effects [13]. As 
an important one-carbon donor, serine promotes tumor 
cell growth by participating in nucleotide synthesis [14]. 
Branched chain amino acids such as valine, leucine, and 
isoleucine can also supply nitrogen for the synthesis of 
important biological macromolecules like nucleotides 
[15]. Hence, targeting pathways related to amino acid 
metabolism has emerged as a promising therapeutic 
strategy for tumor treatment. Machine learning meth-
ods have been widely used in cancer research to iden-
tify prognostic biomarkers and predict patient outcomes 
[16, 17]. In the present study, we utilized an integration 
of machine learning algorithms to screen amino acid 
metabolism-related genes and construct a prognostic 
model for pancreatic cancer. The association between the 
prognostic model and the immune microenvironment 

was also explored to gain insights into the potential 
mechanisms underlying the role of amino acid metabo-
lism in pancreatic cancer.

Given the dismal prognosis and limited treatment 
options for pancreatic cancer, there is a critical necessity 
to identify novel prognostic biomarkers and therapeu-
tic targets. Recently, there has been growing interest in 
exploring the role of amino acid metabolism in cancer, 
including pancreatic cancer, as a potential target for ther-
apy and prognostic prediction. This study endeavors to 
enhance the comprehension of pancreatic cancer through 
revealing the association of amino acid metabolism-
related genes with patient prognosis and the immune 
microenvironment using machine learning techniques.

Method and materials
Data collection
Gene expression data from RNA-seq and relevant clini-
cal information were obtained from TCGA (https://​por-
tal.​gdc.​cancer.​gov/), ICGC (https://​dcc.​icgc.​org/), and 
GTEx database (https://​commo​nfund.​nih.​gov/​GTEx). 
Microarray gene expression data and clinical information 
from studies such as GSE28735, GSE57495, GSE62452, 
and GSE85916 were collected from the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Single cell tran-
scriptomic dataset GSE205013 with 6 primary PDAC 
tumor samples and 9 liver metastatic tumor samples 
was also downloaded from GEO database. In this study, 
a cohort consisting of 690 patients with both clinical 
and gene expression data sourced from TCGA, ICGC, 
GSE57495, GSE28735, GSE85916 and GSE62452 was 
aggregated. Subsequently, batch effects were mitigated 
by normalizeBetweenArrays and removeBatchEffect 
function, and the cohort was randomly partitioned into 
a training set (n = 487) and a validation set (n = 203) to 
address the potential bias inherent in individual datasets 
and avoid overfitting, which subsequently subjected to 
the integration of machine learning algorithms frame-
work for the identification of prognostic genes.

Identification of amino acid metabolic signature
The ssGSEA (single-sample Gene Set Enrichment Analy-
sis) and WGCNA (Weighted Gene Co-expression Net-
work Analysis) algorithms were utilized to screen out 
the co-expressed genes of amino acid metabolism and 
pancreatic cancer (p < 0.05). The ScWGCNA analysis 
was also conducted to identify gene modules associ-
ated with amino acid metabolism as well as pancreatic 
cancer in single cell transcriptomic data through hdW-
GCNA R package. hdWGCNA [18] is a framework 
tool designed for analyzing co-expression networks in 
high-dimensional transcriptomic data, providing capa-
bilities for network inference, module identification, and 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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data visualization. The differentially expression analysis 
was conducted by limma R package with |logFC|> 1 & 
adj.p < 0.05 in cohort comprising of patients from TCGA 
and GTEx datasets to balance the need for biologi-
cal significance with the risk of overlooking potentially 
meaningful research subjects. Then, 40 sharing genes 
were obtained by intersection of amino acid metabolism 
related genes, pancreatic cancer co-expressed genes and 
differentially expressed genes via veen plot. Univariate 
cox regression analysis was utilized to identify poten-
tial prognostic biomarkers in the investigation. Finally, 
13 genes with significant prognostic potential were put 
into the framework of an integration of machine learn-
ing algorithms to further screen out the genes with lead-
ing AUC value and C-index. Machine learning (ML) 
empowers systems to derive insights from data, recog-
nize patterns, and execute decisions with limited human 
oversight. The fundamental tenet of machine learning is 
to facilitate the training of models utilizing datasets. This 
iterative learning process enables the model to extract 
and internalize the intrinsic patterns and interrelation-
ships present within the data. The machine learning 
method in this study is an integration and combination 
with varying hyperparameters of ten machine learning 
algorithms including CoxBoost, Lasso, stepwise Cox, 
plsRcox, Ridge, Enet, SurvivalSVMS, GBMs, SuperPC 
and RSF [19].

Construction and validation of a novel prognostic model
Utilizing machine learning algorithms and multi-Cox 
regression analysis, we identified a four-gene signature 
associated with amino acid metabolism that demon-
strated significant prognostic value. Subsequently, the 
coefficients for each gene were computed. The amalga-
mated dataset from TCGA and ICGC was designated as 
the training set, and the risk score was calculated using 
the formula: Risk score = Σ (Coefi × Exp). A prognostic 
model was then established, and internal validation was 
conducted using TCGA and ICGC as separate validation 
sets. For external validation, GSE85916 was employed as 
a validation set with a limited sample size, while a com-
bined cohort from GSE85916, GSE28735, GSE62452, 
and GSE57495 was utilized as an external dataset with 
a larger sample size. The new signature was verified by 
applying the same calculation formula and cut-off point.

GSEA analysis of the amino acid metabolism related 
signature
GSEA analyses was performed via clusterProfiler, DOSE 
and enrichplot R packages to reveal the GO, KEGG 
pathways and Hallmarks between high- and low- risk 
groups. Then, the correlation between the expression lev-
els of 4 prognostic signatures and cancer hallmarks was 

calculated through ggcor R package. The KEGG pathways 
altered between the high- and low-expression groups of 
the four genes were analyzed via LinkedOmics (https://​
www.​linke​domics.​org/​login.​php).

Correlation analyses of risk scores with TMB, drug 
sensitivity and tumor immune microenvironment
Single Nucleotide Polymorphism information was down-
loaded from TCGA database. Maftools, ggpubr and 
reshape2 R packages were used to analyze the altera-
tion of tumor mutation burden in high- and low- risk 
groups. Then, the alteration of drug sensitivity in high- 
and low-risk groups was investigated by oncoPredict R 
package. CIBERSORT algorithm and ssGSEA analysis 
were applied to reveal the association of risk scores with 
tumor immune infiltration, immune escape and immune 
therapy. Estimate R package was also applied to reveal 
the changes between tumor microenvironment and risk 
scores.

Single‑cell and bulk RNA_seq data analysis 
of the differentially expression and prognostic value of 4 
selected signatures
The TISCH database (http://​tisch1.​comp-​genom​ics.​org/) 
was employed to investigate the expression of four genes 
related to amino acid metabolism in various tumor cell 
populations and to assess the association between their 
expression levels and prognosis using single-cell tran-
scriptome data. Additionally, bulk RNA data from the 
TCGA was analyzed to confirm the expression alterations 
and prognostic significance of the identified signatures.

Immunohistochemistry, qPCR and transwell analyses
Tissue microarrays consisting of tumor tissues and 
paired normal tissues were collected from 40 patients 
who underwent curative resection for PDAC at Peking 
Union Medical College Hospital. The assessment of all 
tissue samples was carried out with the assistance of the 
ImageJ-based IHC Profiler plugin, followed by manual 
corrections. RNA was isolated from HPNE, PANC1, 
T3M4, and CFPAC1 cell lines employing TRIzol reagent 
(Takara, Japan). The immunohistochemistry assay and 
Real-time quantitative PCR analysis were conducted as 
previously reported [20]. The primer sequences can be 
found in Table 1. A suspension of 6.0–8.0 × 10^4 BxPC-3 
cells was prepared in the corresponding medium devoid 
of fetal bovine serum (FBS) and introduced into the 
upper chamber of a Costar 3422 transwell system. For 
the invasion assay, the upper chamber was pre-coated 
with a 1:20 dilution of Matrigel; however, for the migra-
tion assay, the upper chamber remained uncoated. The 
lower chamber was filled with complete medium supple-
mented with 10% FBS. After 24 h, the migrated cells were 

https://www.linkedomics.org/login.php
https://www.linkedomics.org/login.php
http://tisch1.comp-genomics.org/
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fixed with methanol for 30 min and subsequently stained 
with a 0.5% crystal violet solution for 30 min. Following 
staining, the cells were rinsed, dried, and the number of 
stained cells in each filter was quantified under a micro-
scope. Each experimental group was analyzed using three 
replicates.

Statistical analysis
Kaplan–Meier analysis and log-rank tests were utilized 
to compare the overall survival rates between high- and 
low-risk cohorts. Furthermore, univariate and multi-
variate Cox regression analyses were executed to ascer-
tain independent prognostic factors influencing survival 
duration. The Wilcoxon test was employed to discern 
variations in gene expression, TMB, drug responsiveness, 
immune scores, IPS, and TIDE scores across the two 
groups. Spearman correlation analysis was performed to 
evaluate the interrelation between these cohorts. Image 
J was used for data analysis of IHC and migration and 
invasion experiments. All statistical assessments were 
carried out using R software (version 4.3.0). A two-tailed 
p-value of p < 0.05 was considered statistically significant, 
denoted by “***” for p < 0.001, “**” for p < 0.01, and “*” for 
p < 0.05.

Results
Integrative analysis of bulk and single cell transcriptomic 
data identified amino acid metabolism related signature 
in pancreatic cancer
Amino acids can be used as an energy source and are 
involved in biosynthesis. Amino acid derivatives are 
crucial in epigenetic regulation and immune responses 
linked to tumor initiation and metastasis. In order to 

screen out amino acid metabolism related genes, both 
bulk and single cell transcriptomic data were analyzed.

The ScRNA_Seq data included 6 primary PDAC tumor 
samples and 9 liver metastatic tumor samples. By com-
bining automated annotation with single R and manual 
annotation, cells from GSE205013 were annotated into 
7 cell subtypes, including Epithelial cells, NK cells, Mac-
rophages, fibroblasts, endothelial cells, B cells and T cells 
(Fig.  1A-C). These cells were subjected to hdWGCNA 
analysis, focusing on the characteristic genes of Epithe-
lial cells for module clustering. With the soft threshold-
ing power β established at 12, the fit index for scale-free 
topology achieved 0.8, leading to the identification of 
18 modules (Fig.  1D-F). Subsequently, the correlation 
between identified modules and traits such as pathways 
in cancer, pancreatic cancer, cell cycle, and amino acid 
metabolism pathways was explored (Fig.  1G). Modules 
Epi-M7, Epi-M15, Epi-M16, Epi-M17, and Epi-M18, 
showing significant positive correlations with pathways 
in cancer, pancreatic cancer, cell cycle, and close asso-
ciations with amino acid metabolism, were individually 
extracted. Differential expression analysis was conducted 
on these extracted modules in primary and liver metas-
tasis samples to identify genes related to liver metasta-
sis and amino acid metabolism (Fig.  2D). The ssGSEA 
and WGCNA algorithms were also applied to estimate 
amino acid metabolism-related signaling pathways 
and screen related co-expression gene modules in bulk 
RNA_Seq data. The results revealed that MElightcyan 
and MEgrey were significantly positively correlated with 
majority of amino acid metabolic pathways (Fig.  2A). 
Then, genes co-expressed with pancreatic cancer and 
the differentially expressed genes in PAAD were also 
identified (Fig. 2B, C). Intersection of 1049 genes related 
to amino acid metabolism, 3887 DEGs, and 6787 co-
expressed genes in PAAD were conducted. Forty shared 
genes underwent the subsequent analysis (Fig. 2E). Uni-
cox regression analysis further identified 13 prognostic 
genes for pancreatic cancer (Fig.  2F). The AUC values 
of 89 kinds of machine learning combination and the 
C-index values of 99 kinds of machine learning meth-
ods were further calculated by LOOCV framework with 
varying hyperparameters of ten machine learning algo-
rithms including CoxBoost, Lasso, stepwise Cox, plsR-
cox, Ridge, Enet, SurvivalSVMS, GBMs, SuperPC and 

Table 1  Primer sequences in qPCR

Name Forward primer (5’−3’) Reverse primer (5’−3’)

GAPDH ACC​CAC​TCC​TCC​ACC​TTT​ CTG​TTG​CTG​TAG​CCA​AAT​TCGT​

GFPT2 AGG​TGC​ATT​CGC​GCT​GGT​T TGT​GGA​GAG​CTT​GTA​TTT​GCTCC​

P4HA1 AAT​CTG​GTC​CTT​AAG​GAT​ATG​
TCA​G

GGA​AGA​TTA​CCC​TTT​GAG​
ATGGT​

HAAO CAG​GCA​GGC​ACA​CCA​CTC​AG CCC​ATT​GTC​ACC​ACC​GAG​GAG​

SAT2 AGG​TTG​CCC​TGA​ATA​AGG​GTT​ CTC​GCC​TTC​AAA​TCG​AAA​GGA​

Fig. 1  Identification of amino acid metabolism related signature based on single cell transcriptomic data. A Cell score heatmap showed cell 
subgroups annotated by Single R package. B Bubble map showed manual annotation and correction of each cell subpopulation in different 
clusters. C UMAP and tSNE dimensionality reduction and clustering showed 7 different cell types. D This section describes related parameters 
of WGCNA analysis. E Dendrogram of different modules. F Display of the 18 hdWGCNA modules. G Correlation of different modules with signaling 
pathway traits

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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RSF (Fig.  2G, H). The results suggested that when the 
integrative model was Lasso + RF, the AUC value was 
the highest (0.858), and when the model combination 
was RSF + Enet[alpha = 0.2] or RSF + Enet[alpha = 0.1], it 
achieved the highest C-index (0.634).

Construction and validation of a novel prognostic model
Four amino acid metabolism related genes including 
GFPT2, P4HA1, HAAO and SAT2 were further screened 
out based on the optimal models with leading AUC and 
C-index to develop a novel prognostic signature for pan-
creatic cancer. The coefficients of the 4 genes were cal-
culated via multi-cox regression analysis. The formula 

Fig. 2  Identification of amino acid metabolism related signature based on bulk RNA_Seq data. A WGCNA analysis identified gene modules 
corelated with amino acid metabolic signal pathways. B WGCNA analysis of co-expressed genes with pancreatic cancer. C Volcano map showed 
differentially expressed genes between the tumor group and the control group in the TCGA-PAAD dataset. D Enhanced Volcano map displayed 
the differentially expressed genes between primary and liver metastatic groups in ScRNA_Seq data. E Venn diagram revealed 40 potential 
prognostic genes in pancreatic cancer. F Forest map showed that 13 genes had significant prognostic value. G An integration of 89 machine 
learning analyses screened prognostic genes with the greatest AUC values. H The utilization of 99 machine learning algorithms to screen 
for prognostic genes with the highest C-index values
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of Risk score = 0.4352 × GFPT2 Exp-0.2725 × HAAO 
Exp + 1.3791 × P4HA1 Exp—0.8734 × SAT2 Exp was used 
to calculate the risk score of each patient, thus dividing 
patients into high and low risk groups in the train data-
set, which was validated in different internal and external 
data sets (Fig. 3A-C). The overall survival time of patients 
with higher risk scores was significantly shorter than that 
in the low- risk group (Fig.  3A). Subsequently, the risk 

scores of the training set and each validation set showed 
superior discriminative ability for patient outcomes at 1, 
3, and 5 years, as indicated by the ROC curves (Fig. 3D). 
Additionally, the calibration curves for different datasets 
at 1, 3, and 5 years demonstrated the robustness of the 
prognostic model, further confirming its high reliability 
(Fig.  3E). Furthermore, by comparing with the C-Index 
of six previously published prognostic models related to 

Fig. 3  Construction and validation of an amino acid metabolic prognostic model. A A prognostic model of 4 amino acid metabolic genes 
was constructed in a merged dataset comprising of TCGA and ICGC cohorts, which was validated in the internal cohorts of ICGC and TCGA, as well 
as the external cohorts of GSE85916 and the combined GEO dataset. B Patients were divided into high and low risk groups based on risk scores 
calculated by the prognostic model. C Heatmaps showed the expression of four prognostic risk genes in the high-low risk groups. D ROC curves, E 
Calibration curves and F DCA curves further evaluated the accuracy, robustness and clinical value of the prognostic model
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pancreatic cancer, we found that the amino acid-related 
signature exhibited the highest C-Index in both the train-
ing and validation sets. This suggests that our signature 
demonstrates superior robustness and consistency in 
the prognostic prediction of pancreatic cancer (Sup-
plementary Fig.  1). The DCA curve of the amino acid 
metabolism-related signature to predict the prognosis of 
pancreatic cancer showed that when the survival thresh-
old of the training set and the internal validation set 
exceeded 0.2, and the survival threshold of the external 
validation set exceeded 0.4, this feature was beneficial to 
predicting patients’ prognosis (Fig. 3F).

GSEA analysis was performed in high‑ and low‑ risk groups
To further explore the gene sets and signaling pathways 
enriched in each risk groups, GSEA analysis was con-
ducted. The Gene Ontology analysis revealed significant 
enrichment of biological processes such as cornification, 
DNA geometric change, and keratinization in the high-
risk cluster, while processes like digestion, peptide hor-
mone secretion, and regulation of hormone levels were 
significantly promoted in the low-risk group (Fig. 4A, B & 
Supplementary Table 2). The KEGG pathway enrichment 
analysis showed that signaling pathways including adhe-
rens junction, ECM receptor interaction, focal adhesion, 
and pancreatic cancer were significantly active in the 
high-risk cluster, whereas pathways including chemokine 
signaling and drug metabolism cytochrome P450 were 
notably decreased (Fig. 4C, D & Supplementary Table 3). 
Furthermore, the Hallmarks pathway enrichment analy-
sis indicated significant enrichment of signaling pathways 
like the HIF1 signaling pathway, ECM receptor interac-
tion, and pancreatic cancer in the high-risk group, while 
pathways like steroid hormone biosynthesis and insulin 
secretion were obviously elevated in the low-risk group 
(Fig.  4E, F & Supplementary Table  4). These findings 
suggest that relevant signaling pathways associated with 
pancreatic cancer are active in the high-risk cluster, fur-
ther validating the predicting accuracy of the signature in 
pancreatic cancer.

The correlation analyses of risk scores with TMB and drug 
sensitivity
TMB analysis in high- and low-risk subgroups of patients 
revealed a mutation rate of 85% in the high-risk clus-
ter, compared to 64.29% in the low-risk cluster (Fig. 5A, 
B). The three most common types of mutations in both 
groups were missense mutation, nonsense mutation, and 
frame shift del (Fig.  5A, B). Notably, there is a signifi-
cant positive association between risk scores and TMB 
(R = 0.22, p = 0.0091), and TMB was significantly upreg-
ulated in the high-risk group compared to the low-risk 
group (Fig.  5C, D). Combining TMB and risk scores in 

survival analysis shows that patients with low TMB and 
low risk have a better prognosis than those with high 
TMB and high risk (Fig. 5E, F). In the high-risk group, the 
mutation rates of KRAS, CDKN2A, and TP53 showed 
a significant increase compared to the low-risk cluster, 
whereas the SMAD4 mutation load showed a significant 
decrease (Fig.  5G-J). Moreover, to investigate the rela-
tionship between risk scores and drug resistance in pan-
creatic cancer patients, we analyzed the IC50 values of 
prevalent chemotherapy and targeted drugs in high- and 
low-risk groups. The results reveal decreased sensitivity 
to drugs such as 5-Fluorouracil, Irinotecan, Gemcitabine, 
and KRAS(G12C) Inhibitor-12 in high-risk subgroup, 
implying a significant correlation between high-risk 
scores and drug resistance (Fig.  5K-R). Additionally, we 
utilized the GDSC2 website (https://​www.​cance​rrxge​ne.​
org/) to predict the expression of four amino acid metab-
olism-related prognostic genes in relation to poten-
tial drug sensitivity. The results indicated that the high 
expression groups of GFPT2 and P4HA1 exhibited more 
pronounced drug resistance, whereas the high expression 
groups of HAAO and SAT2 demonstrated lower drug 
resistance. This suggests a detrimental prognostic role for 
GFPT2 and P4HA1(Supplementary Fig. 2).

Immune infiltration and immune function analyses in high‑ 
and low‑ risk groups
This study also delved into the impact of amino acid 
metabolism-related risk scores on immune infiltration 
and immune function. Our findings reveal substantial 
correlations between four amino acid metabolism-related 
genes and the majority of immune checkpoints. The 
identification of immune checkpoints has paved the way 
for novel approaches in tumor immunotherapy. Notably, 
the risk scores exhibit a significant positive correlation 
with the immune checkpoint CD274, CD80, and CD44 
et al., while demonstrating a marked negative correlation 
with CTLA4, LAG3 and TNFRSF14, implying a potential 
link between the risk scores and tumor immune suppres-
sion (Fig. 6A). Furthermore, correlation analyses between 
immune infiltration levels and risk scores unveil a nega-
tive association with immune cells of positive immune 
function, including CD8+ T cells, NKT cells, and CD4+ 
Th1 cells, while demonstrating a positive correlation with 
inhibitory immune cells like cancer-related fibroblasts, 
CD4+ Th2 cells, and Treg cells (Fig.  6B). Subsequent 
ssGSEA analysis of immune cells in pancreatic cancer 
further indicates a significant reduction in infiltrating 
levels of activated CD8+ T cells, activated B cells, CD56 
bright NK cells, CD56 dim NK cells, Th17 cells, effec-
tor memory CD4+ T cells, and effector memory CD8+ 
T cells in the high-risk subgroup, alongside a notable 
increase in infiltrating levels of activated CD4+ T cells, 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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Fig. 4  GSEA analysis between high- and low- risk groups. A, B GO analysis, C, D KEGG analysis and E, F Hallmarks of high- and low-risk groups
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activated dendritic cells, Th2 cells, and immature den-
dritic cells (Fig. 6C, D). Moreover, results from immune 
function-related analyses suggest a substantial positive 
correlation between risk scores and APC_co-inhibition, 
while demonstrating a significant negative correlation 
with T cell co-stimulation, cytolytic activity, and Type 
II IFN response (Fig.  6E, F). Taken together, these find-
ings collectively indicate an association of amino 
acid-related risk scores with an immune-suppressive 
microenvironment.

Immune escape and immune therapy analyses in different 
groups
By further investigating the impact of amino acid metab-
olism-related risk scores on immune escape, immu-
notherapy, and the immune microenvironment in 
pancreatic cancer, it was found that the risk scores were 
significantly positively correlated with tumor microen-
vironment scores (Fig. 7A). Moreover, higher risk scores 
were related to higher PDL1 expression and PDL1 path-
way in cancer (Fig.  7B, C). In the high-risk group, the 
IPS scores for CTLA4(-)PD1( +), CTLA4( +)PD1( +), 
CTLA4( +)PD1(-), and CTLA4(-)PD1(-) were signifi-
cantly decreased compared to the low-risk cluster, indi-
cating poor response to immunotherapy in high-risk 
patients (Fig.  7D-G). Furthermore, the TIDE scores, 
exclusion, MDSC, CAF, and CD274 were significantly 
higher in the high-risk group, while the scores of dys-
function and CD8 were significantly higher in the low-
risk group. MSI showed no significant correlation with 
risk scores (Fig. 7I-P). Based on Fisher test analysis, there 
was a significant correlation between the risk scores and 
patient responsiveness to immune therapy. Further sub-
map analysis suggested that patients with low-risk rather 
than high-risk may be responsive to CTLA4 immune 
therapy (Adjusted p < 0.05, Fig.  7Q, R). The results indi-
cated the higher potential of immune escape and immune 
therapy resistance in high- risk group.

Correlation analyses of 4 prognostic genes with cancer 
hallmarks and the GSEA analysis
In-depth exploration was conducted into the correlation 
between the four amino acid metabolism-related signa-
ture and cancer-related hallmarks. The results revealed 

that the oncogenic GFPT2 and P4HA1 showed a sig-
nificant positive correlation with most cancer hallmarks 
signaling pathways, while displaying a negatively signifi-
cant association with fatty acid metabolism and oxidative 
phosphorylation (Fig. 8A, C). In contrast, the protective 
gene SAT2 exhibited a significant negative correlation 
with most cancer hallmarks, while showing a signifi-
cant positive correlation with oxidative phosphorylation 
(Fig. 8B). HAAO showed a negative correlation with the 
MYC_targets signaling pathway, while revealing a sig-
nificant positive association with the IL6-JAK-STAT, IL2-
STAT5 signaling pathway, and angiogenesis (Fig.  8D). 
Moreover, ssGSEA analysis indicated that GFPT2 was 
significantly positively correlated with multiple immune-
related signaling pathways, including the inflammatory 
response pathway, selective expression of chemokine 
receptors during T cell polarization, and development 
of pulmonary dendritic cells and macrophage subsets 
(Fig.  8E). P4HA1 was significantly positively correlated 
with biosynthesis of amino acids, HIF-1 signaling path-
way, and pancreatic cancer (Fig.  8G). HAAO was posi-
tively correlated with Th1 and Th2 cell differentiation, 
Th17 cell differentiation, while negatively correlated 
with the cell cycle (Fig. 8F). SAT2 was significantly pos-
itively correlated with glycine, serine, and threonine 
metabolism, tryptophan metabolism, while showing a 
notably negative correlation with pancreatic cancer and 
proteoglycans in cancer (Fig. 8H). These findings offered 
insights into the potential mechanisms underlying the 
association between amino acid metabolic signature and 
cancer-related signaling pathways (Fig.  8 & Supplemen-
tary Fig. 6).

Validation of the four‑gene amino acid metabolic signature
By analyzing the single-cell sequencing data from the 
TISCH database, it revealed the expression patterns and 
prognostic significance of GFPT2, P4HA1, HAAO, and 
SAT2 in different cell types within pancreatic cancer 
(Fig. 9A-J). GFPT2 was predominantly expressed in fibro-
blasts, while P4HA1 showed primary expression in DCs, 
macrophages, mast cells, fibroblasts, and malignant cells, 
with partial expression in other cell types (Fig.  9K, L). 
HAAO exhibited main expression in DCs, macrophages, 
mast cells, and fibroblasts, and SAT2 demonstrated 

Fig. 5  Risk score was correlated with tumor mutation burden and drug sensitivity. A, B The top20 mutated genes in high- and low- risk groups. C 
The tumor mutation burden in high-risk group was significantly higher than in low-risk group. D Risk scores were significantly correlated with tumor 
mutation burden. E, F Tumor mutation burden and risk score were significantly correlated to unfavorable prognosis. G KRAS, (H)TP53, I CDKN2A 
and J SMAD4, as the four genes with the highest mutation rates in pancreatic cancer, showed significant changes in the high-low- risk groups. The 
drug sensitivity of (K) 5-Fluorouracil, L Irinotecan, M Sorafenib, N Gemcitabine, O Epirubicin, P KRAS(G12C) Inhibitor-12, Q Oxaliplatin and R Erlotinib 
were significantly declined in high-risk group than in low-risk group

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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expression in the majority of cell types (Fig. 9M, N). Fur-
thermore, GFPT2 and P4HA1 were associated with an 
adverse prognosis, as indicated by a hazard ratio (HR) 
greater than 1 (Fig.  9O, P). Conversely, SAT2 displayed 
a protective prognostic effect with an HR less than 1 

(Fig.  9Q). However, the prognostic value of HAAO was 
not significant within the single-cell sequencing data-
set (Fig.  9L). These findings shed light into the expres-
sion profiles and prognostic implications of these genes 
across different cell populations in pancreatic cancer. 

Fig. 6  The correlation of immune infiltration and immune function with risk scores. A The correlation of 4 prognostic genes and risk score 
with immune check points. B Immune infiltration analysis of risk scores from 7 software, including XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, CIBERSORT-ABS and CIBERSORT. C, D The correlation analysis and GSEA analysis of immune infiltration in high- and low- risk groups. E, F The 
correlation analysis and GSEA analysis of immune function in high- and low-risk groups
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Fig. 7  The correlation of risk score with immune escape and immune therapy. A Stromal score, immune score and TME score in high- and low-risk 
groups. B, C The score of PDL1 expression and PDL1 pathway in cancer was significantly higher in high-risk group than in low-risk group. The IPS 
scores of (D) CTLA4(-)PD1( +), E CTLA4(-)PD1(-), F CTLA4( +)PD1(-) and (G) CTLA4( +)PD1(-) were significantly decreased in high-risk group. I-O The 
risk score was significantly associated with immune escape in PAAD. P MSI scores had no significant correlation in high- and low-risk groups. Q 
Fisher’s test of immune therapy response in high- and low-risk groups. R Submap analysis identified significant response of CTLA4 in low-risk group
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Fig. 8  The correlation of 4 prognostic genes with cancer hallmarks. Correlation analysis of (A) GFPT2, B HAAO, C P4HA1, and D SAT2 with cancer 
hallmark signaling pathways based on ggcor R package. GSEA analysis of (E) GFPT2, F HAAO, G P4HA1, and H SAT2 from Metascape database
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Fig. 9  Single-cell RNA-seq analysis identified the expression and prognostic value of 4 amino acid metabolic genes. A Minor-lineage annotation 
of cell subgroups in PAAD-CRA001160. B GFPT2, C P4HA1, D HAAO, and E SAT2 expression in PAAD-CRA001160. F Minor-lineage annotation of cell 
subgroups in PAAD-GSE11672. G GFPT2, H P4HA1, I HAAO, and J SAT2 expression in PAAD-GSE11672. K, L, M, N The expression levels of GFPT2, 
P4HA1, HAAO, and SAT2 in each cell type. O, P, Q, R The prognostic value of GFPT2, P4HA1, HAAO, and SAT2 in each cancer
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Bulk RNA-seq data from the TCGA was also investigated 
to validate the differential expression and prognostic 
ability of the four amino acid metabolism-related genes. 
The results revealed that high expression of GFPT2 and 
P4HA1 was related to adverse prognosis, while elevated 
expression of HAAO and SAT2 indicated longer survival 
time (Fig.  10A-H). These findings align with the results 
of our prognostic model analysis. Further Cox regres-
sion analysis for the four amino acid metabolism-related 
genes and a comparison of the survival curves between 
high- and low-risk groups also demonstrated a funda-
mental consistency with our initial results (Supplemen-
tary Fig. 3–4). Furthermore, qPCR was applied to assess 
the expression disparities of four promising prognostic 
targets in the human normal pancreatic cell line HPNE 
and human pancreatic cancer cell lines PANC1, T3M4, 
and CFPAC1. The findings revealed a significant up-regu-
lation of GFPT2 and P4HA1 RNA expressions in pancre-
atic cancer cell lines, while the converse was observed for 
HAAO and SAT2. These results align with our analytical 
expectations. (Fig.  10I-L). Using immunohistochemis-
try, the protein expression of four potential targets was 
examined between PDAC (n = 40) and normal tissues 
(n = 40). Subsequently, based on their expression levels, 
the two groups were categorized as negative (-), low posi-
tive ( +), positive (+ +), and high positive (+ + +). All four 
amino acid-related targets were expressed in the cyto-
plasm and cell membrane. GFPT2 exhibited positive rate 
of 92.5% (37/40) in the PDAC and 5% (2/40) in the nor-
mal group. P4HA1 showed positive rate of 100% (40/40) 
in both PDAC and normal groups, with the low positive 
rate in the normal group being 80% (32/40) and the posi-
tive rate in PDAC group being 90% (36/40). HAAO dis-
played positive rate of 100% (40/40) in the normal group 
and 65% (26/40) in PDAC. SAT2 exhibited positive rate 
of 100% (40/40) in the normal group and 85% (34/40) in 
PDAC. The Wilcoxon test results indicated that the posi-
tive areas of GFPT2 and P4HA1 in PDAC were notably 
elevated than those in the normal group, while reversed 
in HAAO and SAT2 (p < 0.001, Fig.  10M, N). Addition-
ally, the correlation between the positive area and sur-
vival time was examined in 22 out of 40 patients with 
integrate follow-up information. The results revealed a 
negative association between GFPT2 and P4HA1 expres-
sion and progress free survival (PFS) time in PDAC 

patients, whereas the expression levels of HAAO and 
SAT2 were positively associated with PFS time in PAAD 
patients. (Adjusted p < 0.05, Fig. 10 O).

Furthermore, to further validate the function of the 
selected amino acid metabolism-related signature, we 
chose GFPT2 as a hub gene and performed knockdown 
in the pancreatic cancer cell line BXPC3. Through tran-
swell assays, we evaluated the impact of GFPT2 on inva-
sion and migration in  vitro. The results demonstrated 
that the knockdown of GFPT2 significantly decreased 
the migratory and invasive capabilities of pancreatic can-
cer cells, implying that GFPT2 is associated with malig-
nant behavior and poor prognosis in pancreatic cancer 
(Fig. 11).

Discusssion
Pancreatic cancer represents a malignant neoplasm 
associated with a low survival rate, demonstrating rap-
idly increasing morbidity and mortality. Early metastasis 
and a lack of early diagnostic biomarkers often result in 
missed opportunities for curative resection at the time 
of diagnosis [21, 22]. Although significant advancements 
have been achieved in pancreatic cancer treatment, the 
therapeutic impact remains constrained, with mFOLFOX 
therapy and the combination of gemcitabine and pacli-
taxel being commonly utilized for patients with advanced 
pancreatic cancer and those necessitating postoperative 
adjuvant therapy [23, 24]. Furthermore, the efficacy of 
immunotherapy, which has proven effective in numer-
ous gastrointestinal malignancies, is notably limited in 
pancreatic cancer [25]. The emergence of drug resist-
ance to traditional adjuvant therapy, coupled with tumor 
microenvironment heterogeneity, can contribute to unfa-
vorable therapeutic responses [5, 26, 27]. Thus, further 
exploration of the underlying mechanisms governing 
pancreatic cancer development and progression, along 
with an investigation into its relationship with alterations 
in the tumor immune microenvironment and drug resist-
ance, is imperative. This endeavor will serve as a founda-
tional basis for enhancing patient prognosis.

Intracellular metabolic reprogramming stands as a 
fundamental hallmark of cancer, enabling tumor cells 
to adapt to hypoxic environments and gain a survival 
advantage [28]. Emerging evidence underscores the vital 
role of amino acid metabolic reprogramming, in addition 

(See figure on next page.)
Fig. 10  Validation of the expression levels in 4 prognostic genes. A, B, C, D Gene expression levels of GFPT2, P4HA1, HAAO and SAT2 
in high- and low-risk groups in TCGA and ICGC cohorts. E, F, G, H Kaplan–Meier curves of GFPT2, P4HA1, HAAO and SAT2. I, J, K, L qPCR analysis 
identified the RNA expression levels of GFPT2, P4HA1, HAAO and SAT2 in HPNE, Panc1, T3M4 and CFPAC1 cell lines. M, N The protein expression 
levels of GFPT2,P4HA1,HAAO and SAT2 were detected by immunohistochemical staining in 40 pairs of PDAC tumor tissues and non-tumor tissues. 
O Correlation analysis of the 4 gene expression levels with prognosis in PDAC
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Fig. 10  (See legend on previous page.)
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to glucose and fatty acids, in tumorigenesis and cancer 
development [29–31]. An amino acid-enriched subtype 
has been identified by metabolomics analysis, highlight-
ing the specific involvement of amino acids in PDAC [32]. 
Various amino acids and their metabolites exert diverse 
biological effects, such as supporting the tricarboxylic 
acid (TCA) cycle, maintaining cellular REDOX state, and 
participating in cell signal transduction [33–36]. Simul-
taneously, the interplay between amino acid metabolism, 
immune microenvironment, and epigenetic regulation 
also significantly influences tumor development [37, 38]. 
Leveraging amino acids as innovative focal points in the 
diagnosis, prognosis, and treatment of PDAC holds sig-
nificant promise. The distinct amino acid metabolism of 
cancer cells, divergent from that of normal cells, renders 
it a viable therapeutic target.

In this study, we employed a combined approach of 
ssGSEA, WGCNA, and an integration of machine learn-
ing techniques to identify four amino acid metabolism 
related genes, including GFPT2, P4HA1, HAAO, and 
SAT2, demonstrating significant prognostic value in pan-
creatic cancer. Subsequently, we developed a prognostic 
model based on the 4 prognostic genes, and conducted 
validation in two internal and two external datasets to 
assess the model’s ability of differentiation, calibration, 
and clinical benefit for the overall survival time of pan-
creatic cancer patients. Univariate and multivariate Cox 
regression analyses indicated that risk score of the novel 
model could serve as an independent prognosticator 
for pancreatic cancer (Supplementary Fig.  5). GFPT2 is 
a rate-limiting enzyme in the hexosamine biosynthesis 
pathway responsible for glycosylation, which enhances 
the glycosylation and nuclear translocation of p65, 
thereby activating the NF-κB pathway and promoting 
the progression and metastasis of CRC [39]. It has also 
been reported that the overexpression of GFPT2 and the 
heightened glutamine consumption in tumor cells can 

impede mitochondrial division in macrophages, thereby 
conferring resistance to macrophage phagocytosis [40]. 
GFPT2 knockdown can affect EMT, growth and inva-
sion of breast cancer cells, and GFPT2 can also be used 
as a marker of oxidative stress and affect mitochondrial 
homeostasis [41]. Stomatin-like protein 2 induces pan-
creatic cancer metastasis by regulating GFPT2 expres-
sion under chemotherapy stress [42]. In addition, GFPT2 
is also closely related to the tumorigenesis and progres-
sion of non-small cell lung cancer, gastric cancer, and 
ovarian cancer [43–45]. In conclusion, although the 
role of GFPT2 in pancreatic cancer was less reported, it 
has been correlated to tumor cell growth, invasion, and 
metastasis in a variety of tumors. We further demon-
strated through in vitro functional assays that the knock-
down of GFPT2 impedes the invasion and migration of 
pancreatic cancer cells, suggesting that GFPT2 expres-
sion is associated with the metastasis and malignant 
behavior of pancreatic cancer cells. P4HA1 is involved 
in proline metabolism and collagen synthesis, which has 
been implicated in the promotion of tumor progression 
across various cancers [46, 47]. Notably, P4HA1 exhibits 
high expression levels in PDAC and is correlated with a 
poor prognosis [48]. P4HA1 can also affect tumor cell 
glucose metabolism reprogramming and tumor dryness 
in pancreatic cancer [49]. Currently, limited research 
exists on the role of HAAO in cancer. HAAO pertains 
to the tryptophan metabolic pathway. However, avail-
able evidence suggests that the cancer-specific promoter 
hypermethylation of HAAO in prostate cancer is linked 
to risk stratification and it may serve as a prognostic 
marker [50]. SAT2 exhibits diamine N-acetyltransferase 
activity and participates in polyamine metabolism, pri-
marily located in the extracellular exosomes. Currently, 
there is less research on SAT2 in tumors. Our study 
revealed a decreased expression of SAT2 in pancreatic 
cancer compared to normal tissues. Furthermore, high 

Fig. 11  Validation of the function of GFPT2. A Migration and invasion analyses of GFPT2 gene. B Knockdown of GFPT2 ameliorated the malignant 
ability of pancreatic cancer cells
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SAT2 expression was related to improved overall sur-
vival and disease-free survival, suggesting its potential 
role as a protective factor in pancreatic cancer. To further 
elucidate the impact of amino acid metabolism-related 
genes on the prognosis of pancreatic cancer, it is neces-
sary to conduct more comprehensive in vitro functional 
assays and in vivo studies. Given the complex biology of 
pancreatic ductal adenocarcinoma (PDAC), integrating 
these experimental models will aid in achieving a more 
nuanced understanding of how amino acid metabolism 
intersects with tumor growth, metastasis, and responses 
to therapy. These investigations will provide critical 
insights into the molecular mechanisms underlying the 
alterations in amino acid metabolism that may contribute 
to the aggressiveness of PDAC.

Additionally, we compared the amino acid-related 
signature with the C-index of six previously published 
prognostic models related to pancreatic cancer [51–56]. 
The results demonstrated that the amino acid-related 
signature exhibits superiority and robustness in predict-
ing pancreatic cancer prognosis in both the training and 
validation cohorts (Supplementary Fig. 1). However, this 
study still has several limitations, including potential 
biases and the representativeness of the patient popula-
tion. To enhance the appliance of our conclusions, we 
recommend that future research focuses on evaluat-
ing risk scores in a broader clinical cohort. Such stud-
ies should include prospective cohorts and multicenter 
collaborations to provide a comprehensive understand-
ing of the reliability of risk scores for pancreatic cancer 
patients across different stages and treatment modalities. 
This approach will ultimately aid in refining personalized 
treatment strategies and improving prognostic accuracy 
in clinical practice.

We further delved into the correlation between the 
amino acid metabolism-related risk score and the 
immune microenvironment, immune evasion, and 
immunotherapy in pancreatic cancer. Our findings indi-
cate that patients in the high-risk group are more prone 
to immune evasion and exhibit a poorer response to 
immunotherapy. Amino acid metabolism plays a cru-
cial role in regulating immune cell function and shaping 
the immune microenvironment. The interplay between 
amino acid metabolism and immune responses has been 
widely documented. For instance, tryptophan metabo-
lism through the kynurenine pathway can modulate T 
cell function and promote immune tolerance [57]. Addi-
tionally, arginine metabolism influences T cell prolifera-
tion and phenotype, impacting the anti-tumor immune 
response [58]. Furthermore, the availability of amino 
acids like glutamine impacts the activation and function 
of immune cells [59, 60]. Amino acid metabolism also 
contributes to the regulation of immune checkpoints and 

the tumor immune microenvironment [61]. Dysregulated 
amino acid metabolism in cancer can lead to the accu-
mulation of immunosuppressive metabolites, creating an 
immune-suppressive microenvironment. Understanding 
the intricate relationship between amino acid metabo-
lism and immune function is essential for developing 
novel immunotherapeutic strategies. Targeting amino 
acid metabolic pathways may offer promising avenues for 
modulating the immune response and improving the effi-
cacy of immunotherapies in cancer. Further investigation 
in this area is warranted to elucidate the specific mecha-
nisms and identify potential therapeutic targets.

In the analysis of immune checkpoints, it is essential 
not only to emphasize the importance of longitudinal 
studies and functional assays but also to explore how 
these expression changes specifically impact treatment 
outcomes over time. By incorporating longitudinal anal-
yses, we can identify not only the immediate effects of 
therapeutic interventions but also the long-term conse-
quences of gene expression alterations on tumor behavior 
and the activation of immune responses. Future inves-
tigations may include the utilization of patient-derived 
xenograft models to observe the dynamic interactions 
between tumor cells and the immune microenvironment 
in real-time. Furthermore, advanced methodologies 
such as single-cell RNA sequencing can provide deeper 
insights into the heterogeneity of immune cell popula-
tions and their functional states both before and after 
treatment. Integrating transcriptomic data with pro-
teomic and metabolomic analyses will enable a more 
comprehensive understanding of how the tumor micro-
environment influences treatment efficacy. By employing 
these multifaceted approaches, we aim to identify reliable 
biomarkers that accurately predict patient responses, 
thereby facilitating the customization of therapeutic 
strategies in a more personalized manner.

Moreover, translating the amino acid metabolism relate 
signature into clinical practice constitutes a significant 
and intricate undertaking. First and foremost, it is imper-
ative to validate this signature across multiple independ-
ent patient cohorts to ascertain its generalizability and 
consistency. Following this validation, prospective studies 
should be undertaken to assess the practical utility of the 
gene signature in prognostic evaluations. Additionally, it 
is vital to explore how this signature may impact clini-
cal decision-making, particularly regarding the selection 
of treatment protocols. By adopting this comprehensive 
strategy, we aspire to effectively translate our research 
findings into a clinically relevant prognostic tool, ulti-
mately facilitating more personalized treatment options 
for patients.
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