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Abstract 

Transformers are a powerful subclass of neural networks catalyzing the development of a growing number of computational 
methods for RNA structure modeling. Here, we conduct an objective and empirical study of the predictive modeling accuracy of the 
emerging transformer-based methods for RNA structure prediction. Our study reveals multi-faceted complementarity between 
the methods and underscores some key aspects that affect the prediction accuracy.

Introduction
In silico modeling of RNA three-dimensional (3D) structures is un

dergoing rapid transformation, inspired, in part, by the unprece

dented success of DeepMind’s AlphaFold2 method for protein 3D 

structure prediction [1]. The recently concluded collaborative ef

fort between the 15th Critical Assessment of Structure Prediction 

(CASP15) and RNA-Puzzles [2], the first of its kind double-blind 
assessment of RNA structure prediction, revealed an emerging 

trend of deep learning-based methods for RNA 3D structure pre

diction, with over 40% of the participating groups (17 out of 42) 

using deep learning. Given such intense interest, a natural ques

tion arises: Are there similarities or differences between the new 

generation of deep learning-based methods for modeling RNA 3D 

structures, in terms of the underlying methodology and/or the 

resulting accuracy?
Methodologically, a number of new deep learning-based 

methods for RNA 3D modeling [3–5, 7, 8] rely on attention- 

powered transformers as the core neural architecture, which is 

also a key ingredient of the AlphaFold2 framework [1]. However, 

there are fundamental differences among the transformer-based 

models of RNA 3D structure prediction in terms of architectural 

design and information flow. Some methods, such as 

DeepFoldRNA [3] and trRosettaRNA [4], are based on geometric 

restraints prediction using transformers, followed by gradient- 
based optimization. Other approaches, such as RoseTTAFoldNA 

[5], employ end-to-end learning leveraging the SE(3)-transformer 

[6] architecture. Yet other methods, such as DRfold [7] and 

RhoFold [8], adopt a hybrid approach by integrating end-to-end 

learning with geometrical restraints. The architectural diversity 

of the RNA 3D modeling transformers naturally leads to different 

learning paradigms with varied training efficiencies and/or infer

ence modalities. It is worth mentioning here that although the re

cently published AlphaFold 3 method [9] can predict 3D 

structures of a diverse set of biomolecules including RNA, we did 

not incorporate it in this comparison due to the lack of publicly 
available source code.

Beyond the realm of neural architecture, there are intrinsic 
differences in terms of the representation of RNA conformational 
space and the cardinalities of the input and output. For instance, 
DeepFoldRNA adopts a coarse-grained representation specified 
by the phosphate P, ribose C40, and glycosidic N atoms of the 
nucleobase, and the predicted geometric restraints involving 
these three atoms lead to 3-bead models with the remaining 
atoms subsequently added and refined. trRosettaRNA uses a 
finer-grained 5-bead representation by including C10 and C30

atoms in addition to P, C40, and N atoms with direct optimization 
of all-atom models using the predicted finer-grained geometric 
restraints. In contrast, RoseTTAFoldNA uses a coordinate frame 
representation where each nucleotide-specific coordinate frame 
captures the position and orientation of the phosphate group and 
a set of 10 torsion angles (6 backbone, 3 ribose ring, and 1 nucleo
side) that can build all-atom nucleic acid models. DRfold relies 
on a reduced 3-bead representation with P, C40, and N atoms, 
both for predicting geometric restraints and for defining the coor
dinate frames, with the all-atom models recovered from the 
3-vector virtual bond system. RhoFold, on the other hand, uses 
C40, C10, and N atoms with a set of four torsion angles to recon
struct all atom coordinates except for P, C40, and N atoms for 
pairwise distance prediction. It is worth noting that DRfold is a 
single-sequence RNA structure prediction method with the only 
required input being the nucleotide sequence itself, whereas all 
the other methods depend on multiple sequence alignment 
(MSA) as an additional input, typically generated using the rMSA 
pipeline [10] with Rhofold additionally incorporating information 
from RNA language model (RNA-FM). As such, the nature of the 
evolutionary information encoded in the MSA partly affects the 
MSA-dependent methods.

Notwithstanding the multifaceted methodological differences, 
there is no clear consensus on which method performs 
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objectively better than the others. This is partially due to the lack 
of robust and comprehensive evaluation metrics, as well as lim
ited head-to-head comparisons on an independent dataset. Why 
is it important? First, to help the practitioners choose a better 
method from a growing ecosystem of approaches for RNA 3D 
structure prediction powered by transformers. Second, to make 
progress towards better learning paradigms and/or inference mo
dalities, it is useful to objectively assess how certain design 
choices affect the resulting accuracy. Third, to help understand 
how the existing deep learning-based predictors fare against fully 
automated deep learning-free methods. To this end, we have 
chosen RNAComposer [11], a fragment-assembly-based fully au
tomated pipeline designed for RNA 3D structure prediction with 
secondary structure as the only input information.

While the CASP15 offers an excellent testbed to evaluate these 
emerging methods over the same set of targets, it only contains 
12 RNA targets that may be insufficient for meaningful statistical 
significance tests. To address this issue, we curated an in-house 
benchmarking set containing 60 additional non-redundant RNA 
targets deposited into the Protein Data Bank (PDB) [12] after the 
preparation of the training set of the individual methods wher
ever known and after the release of the respective open-source 
code/data repositories. On the combined set of 72 RNA targets, 
we benchmarked the predictive modeling performance of 
DeepFoldRNA, trRosettaRNA, DRfold, RoseTTAFoldNA, RhoFold, 
and RNAComposer using a number of complementary evaluation 
metrics. Our study underscores the mutual complementarity be
tween different methods and highlights some key aspects that af
fect prediction accuracy.

Results
Figure 1 shows the prediction accuracy of different methods and 
their head-to-head comparisons in terms of the correctness of 

global fold prediction measured by TM-score [13], distance-based 
structural similarity measured by lDDT [14], and environment- 
dependent local quality measured by INF [15]. We have only 
shown a subset of comparisons in Fig. 1 as described below for 
brevity. The full set of comparisons is available in 
Supplementary Figs S1–S3 and the target-by-target results are 
available in Supplementary Tables S3–S8. First, the comparison 
between the two geometric restraints prediction methods shows 
that despite using a coarser-grained 3-bead representation, 
DeepFoldRNA is comparable to finer-grained 5-bead 
trRosettaRNA in terms of global fold prediction (TM-score). 
However, when both structural similarity and local quality are 
considered, trRosettaRNA convincingly outperforms 
DeepFoldRNA for 69.4% and 100% of cases with respect to lDDT 
and INF respectively, with the difference being statistically signif
icant at a 95% confidence level for both lDDT (p¼ 4.4 × 10−6) and 
INF (p¼ 1.6 × 10−13). Next, we compare the end-to-end method 
RoseTTAFoldNA with both geometric restraints prediction meth
ods trRosettaRNA and DeepFoldRNA. RoseTTAFoldNA strikes a 
balance between complementary aspects of modeling accuracy 
by being comparable to trRosettaRNA (or DeepFoldRNA) in terms 
of TM-score and much better (more than 75% and 80% of cases) 
than trRosettaRNA with respect to lDDT and INF respectively, 
resulting in statistically significant performance difference for 
both lDDT (p ¼ 2.5 × 10−6) and INF (p ¼ 2.4 × 10−7). Performance 
comparison between the pure end-to-end method 
RoseTTAFoldNA and the single-sequence hybrid method DRfold 
reveals a narrower accuracy margin with RoseTTAFoldNA still 
consistently outperforming DRfold across all three metrics, al
though the performance difference is not statistically significant 
in terms of TM-score but significant in terms of lDDT (p¼ 0.01) 
and INF (p ¼ 3.9 × 10−7). Finally, a similar trend can be observed 
when comparing two end-to-end methods RoseTTAFoldNA and 
RhoFold, where RoseTTAFoldNA is similar to RhoFold in terms of 

Figure 1. Partial head-to-head comparison of five transformer-based RNA 3D modeling methods on a benchmark set of 72 targets (The full set of 
comparisons is available in Supplementary Figs S1–S3). Scatterplots showing comparisons between two competing methods. Percentage numbers 
reported in the top-left quadrant correspond to targets where the method shown in the Y-axis outperforms the competing method shown in the X-axis, 
and vice versa for the bottom-right quadrant. The distributions of the scores color-coded for different methods for ease of visualization are 
demonstrated for both axes, with the dashed line and the numbers next to it indicating the mean values.
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TM-score but outperforms in terms of lDDT and INF for more 
than 75% and 65% of cases, respectively.

What is the contribution of our in-house benchmarking set of 
60 nonredundant RNA targets above and beyond the 12 CASP15 
RNA targets during head-to-head performance comparisons be
tween different methods? As shown in Fig. 2, the fraction of 
times the pairwise statistical tests between the competing meth
ods leads to statistically significant performance difference at a 
95% confidence level (i.e. p < 0.05) is substantially higher for our 
in-house benchmarking set of 60 nonredundant RNA targets 
than for the CASP15 set having only 12 RNA targets across all 
three different performance evaluation metrics. The trend in sta
tistical significance is preserved even when the two sets are com
bined having a total of 72 RNA targets, demonstrating that our 
in-house benchmarking set is the main driver in bringing out 

meaningful statistically significant performance differences be
tween various methods during head-to-head comparisons.

Four representative examples are shown in Fig. 3a. For the 
first target 7XK0_B having sufficient evolutionary information, 
measured by the logarithm of the normalized number of effective 
sequences (Neff) in the MSA, with a log(Neff) value of 1.69, all 
methods yield high accuracy across all evaluation metrics. For 
the second target 7UMD_A with a shallow evolutionary profile 
having a low log(Neff) value of −0.1, none of the methods could 
predict the global fold accurately with the single-sequence 
method DRfold achieving comparatively higher accuracy than 
most of the MSA-based methods. The third target, 7MLW_F, a 
comparatively larger RNA of 125 nucleotides having reasonable 
evolutionary information with a log(Neff) value of 1.42 shows that 
the relatively more MSA-dependent methods DeepFoldRNA, 

Figure 2. Results of pairwise statistical tests (p-values) of the performance difference between all five deep learning-based methods in terms of three 
different performance evaluation metrics for three partitions of the benchmark set: (i) CASP15 set having only 12 RNA targets (CASP15); (ii) our in- 
house benchmarking set of 60 non-redundant RNA targets (TS60); and (iii) the combination of the two sets having a total of 72 RNA targets (TS72).
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RoseTTAFoldNA, and RhoFold led to noticeably better prediction 
accuracy than the relatively less MSA-dependent method 
trRosettaRNA and the single-sequence method DRfold. That is, 
the availability of evolutionary information (or the lack thereof) 
directly or indirectly affects the predictive modeling accuracy of 
the MSA-based methods regardless of the architectural design or 
modeling paradigms. Finally, for the CASP15 target R1128 having 
a length of 238 nucleotides, none of the methods could predict 
the global fold correctly with the best TM-score of 0.36 achieved 
by DeepFoldRNA, revealing the limitations of these methods for 
larger targets. It is interesting to note that the incorporation of 
language model information in RhoFold appears to have reduced 
the dependency on evolutionary information, achieving the high
est TM-score for the first three targets despite varying log 
(Neff) values.

Do the aforementioned characteristics of the RNA targets, 
such as length and evolutionary profile, have any systematic ef
fect on the prediction accuracy? As shown in Fig. 3b, the accura
cies of all methods in terms of TM-score, lDDT, and INF are 
somewhat lower for sequences having length ≥ 200. One poten
tial reason for this prediction discrepancy can be the presence of 
a higher number of noncanonical base pairings in larger RNAs, 
such as ribosomal RNAs (rRNAs) and long non-coding RNAs 
(lncRNAs); and accurate RNA 3D structure prediction relies 
heavily on correctly predicting both noncanonical and canonical 
base pairings [16]. The choice of a length threshold of 200 for this 
analysis is based on two reasons: first, this threshold is used in 

the existing literature [17], and second, DRfold was trained on 
sequences shorter than 200 nucleotides. Thus, our analysis 
allows for a fair comparison of DRfold against the other methods. 
The results demonstrate that DeepFoldRNA and RoseTTAFoldNA 
exhibit relatively less accuracy decline for targets with length 
≥200, whereas DRfold suffers from a drastic accuracy drop of 
50% or even more when switching from shorter to longer sequen
ces. The noticeably reduced accuracy of DRfold for longer 
sequences represents a serious weakness of this single-sequence 
method. On the other hand, MSA-based methods DeepFoldRNA, 
trRosettaRNA, RoseTTAFoldNA, and RhoFold are somewhat de
pendent on the quality of evolutionary information as measured 
by log(Neff) values. As shown in Fig. 3c, DeepFoldRNA, 
RoseTTAFoldNA, and RhoFold are more MSA-dependent than 
trRosettaRNA, and running these MSA-based methods in single 
sequence mode leads to a consistent decline in global fold predic
tion accuracy (i.e. TM-score). The single-sequence method 
DRfold, on the other hand, remains naturally unaffected by the 
nature of evolutionary information, demonstrating its 
unique advantage.

With respect to the stereochemistry of the predicted 
structures, there are noticeable differences between different 
methods. As shown in Fig. 3d, the joint distribution of the two 
pseudo-torsion angle pairs η (defined by C40 i−1, Pi, C40i, and Piþ1 

atom coordinates) and θ (defined by Pi, C40 i, Piþ1, and C40iþ1 atom 
coordinates), where i represents the ith nucleotide in a specific 
RNA sequence, are closer to experimental observations for 

Figure 3. Predictive modeling accuracy of five transformer-based RNA 3D modeling methods on a benchmark set of 72 targets. (a) Four representative 
targets shown with the predicted structural models colored in blue superimposed on the experimental structures in green and the TM-score and INF 
scores shown below with bold  numbers indicating the best performance. (b) Polar bar plot showing the mean accuracies of the methods annotated on 
top of each bar along with the impact in accuracy with the change in sequence length (L). (c) Notched box plots showing the TM-score distributions 
with and without using MSA as input for the MSA-based methods with numbers indicating the median values (top); and scatterplot between predicted 
TM-scores and MSA depths (log(Neff) (bottom) where the solid lines represent tendency lines constructed by linear fit to the data. (d) Joint angular 
distribution of the pseudo torsion angles, with color code ramping from blue to red for low to high density.
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DeepFoldRNA, trRosettaRNA, and RoseTTAFoldNA than the 
other two methods. In terms of clash score metric computed 
from the MolProbity package [18] quantifying the steric viola
tions, trRosettaRNA achieves the best performance (with the low
est mean clash score of 27.4), followed by RoseTTAFoldNA (mean 
clash score of 45.9), whereas DeepFoldRNA, DRfold, and RhoFold 
exhibit much inferior stereochemical qualities with a mean clash 
score of 167.1, 175.2, and 498.36, respectively.

How does the prediction accuracy of the five deep learning- 
based methods compare against the deep learning-free method 
RNAComposer chosen in this study? Supplementary Table S2 
presents the average performance of all six methods on the com
mon set of 70 targets excluding R1138 and 7QDU_Q due to 
RNAComposer’s prediction limit of targets having lengths up to 
500 nucleotides. RNAComposer lags behind most of the deep 
learning-based methods across all three performance evaluation 
metrics, TM-score, lDDT, and INF-All, while outperforming all 
methods in terms of clash score. The mean prediction accuracy 
of RNAComposer in terms of TM-score is 0.22 compared to 0.39 
of the best performing deep learning-based method 
DeepFoldRNA with a p-value of 1.7e × 10−11. In terms of lDDT 
and INF-All, once again RNAComposer shows lower mean values 
of 0.49 and 0.61, respectively, compared to the best-performing 
method RoseTTAFoldNA in both cases having mean values of 
0.62 and 0.77 with statistically significant p-values of 1.2 × 10−10 

and 3.1 × 10−9, respectively. Regarding clash score, 
RNAComposer achieves the lowest mean score of 22.66 com
pared to the best-performing method trRosettaRNA's mean score 
of 27.25, even though the performance difference is not statisti
cally significant at 95% confidence level (p ¼ 0.1). It is worth not
ing that despite our study showing evidence that deep learning- 
based methods attain comparable or better accuracy than the 
fully-automated deep learning-free counterparts, a combination 
of methods such as RNAComposer with expert human input [19] 
still outperforms the deep learning-based methods participating 
in CASP15 [2], highlighting the potential for further improvement 
in deep learning-based RNA 3D structure prediction.

Discussion
Amid the growing interest in the development of transformer- 
powered RNA 3D structure prediction methods, our neutral, 
multi-faceted, and empirical study reveals some interesting 
insights. First, some fundamental methodological differences ex
ist between these emerging methods. These differences often 
lead to accuracy complementarity in terms of nucleotide orienta
tion, global and local environment, and stereochemistry of the 
predicted structures. Furthermore, certain characteristics of the 
input itself such as length and availability of evolutionary infor
mation have more influence on the predictive modeling accuracy 
than some of the other subtle differences like the granularity of 
RNA conformational space representation. Second, leveraging 
the latest advances in RNA language models may help in reduc
ing the dependency on length and/or evolutionary information 
as shown in our case study leading to a potentially improved gen
eralizability. Third, even with the same input information, there 
exists a great deal of performance variability between different 
approaches, with certain methods having unique strengths in 
certain aspects of the evaluation measures. This suggests that 
further improvement may be possible by combining these meth
ods. Finally, it is worth noting that despite the interest, the accu
racies of the deep learning-based RNA structure predictors, 
including some of the methods discussed here, are still lagging 

behind the top-notch groups in CASP15, who did not use deep 
learning [2]. Progress on exploiting knowledge- and/or physics- 
guided deep learning may be beneficial for improving the state- 
of-the-art of deep learning enabled RNA 3D structure prediction.

Materials and methods
We used a benchmark set of 72 RNA targets consisting of 12 tar
gets from the CASP15 website and 60 additional nonredundant 
RNA targets collected from the PDB repository. Although the re
cently published RNA structural dataset RNA3DB [20] is available 
for evaluating deep learning-based RNA modeling tasks, we 
chose not to use it due to the potential overlap with training 
sequences used by competing methods. Since none of the com
peting methods has made their training dataset public except for 
trRosettaRNA, it is impossible to curate a truly non-redundant 
benchmark set in terms of sequence and/or structural similarity. 
As such, we collected sequences from PDB that were released be
tween 1 January 2022 and 6 July 2023 to minimize any overlap be
tween our benchmark set and the datasets used for training or 
hyperparameter optimization in different methods wherever 
known (e.g. trRosettaRNA used structures released before 1 
January 2022, RoseTTAFoldNA used structures released before 
May 2020, and DRfold used structures released before 2021) and 
after the release of the respective open-source code/data reposi
tories. To curate our in-house benchmarking set of 60 RNAs, we 
downloaded the targets based on the above-mentioned date fil
tering from the PDB and performed several preprocessing steps 
on the collected sequences including discarding sequences with 
one or more unknown characters, removing fully duplicate 
sequences, and separating monomers from complexes. Finally, 
we ran CD-HIT [21] with default parameter settings to ensure 
that the curated set of additional RNA targets is nonredundant 
with respect to the set of 12 CASP15 targets. This yielded a set of 
60 RNA targets of which 9 were extracted from protein–RNA com
plexes and the rest were RNA monomers (Supplementary Table 
S9). The final set of 72 targets represents a diverse array of struc
tures characterized by a mean pairwise TM-score of 0.25, indicat
ing minimal fold similarity among the chains and pairwise RMSD 
distribution spanning a wide range from 1 to 6 Å (Supplementary 
Fig. S4).

We predicted the structures of 72 sequences in the combined 
benchmark set using publicly available versions of 
DeepFoldRNA, trRosettaRNA, DRfold, RoseTTAFoldNA, RhoFold, 
and RNAComposer. Except for RoseTTAFoldNA, all four methods 
leverage AlphaFold2-inspired 48-block transformer architecture 
to update the sequence, pairwise and MSA representation of the 
input. These transformer architectures differ from each other in 
terms of channel dimension, number of attention heads, and 
attention-based hyperparameters such as number of query and 
value points (Supplementary Table S1). RoseTTAFoldNA uses SE 
(3)-equivariant transformer network consisting of 36 blocks that 
exploits 1D, 2D, and 3D tracks to update the input feature repre
sentations. We downloaded the open-source software implemen
tations of DeepFoldRNA from https://github.com/robpearc/ 
DeepFoldRNA/ (downloaded on 27 September 2022), 
trRosettaRNA from https://yanglab.nankai.edu.cn/trRosettaRNA/ 
(downloaded on 11 November 2022), RoseTTAFoldNA from 
https://github.com/uw-ipd/RoseTTAFold2NA/ (downloaded on 
13 May 2023), DRfold from https://zhanggroup.org/DRfold/ 
(downloaded on 11 June 2023), and RhoFold from https://github. 
com/ml4bio/RhoFold (downloaded on 13 May 2023). All methods 
were run in our in-house 64-bit Linux cluster using an 80-GB 
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NVIDIA A100 GPU with their default parameter settings without 
any post-prediction optimization or refinement. All MSA-based 
methods used the same MSA as input generated by the rMSA [10] 
pipeline. For methods that output multiple predicted structural 
models, we only considered the top-ranked models based on 
the method’s internal ranking (or the first model, in the case 
of DeepFoldRNA, which does not rank models) for a fair 
performance evaluation. For RNAComposer, we predicted the 
structures using a publicly available web server at https://rna 
composer.cs.put.poznan.pl with CentroidFold [22] as secondary 
structure input.

The predicted structural models were evaluated against the ex
perimental coordinates provided by the CASP organizers for targets 
cleared for public access as of 20 December 2022 from https://pre 
dictioncenter.org/download_area/CASP15/targets/ (Supplementary 
Table S10) or obtained from PDB. We evaluated the predictive 
modeling accuracy using various metrics that include the correct
ness of global fold using the template modeling score (TM-score) 
[13], distance-based structural similarity using a pared-down RNA- 
specific version of local distance difference test lDDT [14] that does 
not penalize stereochemical violation, environment-dependent lo
cal quality using the interaction network fidelity (INF) [15], and 
clash score from the MolProbity package [18].
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