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ulate matter in reduced visibility
and anionic composition of winter fog: a case study
for Amritsar city†

Rekha Yadav, a Aditi Sugha, a Manpreet S. Bhatti, ‡*a Sushil K. Kansal, b

Sudhir K. Sharma c and Tuhin K. Mandal ‡*c

Severe fog events during winter months in India are a serious concern due to the higher incidence of road

accidents, flight delays and increased occurrence of respiratory diseases. The present paper is an attempt to

study the twenty fog samples collected from the rooftop of an academic building of Guru Nanak Dev

University, Amritsar, India from November 2017 to January 2018. Fog samples were analysed for various

parameters viz. pH, electrical conductivity (EC), chloride (Cl�), nitrate (NO3
�) and sulphate (SO4

2�) levels.

The pH, EC, and Cl�, NO3
� and SO4

2� levels in the fog samples were estimated as 6.3–7.9, 240–790

mS cm�1, 108–2025 meq L�1, 105–836 meq L�1 and 822–5642 meq L�1, respectively. It was noticed that

sulphate was the dominant anion in fog samples. The SO4
2� to NO3

� molar ratio in the fog was

estimated as 7.6 which suggests the burning of fossil fuel as the major pollutant from vehicular exhausts.

Multiple regression analysis was performed to evaluate the effect of PM2.5/PM10 ratio and relative

humidity (RH) on visibility. A box-cox plot of power transformation produced better model fitting,

employing a square root transformation of the visibility which indicated that the PM2.5/PM10 and RH have

an exponential effect on visibility.
1. Introduction

Global Risks Perception Survey ranked “climate action failure”
as the world's top long-term hazard and the risk with the most
severe possible consequences over the next decade.1 The heavily
populated Indo-Gangetic Plain (IGP) region is the hotspot of
aerosol loading due to extremely elevated concentrations of ne
particulate matter (PM2.5), especially during the winter
months.2,3 The shallow planet boundary layer (PBL) and
minimal wind during the winter months result in a decrease in
ventilation coefficient that prevents the dispersion of pollutants
to the upper atmosphere.2,4 As per information by Road acci-
dents in India (2017),5 fog and mist were responsible for 26 982
accidents. Fog episodes over northwest India occur primarily in
the winter months (December–February). Ghude et al.6 have
reported visibility as low as <50 m for 8 hours at Indira Gandhi
al Sciences, Guru Nanak Dev University,
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mation (ESI) available. See
International airport, New Delhi during the period of 7 and 8
January 2016. Due to a variety of names and divisions, fog is
classied into different categories.7 According to the National
Oceanic Atmospheric Administration (NOAA), fog is expressed
as obscuration of horizontal visibility < 1 km caused by tiny
water droplets in the atmosphere8 and relative humidity (RH) >
80%.9 Zhu et al.10 classied fog as dense fog (visibility in the
range of 0.2–0.5 km) and heavy fog (visibility in the range of 0.5–
1 km). During the fog formation stage, the PM2.5 concentration
decreases, but increases during the fog mature stage.

Thus, the ionic composition of fog is largely affected by local
sources and/or transportation from long distances depending
on meteorological conditions. The contribution from the long-
distance range may be low due to the shrinking of PBL. Gao
and Ji11 reported maximum concentration of PM2.5 (369 � 112)
mg m�3 exceeding 5 times National Ambient Air Quality Stan-
dards (NAAQS) of China during heavy fog and haze conditions
of winter from September 2015 to August 2016 over Beijing. In
the fog experiment over Delhi from December 2015 to February
2016, Ali et al.12 reported that the calm atmosphere with
minimum wind and low thickness of PBL (307 � 325) m are
causes of the high PM2.5 (198.6 � 55.6 mg m�3) in the winter
months and sulphate (SO4

2�), chloride (Cl�) and nitrate (NO3
�)

as dominant ions. Several researchers13–17 have reported
a higher concentration of particulate matter over Amritsar,
a holy city of Punjab. Gu et al.18 investigated the long-term
effects (1989–2017) of urbanisation on fog types in Shanghai
© 2022 The Author(s). Published by the Royal Society of Chemistry
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and concluded that an increase in surface air temperature by
0.5–6.1 �C can reduce the incidence of fog formation. Along
with air pollution, the interaction between various climatic
parameters and their impact on visibility conditions in winter
fog is something that needs to be addressed to avoid unin-
tended causes in north India. There are limited studies on
winter fog chemistry over Indian cities (Table S1†).

Forecasting visibility is very essential during foggy condi-
tions in the winter season. A multiple linear regression (MLR)
analysis has been performed between aerosol mass concentra-
tion and depression temperature on visibility in Delhi during
winter months for two consecutive years. According to the
regression analysis, visibility is better explained by two model
terms (aerosol mass concentration and depression tempera-
ture) as compared to depression temperature as a sole inde-
pendent variable.19 PM2.5 showed a negative exponential
function with visibility and PBL (R ¼ 0.806) during fog-haze
events over Beijing during 2014–2015.20 Wang et al.21 studied
the effect of PM2.5 and RH on visibility in Beijing and suggested
linear and exponential regression models as best tted. This
study reported both the PM2.5 concentrations and RH
contribute to atmospheric visibility. But, 50% variance in visi-
bility was explained by PM2.5 concentrations (<200 mg m�3)
under low RH (<40%), whereas at high PM2.5 load (>200 mg m�3)
and high RH (>40%), the contribution of PM2.5 is reduced to 10–
15% in estimating the visibility. In another study carried out at
Indira Gandhi International (IGI) airport, New Delhi reported
that the visibility and RH had a negative correlation (R¼ �0.85,
p < 0.0001) during December 2015–February 2016.22 Won et al.23

have applied a censored regressionmodel due to a narrow range
of visibility and found that PM2.5 has a more profound effect
than PM10 on visibility at an airport in South Korea. Power
function was used to study the relationship between RH and
PM2.5 with visibility.24,25 A logarithmic relationship between
PM2.5 and RH on visibility has been established at eight regions
in China.26 Therefore, there is a need to have a robust model to
predict the relationship of PM2.5 and RH data with visibility.

The purpose of this study was to determine the chemical
composition of fog and their relationship with meteorological
parameters for a city in the northern part of India i.e., Amritsar.
Multiple regression modelling has been used to investigate the
effect of particulate matter in reduced visibility using the PM2.5/
PM10 ratio and humidity. The study will also be important in
understanding the anionic composition of fog.

2. Material and methods
2.1 Sampling

Fog samples were collected using indigenously fabricated glass
collectors (0.5 m � 0.5 m) kept at the rooop of an academic
building in Guru Nanak Dev University, Amritsar, India having
coordinates of 31.634�N and 74.872�E (Fig. 1 and S1†). The glass
sheets were placed aer sunset and samples were collected at
sunrise. The samples volume below 25 ml were discarded. A
sum of twenty fog samples was collected between November
2017 to February 2018 (Table S2†). The secondary data for air
pollutants (PM2.5, PM10) and meteorological data (temperature,
© 2022 The Author(s). Published by the Royal Society of Chemistry
RH and visibility) was fetched from weather underground, the
details of which are given in Yadav et al.17 Amritsar city is a holy
city in the Amritsar district which forms a part of the IGP. Since
a large number of pilgrims and tourists visit the holy city every
day, vehicular movement within and around the city is quite
large. In addition, agricultural residue burning in the aer-
harvest season (September and October) emits large amounts
of pollutants to the atmosphere. Amritsar district experiences
four seasons viz. (i) winter season (late November–March) (ii)
hot season (April–June) (iii) southwestern monsoon season
(early July-rst week of September) and (iv) post-monsoon or
transition period (late September–early November) with annual
precipitation in the range of 500–600 mm. During the winter,
there is near freezing temperature, and temperature inversion
does not allow aerosol particles to escape, adding to the pollu-
tion load in the city. The western disturbances affect the
weather during the winter season which is responsible for
widespread rain and gusty winds.
2.2 Chemical analysis

All the samples were pre-ltered using 0.22 mm millipore
membrane lter and immediately analysed for pH and electrical
conductivity (EC). Samples were stored in polypropylene bottles
at 8 �C for further analysis. Ion-chromatograph (Metrohm 883
Basic IC plus; Switzerland) equipped with a conductivity
detector and Metrosep-A Supp 5–250/4.0 column was used for
the analysis of anions. The mobile phase was a mixture of
3.2 mM sodium carbonate and 1 mM sodium bicarbonate
solution at a ow rate of 0.7 ml min�1. The retention time for
Cl�, NO3

� and SO4
2� were 7.58, 12.53, 23.20 min, respectively

and instrument calibration using sigma multi-ion standard
curves gave a coefficient of determination (R2) close to 1.0 with
overlay chromatograms shown in Fig. S2.†
2.3 Statistical analysis

Multiple regression analysis involves a set of statistical
components in estimating the relationship between dependent
and independent variables. This predicts the outcome of
response variables on a set of independent variables. A statis-
tical model has developed between two independent variables
namely PM2.5/PM10 ratio and RH with visibility as a response
variable. ANOVA model was generated using sequential model
tting for linear, two-factor interaction (2FI) and quadratic and
the best model is proposed based on R2, normal plot of the
residual and box-cox plot for data transformation. Normal-plot
of residuals indicates the distribution of residual errors in the
model term. If all the data points do not lie along the straight
line, then data transformation may help in improving the
model tting. Aer data passed the above test, MLR equations
having RH and PM2.5/PM10 ratio as independent variables are
generated to predict the visibility. Three-dimensional (3-D)
contour plots are used to visualise the modelled data. Design-
Expert soware (Stat-Ease, Inc. Minneapolis, USA v. 13) was
used for the statistical analysis.
RSC Adv., 2022, 12, 11104–11112 | 11105



Fig. 1 Map of sampling location.
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3. Results and discussions

Fog samples were collected on the rooop of the department of
Guru Nanak Dev University and further characterised to
understand its chemical composition. A sum of twenty samples
was collected during the season on the inclined glass sheets
(Table S2†).
3.1 Fog characterization

pH. pH is an intensity factor and a signicant parameter to
study the fog characteristics. The collected fog samples (n ¼ 20)
have pH ranges of 6.3–7.9 with an average value of 7.2 � 0.4
(Table S2†). The frequency distribution of pH shows maximum
samples are concentrated within 6.96–7.24 (Fig. S3a†). Other
Indian urban cities (Agra, New Delhi and Kanpur) have shown
pH ranging between 7 � 1 (ref. 6, 27, and 28) whereas the
majority of the international studies having rural and semi-
urban background has pH as low as pH of 3.1.29 Agriculture
residue burning, vehicular transport emissions and long-range
transport could be the reason for variation in pH in fog water
(Fig. 2a).

Electrical conductivity. EC of the collected samples ranged
between 240–790 mS cm�1 with an average value of 450 � 14
11106 | RSC Adv., 2022, 12, 11104–11112
mS cm�1 (Table S2†). Most fog samples show lower EC i.e., 10 no
of samples were within 240–420 mS cm�1 and 8 no of samples
are within 420–600 mS cm�1 (Fig. S3b†). EC level of fog samples
is compared with other sites as given in Fig. 2b. Megacity Delhi
which is just 500 km away from the observational site has
a higher conductivity range of 1236 mS cm�1 (ref. 6) and 3501
mS cm�1 (ref. 30) as compared to the present study. There are
few studies on conductivity in fog water, which has indicated
that inorganic constituents could be the correctness of analysis
using ionic balance. The conductivity values are less than 100
mS cm�1 at a few sites in Europe.31,32 The minimum conductivity
was found at a mountain site (at mean sea level: 2800 m) in
Ecuador33 and the highest value of 3500 mS cm�1 was obtained
for Shanghai (Fig. 2b), which has presented a wide range of
conductivity.

Chemical composition. Average anionic concentrations (meq
L�1) in the present study were in the order of SO4

2� > Cl� > NO3
�

as shown in the violin plot (Fig. 3). Nath and Yadav30 have also
shown a similar sequence in the anionic concentration (SO4

2� >
Cl� > NO3

�) in the fog samples over Delhi. The SO4
2� concen-

tration in the fog samples in the present study showed a wide
range of variation (823–5642 meq L�1; average: 2465 � 1243 meq
L�1) with the minimum value on December 29, 2017, and
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Global perspective of (A) pH and (B) conductivity measurements in fog water.
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maximum on January 5, 2018. Cl� was the second most domi-
nant ion (391 � 401 meq L�1) found in the fog water in the
present study. Like SO4

2�, the Cl� (108–571 meq L�1) and NO3
�

(106–836 meq L�1) content in Amritsar also showed a very wide
range. On December 29, 2017, Cl� content in fog water over
© 2022 The Author(s). Published by the Royal Society of Chemistry
Amritsar was extremely high (2026 meq L�1) when SO4
2�

concentration (823 meq L�1) was low. The average concentration
of NO3

� in the fog water of Amritsar was 324� 216 meq L�1. The
frequency distribution of Cl� concentration showed that
maximum fog events are concentrated within 200–400 meq L�1,
RSC Adv., 2022, 12, 11104–11112 | 11107



Fig. 3 Violin plot showing the anions (meq L�1) in the fog water
collected in Amritsar.
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whereas NO3
� and SO4

2� do not show any such trend. Table S1†
shows the comparison of SO4

2�, Cl�, NO3
� present in fog

samples along with major sources of pollution with other sites
across the globe. The concentration of SO4

2� (823–5642) meq
L�1 in fog water over Amritsar was among the top ve locations
exhibiting maximum SO4

2� in comparison to other locations of
the world. The highest SO4

2� was found in New Delhi (887–
40 653) meq L�1 followed by Shanghai (2830 meq L�1). The
minimum concentration of SO4

2� was found for Casitas Pass
situated in the coastal hills followed by Norway and Ecuador
(Fig. 4a). Sulphur dioxide in the ambient atmosphere acts as
a precursor of sulphate. The atmospheric oxidation of SO2 leads
to the formation of sulphate which acts as an acidifying
pollutant in the fog water.34,35 Nath and Yadav30 suggested
agriculture elds, coal-red power plants near the vicinity of the
area, fossil fuel combustion, biomass burning as possible
contributing sources over Delhi. Fig. 4b represents the
comparison of the Cl� content in fog water of Amritsar with
other sites across the globe. Maximum Cl� content (1716–
16 109 meq L�1) was reported at southwestern Morocco, a semi-
arid coastal area exhibiting marine origin36 followed by New
Delhi30 and Taiwan.34 The minimum was found in a mountain
site in China.32 Amajor source of chloride in the environment is
plastic burning. The other possible sources in the area could be
the local emissions because of fabric bleaching activity in the
nearby export garment factories (Table S1†). Industrial emis-
sions may be a possible source contributing to Cl� in the
environment.37 Fig. 4c compares the NO3

� concentration in fog
water of Amritsar with other sites across the globe and the
dotted lines represent the reference range of ions in the present
study. The highest NO3

� concentration was found over Delhi as
253–15 787 meq L�1 followed by Shanghai.38

During the winter season, pollutants get trapped by the lower
PBL allowing maximum time to interact with the surrounding
atmosphere39 and higher concentration in the condensate
samples. Over Amritsar, aer crop harvesting (October and
November), large crop residue or stubble is le over a vast area.
To clear the area and prepare for the next sowing season,
11108 | RSC Adv., 2022, 12, 11104–11112
leover biomass is burned every year elevating the concentra-
tion of the pollutant. The emission of sulphates and nitrate
from biomass burning in agricultural elds may be abundant
during this season around Amritsar.40,41 Moreover, the emission
of anions from vehicular exhaust over Amritsar, a holy city is
quite signicant.36,42 The presence of excess sulphate and
nitrate in fog water is linked to acidity.43 Other than this
biomass burning is a major factor that results in excess release
of sulphates, nitrate, ammonium and sodium in the
atmosphere.44

3.2 Nitrate (NO3
�) to sulphate (SO4

2�) ratio in fog water

Table S1† shows the comprehensive view of the NO3
� to SO4

2�

ratio along with the major contributing sources of the various
locations conducted on a global scale. The observed nitrate to
sulphate ratio was less than unity in the majority of sites except
for three cases, where this ratio is greater than unity (Fig. 5).
Previously reported studies were conducted in South Korea41,45

USA,46 Norway47 and Taiwan34 indicating vehicular emissions as
a major contributor. Several researchers have also used NO3

�/
SO4

2� ratio as an indicator of the contribution of stationary and
mobile sources.34,48,49 In the present study, the NO3

�/SO4
2� ratio

in the fog samples ranged between 0.06–0.48 with an average of
0.15 � 0.10 indicating an emission from fossil fuels (coal, pet
coke) which is likely to be the emissions from coal-based
thermal power plants located 40 km of the south-east of
Amritsar and industrial clusters situated on the periphery of the
city. It may not be the only reason as the majority of the time,
the prevailing wind direction over Amritsar is northwest.17 Over
Delhi, the NO3

�/SO4
2� ratio was found to be 0.39, which was

more than double as compared to Amritsar. Sulphate and
nitrate concentrations over Delhi were found to be of the order
of 40 000 meq L�1 and 15 000 meq L�1, respectively which could
be the emissions from coal-red power plants and particularly
high-density automobile activity. At such a high value, the
NO3

�/SO4
2� ratio becomes unimportant. SO4

2� and NO3
� levels

in the present study were around 5600 meq L�1 and 850 meq L�1,
respectively, which is only about 10–20% of Delhi. Among the
other sites of India, the NO3

�/SO4
2� ratio was maximum at Agra

(0.71), a city located about 200 km from New Delhi.27 The
highest ratio was for the USA (2.25) as reported by Boris et al.46

indicating urban and industrial combustion, marine inuence
as major contributing factors followed by Norway (1.41).47

3.3 Statistical analysis

The ionic composition of fog water along with PM2.5, PM10 and
PM2.5/PM10 ratio, RH and visibility data are tabulated in Table
S2.† Various efforts were applied to develop the signicant tted
model which can be used for predicting visibility as a response
variable. No signicant model was generated between pH, EC,
Cl�, SO4

2�, NO3
�, ambient temperature with visibility for both

individual model terms and in combinations with others except
for the ratio of PM2.5/PM10 and RH with visibility.

In the present study, there are 17 data points during which
heavy fog was witnessed and the PM2.5/PM10 ratio varied from
(0.34 to 0.56) and RH varied between (71–97%). The average
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Anionic concentration (meq L�1) of (A) sulphate (B) chloride (C) nitrate in fog water by different studies conducted worldwide.
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PM2.5/PM10 ratio (47%) of particulate matter load showed the
abundance of ner particles (PM2.5) in the ambient air. The
minimum visibility (0.2 km) was on February 2, 2018, and the
© 2022 The Author(s). Published by the Royal Society of Chemistry
maximum of 4.3 km on December 13, 2017. The maximum
visibility was observed when the contribution of PM2.5 in the
PM10 ratio was minimum (0.34). The sequential ANOVA model
RSC Adv., 2022, 12, 11104–11112 | 11109



Fig. 5 Stacked graph for nitrate and sulphate concentration (meq L�1)
along with nitrate to sulphate molar ratio in fog water. X-axis showing
location (reference).

Table 1 ANOVA table andmodel statistics for the effect of PM2.5/PM10

ratio and relative humidity (RH) on visibility

Source Sum of square DoFb Mean square F-Value p-Value

Model 3.31 2 1.65 41.64 <0.0001a

RH 2.09 1 2.09 52.62 <0.0001a

PM2.5/PM10 0.1902 1 0.1902 4.79 0.0461a

Model statistics
Std. Dev. 0.199 R2 0.856
Mean 1.18 adjusted R2 0.835
C.V.% 16.86 predicted R2 0.796

a Signicant at p # 0.05. b Degree of freedom.

RSC Advances Paper
suggested linear t with skewed normal-plot of residuals. A
large incremental change in visibility for a small change in
PM2.5/PM10 ratio or RH and the signicant difference between
the maximum (4.3 km) to minimum (0.2 km) visibility, which
was obtained as 21.5 (ratio greater than 10 indicates response
transformation). Thus, the tted model was checked using
Fig. 6 Multiple regression fitted model for PM2.5/PM10 ratio and relative
plot (C) overlay plot (yellow colour) showing process conditions for PM2

11110 | RSC Adv., 2022, 12, 11104–11112
diagnostic plots with the help of Design-Expert soware. Box-
cox plot for power transformation recommended square root
transformation (Fig. S4†). The model was again run aer
applying square root transformation which again suggested the
multiple linear regression model as the best-tted model.
Diagnostic plots viz., the normal plot of residuals (Fig. S5†)
indicated good model tting. The Sequential ANOVA model
suggested linear t and the model was signicant at F-value
41.64 with excellent model statistics (Table 1). Thus, a model
can be navigated in design space and model equations are
generated in coded (eqn (1)) and actual form (eqn (2)). The
coded equation is used to check the relative importance of two
independent variables. From eqn (1), the contribution of RH
(unitless regression coefficient of �0.537) is more than PM2.5/
PM10 ratio (unitless regression coefficient of �0.225). Although,
both the variables showed negative effect on visibility as mini-
mization of these two independent variables is the goal for
maximisation of visibility. Under actual conditions, RH is an
uncontrollable variable, but contribution of PM2.5 in PM10 can
be minimised using better emission control measures to
increase the visibility during foggy events.

(Visibility)1/2 ¼ 1.24 � 0.537 � RH � 0.225 � PM2.5/PM10

ratio, (1)

where, visibility in km and both independent variables viz. RH &
PM2.5/PM10 ratios are in coded units. Coded values range
between �1 (min) to +1 (max) and any other value within the
model range is calculated using the concept of proportionality.

(Visibility)1/2 ¼ 5.632 � 0.041 � RH � 2.046 � PM2.5/PM10

ratio, (2)

where, visibility in km and RH (71–97%) & PM2.5/PM10 ratio
(0.34–0.56) in actual units.

Fitted model equations are used to check the model tting
through predicted vs. actual plot (Fig. 6a). 3-D contour plot
between PM2.5/PM10 ratio and RH with visibility (Fig. 6b) indi-
cated maximisation of both PM2.5/PM10 ratio and RH for
humidity (RH) on visibility (A) predicted vs. actual plot (B) 3-D contour

.5/PM10 ratio and RH for visibility less than 1 km.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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minimum visibility, but RH has a more profound effect on
visibility as compared to PM2.5/PM10 ratio (Fig. S6†). Finally, an
overlay plot was generated for visibility which indicated a PM2.5/
PM10 ratio of 0.34 and RH > 95% or a PM2.5/PM10 ratio of 0.56
and RH > 85% as constraint conditions for forecasting visibility
less than 1 km (Fig. 6c).

In the absence of data points, the signicance of the corre-
lation coefficient cannot be dened as the degree of freedom is
an important parameter for model tting. Also, model tting is
done by splicing the data into different subsets like RH < 30%,
RH > 70%. In the present study, visibility predictions were done
using a proper statistical approach showing a normal plot of
residuals and 3-dimensional contour plots to forecast the
visibility.

4. Conclusions

The fog water was collected and characterised to evaluate the
dominance of anions and to compare at the global level. The pH
7.2 � 0.1 and EC 450 � 50 mS cm�1 was observed in the fog
samples. The dominance of ions was in the order SO4

2� > Cl� >
NO3

�. NO3
�/SO4

2� ratio was found to be 0.15 indicating the
dominance of sulphate emissions over nitrate. Multiple
regression analysis of PM2.5/PM10 ratio and relative humidity
with visibility indicated square root transformation of the visi-
bility for the best tted linear model. A multiple linear regres-
sion model for PM2.5/PM10 ratio and RH with visibility was
developed and used for forecasting visibility. But RH has a more
profound effect on visibility as compared to the PM2.5/PM10

ratio. Contour plot between PM2.5/PM10 ratio and RH vs. visi-
bility and overlay plot may be helpful visualisation of the tted
model. Future studies can be directed to understand the
complex relationship between PBL, wind prole, ventilation
coefficient with the role of ultrane particulate matter on
reduced visibility.
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