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Abstract

potential of CD19 CAR-T cell therapy.

Enhancing the efficacy of CD19 CAR-T cell therapy can significantly improve patient outcomes by reducing relapse
rates in CD19+B cell malignancies. Exogenous or transgenic cytokines are often used to boost the expansion
and durability of CAR-T cells but pose risks of severe toxicities. A promising approach to address these limitations
is to immobilize cytokines on the surface of CAR-T cells using transmembrane (TM) anchor domains. Given IL-7
can enhance T-cell proliferation and antitumor activity, our study developed membrane-bound IL-7 constructs
using different TM anchor domains (CD8, CD28 and B7-1). We primarily found that the CD8 TM provided superior
anchoring for IL-7 compared to CD28 and B7-1. Moreover, the IL-7 construct with a CD8 TM (IL7/CD8) enhanced
naive T cell proliferation and effector functions, and improved the in vitro and in vivo antitumor activity of

CD19 CAR-T cells. Importantly, although IL7/CD8 could promote T-cell proliferation, it did not sustain long-

term autonomous expansion, which could ensure the safety of CD19 CAR-T cells expressing IL7/CD8 in clinical
applications. Collectively, the IL7/CD8 construct represents a promising strategy for enhancing the therapeutic
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To the editor,

Cytokines have the ability to improve the proliferative
and antitumor functions of CD19 CAR-T cells [1, 2].
However, there have been cases of toxicities resulting
from uncontrolled systemic administration and release
of cytokines from genetically modified T cells [3-5]. A
previous conference abstract reported that membrane-
bound IL-7 could enhance CAR-T proliferation without
the need for additional cytokine support [6]. However,
previous research reported that different transmembrane
domains can vary in their ability to anchor cytokines to
the cell membrane [7]. Our study attempted to develop
membrane-bound IL-7 using different transmembrane
(TM) anchor domains to enhance proliferation and
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Fig. 1 (See legend on next page.)
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Fig. 1 Construct, optimization and effect function of membrane-bound IL-7 A, Schematic representations of membrane-bound IL-7 using different TM
anchor domains (CD8, CD28, and B7-1). B-C, Representative flow cytometric results showing membrane-bound IL-7 with different TM anchor domains
on the cell surface (B) and corresponding quantitative analysis (C). D, IL-7 concentrations in the supernatant of T cells expressing membrane-bound IL-7
with different TM anchor domains, measured by ELISA. E, Schematic representations of CD19 CAR and membrane-bound IL-7 with different TM anchor
domains. F-H, Representative flow cytometric results showing expression level of CD19 CAR and membrane-bound IL-7 with different TM anchor do-
mains on the surface of T cells (F) and corresponding quantitative analysis of CD19 CAR expression level (G), and membrane-bound IL-7 expression level
(H). 1, 1L-7 concentrations in the supernatant of CD19 CAR-T cells expressing membrane-bound IL-7 with different TM anchor domains, measured by ELISA
J-L, IFN-y (J), TNF-a (K), and IL-2 (L) secreted by T cells 24 h after coculture with Raji tumor cells, determined by ELISA. M-O, IFN-y (M), TNF-a (N), and IL-2
(O) secreted by T cells 24 h after coculture with Nalmé tumor cells, determined by ELISA. P-Q, Lysis of Raji cells (P) and Nalmé cells (Q) by T cells. Data are
representative of at least three independent experiments with more than three different donors. Mean values from each group are plotted. Error bars

represent SEM (* p<0.05, ** p<0.01, *** p<0.001, analyzed by one-way ANOVA with Bonferroni posttest)

anti-tumor activity of CD19 CAR-T cells and meanwhile
minimize unexpected systemic toxicity.

To construct membrane-bound IL-7, we tested three
TM anchors: CD8, B7-1, and CD28 (Fig. 1A and Table
S1). The cell surface expression levels of IL-7 constructs
with the CD8 TM and B7-1 TM were similar and signifi-
cantly higher than those of the IL-7 construct with the
CD28 TM (Fig. 1B and C). The culture supernatant of T
cells expressing the CD8 TM construct had significantly
lower soluble IL-7 compared to the culture supernatant
of T cells expressing the B7-1 or CD28 TM constructs
(Fig. 1D). To further evaluate the cell surface expression
levels of different membrane-bound IL-7 constructs in
CD19 CAR-T cells, we generated multi-cistronic lenti-
viral vectors to express either a conventional anti-CD19
targeting CAR with 4-1BB and CD3{ signaling domains
(CD19 CAR) or CD19 CAR also expressing membrane-
bound IL-7 following a ribosome skipping 2 A element
(Fig. 1E). As expected, we found that the cell surface
expression levels of IL-7 constructs with the CD8 TM
and B7-1 TM were comparable and markedly exceeded
those of the IL-7 construct with the CD28 TM and yet
expression levels of CD19 CAR were similar in different
constructs (Fig. 1F-H). Meanwhile, the culture superna-
tant of CD19 CAR-T cells expressing the CD8 TM con-
struct had significantly lower soluble IL-7 compared to
the culture supernatant of T cells expressing the B7-1
or CD28 TM constructs (Fig. 1I). In summary, due to its
relatively high membrane expression and relatively low
shedding, the IL-7 construct with a CD8 TM (IL7/CDS8)
was selected for further study.

Greater amounts of IFN-y, IL-2, and TNF-a were pro-
duced by IL7/CD8&CD19 CAR-T cells compared to
CD19 CAR-T cells when cocultured with Raji and Nalmé
cells (Fig. 1J-O). Compared with CD19 CAR-T cells, IL7/
CD8&CD19 CAR-T cells exhibited more potent cytotox-
icity activity against Raji and Nalmé cells (Fig. 1P and Q).
Collectively, IL7/CD8 enhances in vitro cytokine produc-
tion and cytotoxicity of CD19 CAR-T cells.

After infusion into patients, CAR-T cells lack the sup-
port of anti-CD3 and anti-CD28 antibodies and IL-2,
making it essential to evaluate the effect of IL7/CD8
on CD19 CAR-T cells following withdrawal of these

antibodies and IL-2. Following a 4-day withdrawal, we
found that the viability, absolute number, and prolifera-
tive capacity of CD19 CAR-T cells expressing IL7/CD8
were higher than those of CD19 CAR-T cells (Fig. 2A-E).
Meanwhile, we found that IL7/CD8&CD19 CAR-T cells
retained a significantly higher naive phenotype and lower
central memory phenotype compared with CD19 CAR-T
cells (Fig. 2F and G). To evaluate whether IL7/CD8 could
promote antigen-independent long-term expansion, we
cultured CD19 CAR-T cells and IL7/CD8&CD19 CAR-T
cells without the supplementation of anti-CD3 and anti-
CD28 antibodies and IL-2. Although IL7/CD8&CD19
CAR-T cells persisted significantly longer than CD19
CAR-T cells in vitro, the IL7/CD8&CD19 CAR-T popu-
lation began to contract by day 5 to 10, with all cells dying
by day 25 (Fig. 2H). This confirmed that IL7/CD8 did not
sustain long-term autonomous T-cell expansion, which is
a crucial aspect of safety.

After CAR-T cells are infused into patients, they not
only lack necessary support from anti-CD3 and anti-
CD28 antibodies and IL-2, but could repeatedly encoun-
ter tumor cells. Therefore, it is essential to evaluate the
impact of IL7/CD8 on CD19 CAR-T cells during consec-
utive in vitro tumor cell challenges following withdrawal
of anti-CD3 and anti-CD28 antibodies and IL-2. IL7/
CD8&CD19 CAR-T cells and CD19 CAR-T cells were
then continuously stimulated with Raji cells twice at an
E: T ratio of 1:2, with a three-day interval between each
stimulation (Figure S1A). After each round of stimula-
tion, CAR-T cells were recollected and cocultured with
Raji cells at an E: T ratio of 1:1 for 24 h. During the ini-
tial round of coculture, both IL7/CD8&CD19 CAR-T
cells and CD19 CAR-T cells effectively eliminated Raji
cells (Figure S1B). However, after the second stimu-
lation, IL7/CD8&CD19 CAR-T cells exhibited more
potent cytotoxic activity against Raji compared to CD19
CAR-T cells (Figure S1B). Analysis of the phenotypes of
CAR-T cells at the end of each round of stimulation was
also conducted. Compared with CD19 CAR-T cells, IL7/
CD8&CD19 CAR-T cells exhibited higher proliferative
capacity and a more naive phenotype after the second
round of stimulation (Figure S1C-F). However, expres-
sion levels of exhausted makers, such as PD1, TIM3 and
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Fig. 2 (See legend on next page.)
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Fig. 2 Phenotypes and in vivo antitumor activity of CD19 CAR-T cells expressing IL7/CD8 A, Schematic representation of T cell culture following a 4-day
withdrawal of anti-CD3 and anti-CD28 antibodies and IL-2. B-C, Percentages (B) and counts (C) of living T cells. D-E, Representative flow cytometric plots
showing percentages of Ki67 +T cells (D) and corresponding quantitative analysis (E). F-G, Representative flow cytometric plots showing CD45RA and
CCR7 expression (F) and corresponding quantitative analysis (G). H, Quantitative analysis of in vitro persistence of T cells following withdrawal of anti-CD3
and anti-CD28 antibodies and IL-2. Live cells were counted using trypan-blue exclusion. The X-axis denotes the number of days after anti-CD3 and anti-
CD28 antibodies and IL-2 were withdrawn from the culture media. I, Schematic representation of the Raji xenograft model. NCG mice were intravenously
inoculated via tail injection with 1x 10° Raji cells labeled with Firefly-luciferase and three days later received T cells intravenously. J-K, Representative
bioluminescent images (J) and quantitated bioluminescent signals (K) showing tumor growth over time. L, Kaplan—Meier survival curve showing the
survival of mice. Significance was determined by the log-rank test. ** p<0.01, *** p<0.001. M-N, Quantification of naive T cells (M) and IL-7 (N) in the
peripheral blood of treated mice at days 6 and 16 after T-cell infusions. Significance was determined by a two-tailed t test. * p <0.05, ns, not significant.
Data are representative of at least three independent experiments with more than three different donors. Mean values from each group are plotted. Error
bars represent SEM (* p<0.05, ** p<0.01, *** p < 0.001, analyzed by two-tailed t test)

Lag3, were similar between CD19 CAR-T cells and IL7/
CD8&CD19 CAR-T cells (Figure S1G-H). Overall, IL7/
CD8 improves antitumor activity and expansion of CD19
CAR-T cells, but could not affect exhaustion levels dur-
ing sequential encounters with tumor cells.

To evaluate the in vivo antitumor activity of IL7/
CD8&CD19 CAR-T cells and CD19 CAR-T cells, we

membrane-bound IL-7 not only acts on its own T cells
but can also affect other T cells (Figure S3A and S3B).

In conclusion, we have successfully developed a tech-
nology that incorporates CD8 transmembrane region-
anchored IL-7 into CD19 CAR-T cells. This technology
represents a promising avenue for enhancing the thera-
peutic potential of CD19 CAR-T cell therapy and war-

intravenously delivered a suboptimal dose (1x10°) of
CAR-T cells into NCG mice engrafted with the Raji -

. . . . . Abbreviations
tumor cell line (Fig. 2I). Tumors grew rapidly in mice  cag7  Cimeric antigen receptor T cell
treated with mock cells, while both CD19 CAR-T cells v transmembrane

rants further exploration in clinical trials.

and IL7/CD8&CD19 CAR-T cells controlled tumor |EFL|\‘EA lE“tZY;”e'“T‘ked immunosorbent assay
growth (Fig. 2J and K). However, only IL7/CD8&CD19 .\ oo o
CAR-T cells succeeded in COHtrOlling tumor growth and PBMC  Peripheral blood mononuclear cell

eliminating all tumor cells (Fig. 2] and K). Additionally, B> phosphate buffer saline

IL7/CD8&CD19 CAR-T cells induced long-term sur-
vival in all five mice, while all five mice receiving CD19
CAR-T cells died before day 54 (Fig. 2L). Consistent
with the in vitro data, IL7/CD8&CD19 CAR-T cells were
enriched in naive T cells in the peripheral blood at days
6 and 16 after CAR-T cell infusion, compared to CD19
CAR-T cells (Fig. 2M). Additionally, the concentration of
soluble IL7 were similar and relatively low in the serum
of mice in both groups at days 6 and 16 after CAR-T cell
infusion (Fig. 2N). To assess whether IL7/CD8&CD19
CAR-T cells remained present and active against tumor
cells, we rechallenged three mice on day 54 that did not
have detectable residual tumors after treatment with
IL7/CD8&CD19 CAR-T cells (Figure S2A). These mice
were not fully protected against tumor outgrowth, but
tumor growth was delayed compared to that in naive age-
matched control mice, suggesting residual presence and
activity of tumor-reactive T cells (Figure S2B and S2C).
Having observed improved tumor control of CD19
CAR-T with the addition of IL7/CD8, we attempted to
evaluate how IL7/CD8 acted on CAR-T cells: in cis, trans
or even both? Since phosphorylation of STATS5, a signal-
ing mediator downstream of IL-7R, is a marker of path-
way activity, phosphorylation of STAT5 could be used to
evaluate how IL7/CD8 acted on CAR-T cells. We found
the IL7/CD8 positive T cells had more STAT5 phosphor-
ylation than the IL7/CD8 negative T cells, implying that
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