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Abstract

Background: Disease genes that interact cooperatively play crucial roles in the process of complex diseases, yet how to
analyze and represent their associations is still an open problem. Traditional methods have failed to represent direct
biological evidences that disease genes associate with each other in the pathogenesis of complex diseases. Molecular
networks, assumed as ‘a form of biological systems’, consist of a set of interacting biological modules (functional modules or
pathways) and this notion could provide a promising insight into deciphering this topic.

Methodology/Principal Findings: In this paper, we hypothesized that disease genes might associate by virtue of the
associations between biological modules in molecular networks. Then we introduced a novel disease gene interaction
pathway representation and analysis paradigm, and managed to identify the disease gene interaction pathway for 61
known disease genes of coronary artery disease (CAD), which contained 46 disease-risk modules and 182 interaction
relationships. As demonstrated, disease genes associate through prescribed communication protocols of common
biological functions and pathways.

Conclusions/Significance: Our analysis was proved to be coincident with our primary hypothesis that disease genes of
complex diseases interact with their neighbors in a cooperative manner, associate with each other through shared
biological functions and pathways of disease-risk modules, and finally cause dysfunctions of a series of biological processes
in molecular networks. We hope our paradigm could be a promising method to identify disease gene interaction pathways
for other types of complex diseases, affording additional clues in the pathogenesis of complex diseases.
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Introduction

Complex diseases are caused by disease risk genes in the form of

biological modules or pathways in molecular networks [1,2,3]. A

major challenge of the post-genomic era is to find disease-risk

genes, identify their functions, and develop new techniques to

uncover disease pathways [4]. The complexity of these diseases

can be interpreted by their multiple gene products and the

cooperative behavior of specific disease-risk modules or pathways

in molecular networks. Many studies have demonstrated that

targeting disease-associated functions or pathways provides

additional insights into the mechanisms of disease [5,6], which is

essential to developing disease treatments.

Many biological pathways have been derived experimentally

[7,8]. Similarly, most disease pathways, e.g. the Alzheimer’s disease

pathway, have been determined from experiments [9,10].

However, in vivo methods are too time-consuming and laborious

for discovering a large number of pathways. With the development

of genomics, functional proteomics and metabolomics, many

computational algorithms have been generated to identify

biological modules or pathways in the context of biological

molecular networks. For example, literature searches are used to

discover signal transduction pathways [11]. Metabolic networks

[12,13,14,15] and gene interaction networks[16] are also em-

ployed to detect pathways. Protein-protein interaction networks

(PPINs) are often used for pathway extractions [17,18,19,20,21].

Several online tools or software have been developed to discover

biological pathways, such as PathFinder [22], BowTieBuilder [23],

FASPAD [24,25] and Pandora [26]. With the accumulation of

high-throughput datasets, other computational algorithms have

been developed to detect disease-related gene modules or

dysfunctional pathways based on the literature or global

characteristics of the interactome coupled with gene expression

data [1,11]. Although these methods have effectively identified
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some disease-risk modules or dysfunctional pathways, it is not clear

how biological modules control each other in a cooperative

manner and lead to the dysfunctions of multiple biological

processes. Most disease genes and proteins of complex diseases

are scattered in networks without direct interactions [27,28] and

crucial biological associations might be missed during the

manipulation of these algorithms.

Previous studies demonstrated that neighborhood similarity is

an effective measurement for evaluating the likelihood of two

proteins in a network sharing a number of interacting neighbors

[29,30]. Proteins with higher neighborhood similarity may tend to

have common or related biological functions. Li et al. used the

neighborhood similarity to predict functional associations of

proteins [31], while Li et al. introduced this concept to identify

brain cancer-related genes [32]. In addition, Rives et al. and Sales-

Pardo et al. found that biological networks have the characteristics

of hierarchical structures based on measurements of neighborhood

similarity [33,34]. Once disease genes are identified, neighbor-

hood similarity can be a promising metric that provides the basis

for further studying disease genes association mechanisms in a

hierarchically structured network.

PPIN is an intuitive form of a set of interacting biological

modules. The underlying rationale is that disease genes might

associate by virtue of associations between biological modules in

molecular networks. In this study, we introduced a novel disease

gene interaction pathway representation and analysis paradigm to

demonstrate disease gene association mechanisms. First, we

clustered proteins using hierarchical clustering method, construct-

ed a hierarchical tree of biological modules according to their

neighborhood similarities in a PPIN and obtained different lossless

network representations. Then, we searched for disease-risk

modules that contained disease proteins and other proteins with

Figure 1. The hierarchical tree and its corresponding module representations of a PPIN. The bottom figure on the right is the initial PPIN,
which is composed of 10 proteins. The left figure is the hierarchical tree, in which the solid lines mean the descendant modules or proteins are
clustered into the ancestor modules, and the dashed lines mean the ancestor modules are identical to the descendant modules or proteins. And the
right figures are the corresponding clustering results of each hierarchy in the left.
doi:10.1371/journal.pone.0024495.g001
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similar functions, and linked these modules to form disease gene

interaction pathways. This connected disease genes that did not

interact directly in the network. We applied this algorithm to

extract disease gene interaction pathways of coronary artery

disease (CAD), hypertension (HT), and type 2 diabetes (T2D), and

evaluated our results by functional annotations, pathway-wide

analyses and randomization tests.

Materials and Methods

Data
Human protein-protein interaction data were derived from Human

Protein Reference Database (HPRD, Release 7, http://www.hprd.

org/) [35], which contained 9463 proteins and 37,107 interactions. A

PPIN was obtained from the data, in which nodes were proteins, and

edges were interactions between the proteins. The largest connected

component of the PPIN, which was composed of 9048 proteins with

36,755 pairwise interactions, was used for further analysis.

Disease genes for CAD, HT and T2D were the union of disease

genes in Disease Ontology (DO, version 0.8, http://www.obofoundry.

org/cgi-bin/detail.cgi?id=disease_ontology) [36], Online Mendelian

Inheritance in Man (OMIM, May 2009, http://www.ncbi.nlm.nih.

gov/entrez/query.fcgi?db=OMIM) [37] and the Genetic Association

Database (GAD, October 1 2007 update, http://geneticassociationdb.

nih.gov/) [38]. After mapping to the largest connected compo-

nent of PPIN, we obtained 62 CAD, 122 HT, and 164 T2D

genes.

Methods
We used the neighborhood similarity to hierarchically cluster

proteins in a PPIN into biological modules with similar functions,

and constructed a hierarchical tree for all biological modules using

a bottom-up approach. We then marked biological modules that

contained disease genes or proteins as disease-risk modules in each

hierarchy until disease-risk modules in one hierarchy could be

linked together. This gave our final disease gene interaction

pathway. In other words, these modules can connect disease genes

that did not interact with each other directly, uncovering a possible

potential framework for how scattered disease genes associated

with each other by disease-risk modules.

Hierarchical tree construction. Neighborhood similarity

measurement was used to cluster proteins into biological modules.

Figure 2. Sample process of searching disease gene interaction pathway using the hierarchical tree construction algorithm. (A) The
hierarchical tree in Figure 1 with marked disease-risk modules, which are denoted by blue nodes. (B) The corresponding clustering results of each
hierarchy in Figure 2A. The solid lines are the path that is searched out using Algorithm 2, and the dashed lines are the interaction relationships. (C)
The resulting disease gene interaction pathway of sample PPIN. The blue nodes are disease proteins.
doi:10.1371/journal.pone.0024495.g002
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Here, the measurement was the Jaccard index of two protein sets

[39,40] (other neighborhood similarity measures were alternates).

This was always between 0 and 1; 0 if the sets had no common

neighbors, and 1 if their neighbors were identical. The hierarchical

tree was constructed in a bottom-up way based on the maximal

Jaccard index value of protein sets from primary protein

interactions. Thus, each protein started as a single module in the

1st hierarchy, and proteins or modules were merged as they

moved up the hierarchy, as shown in Algorithm 1.

In Algorithm 1 and 2, Hi is the ith hierarchy, which contains the

protein set PS, the module set M and their interaction

relationships; k is the hierarchy index; T is a temporary module

set; and p is a protein; and DX D denotes the number of elements

(proteins or modules) X contains.

Figure 3. The clustering process of Module ‘3866’. The left figure is the hierarchical tree, while the right figure is the corresponding clustering
result. Different colors correspond to different hierarchies. The labels in the bottom of the left figure and in the right figure are HPRD protein IDs, and
the other labels are module IDs. All of Module ‘3866’ and its sub-modules ‘3237’ and ‘3269’, which contain 3 and 15 proteins separately, have function
enrichment in GO functions with 100%, such as ‘regulation of transcription, DNA-dependent’, ‘regulation of transcription’, ‘transcription’, ‘regulation
of cellular metabolic process’, ‘RNA metabolic process’, ‘transcription, DNA-dependent’, ‘RNA biosynthetic process’ in BP and ‘ligand-dependent
nuclear receptor activity’, ‘sequence-specific DNA binding’, ‘transcription factor activity’, ‘steroid hormone receptor activity’ in MF. All the modules
yielded in the clustering process have the same property.
doi:10.1371/journal.pone.0024495.g003

Figure 4. The clustering process of Module ‘5978’. The left figure is the hierarchical tree, while the right figure is the corresponding clustering
result. Different colors correspond to different hierarchies. The labels in the bottom of the left figure and in the right figure are HPRD protein IDs, and
the other labels are module IDs. Both Module ‘5978’ and its sub-module ‘5649’, which contains 12 proteins, have function enrichment in GO functions
with 75%, such as ‘positive regulation of cellular process’ in BP, ‘NuRD complex’, ‘nucleus’, ‘histone deacetylase complex’ in CC and ‘hydro-lyase
activity’, ‘carbon-oxygen lyase activity’ in MF. All the modules yielded in the clustering process have the same property.
doi:10.1371/journal.pone.0024495.g004
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Algorithm 1 is shown here:

input: all proteins p1,p2, � � � ,pDH1 D
� �

in H1

output: H1,H2, � � � ,Hh

cluster (p1,p2, � � � ,pDH1 D ):

Initialize the hierarchy index k~1;

Initialize the protein set PS~ p1,p2, � � � ,pDH1 D
� �

and the module set

M~PS;

Initialize module interactions in the hierarchy H1;

output H1;

while DM D( .1)

k~kz1; // raise to a higher hierarchy

compute neighborhood similarity values between every module pairs in M;

choose module pairs with the maximum value of neighborhood similarity;

merge modules into T ;

discard modules from M and add T to M;

calculate number of all the modules in current hierarchy;

discard interactions between modules in T ;

search for new module interactions according to module interactions in

Hk{1;

output Hk~Mz module interactions;

As an example, a sample PPIN composed of 10 proteins (1, 2,

…, 10) was clustered hierarchically with Algorithm 1 and the

resulting hierarchical tree and interacting modules in each

hierarchy are in Figure 1.

Searching disease gene interaction pathways. We first

marked disease genes and disease-risk modules that contained

disease proteins in the hierarchical tree. Then, the disease gene

interaction pathway was searched according to interaction

relationships between disease-risk modules in each hierarchy of

the hierarchical tree using a bottom-up approach. If a pair of

proteins in two modules interacted with each other, the two

modules interacted. The process is illustrated in Algorithm 2.

In Algorithm 2, d is a disease protein or disease-risk module, D

denotes the disease protein set, TS is the disease-risk module set,

and L is the disease gene interaction pathway.

Algorithm 2 is shown here:

input: all disease proteins in the protein set D, d1, � � � ,dDDD
(D5H1)

output: disease gene interaction pathway L

searchPath (d1, � � � ,dDDD):

initialize disease gene interaction pathway L~W;

initialize the hierarchy index k~1;

LABEL:

mark disease-risk module set TS using disease genes;

detect module interactions between disease-risk modules in TS;

construct L using TS and the module interactions;

if all disease-risk modules are not obtainable in L

Figure 5. The initial PPIN and the resulting disease gene interaction pathway. (A) The PPIN of the largest connected component in HPRD.
The nodes are proteins, in which the blue ones are disease proteins, and the edges are interactions between proteins. 27 (44.3%) disease proteins
have 23 direct interactions. a, b and c are 3 enlarged part of Figure 5A containing CAD disease proteins 1989, 1993 and 6091 that do not interact
directly respectively. (B) The resulting CAD disease gene interaction pathway derived from the PPIN by our method. 46 nodes in pink are disease-risk
modules that contain CAD disease proteins (blue dots) and other proteins with similar functions, and the labels beside the nodes are their module
IDs. The sizes of the nodes are directly proportional to the log number of proteins (2,866, of which 1,4 are disease proteins) they contain. 182
edges are the interaction relationships between disease-risk modules they connect. In the disease gene interaction pathway, 1989 and 1993 are both
in disease-risk module 6433 of Figure 5B, and participate in CAD disease gene interaction pathway jointly. 1993 and 6091 locate in disease-risk
module 6433 and 4945 of Figure 5B separately, which can interact with each other, and can be linked by these interacting disease-risk modules.
doi:10.1371/journal.pone.0024495.g005
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k~kz1;

goto LABEL;

else

output L;

As an example, for four disease gene products, labeled 1, 2, 5,

and 10 in the sample PPIN in Figure 1, we used Algorithm 2 to

search for the disease gene interaction pathway for the sample

network (Figure 2A and 2B). The resulting disease gene interaction

pathway is shown in Figure 2C.

Evaluation. We generated 100 random networks, keeping

the degree of each protein and rewiring the PPIN. The same

processes for hierarchical tree construction and disease gene

interaction pathway searching were performed on these random

networks using the same disease genes for CAD, HT and T2D.

We evaluated the performance of our method by comparing

proteins and interactions of disease gene interaction pathways

from random networks with those from HPRD PPIN.

Results

In this paper, based on the neighborhood similarities, we

represented a primary PPIN as a hierarchical tree of biological

modules generated in a bottom-up way. The disease gene

interaction pathway for CAD was derived according to our

proposed algorithms. This disease gene interaction pathway

contained 46 disease-risk modules and 182 interaction relation-

ships between these modules. The results of disease gene

interaction pathways for HT and T2D are shown in Figure S1

and S2. After further biological analysis, the effectiveness of the

disease gene interaction pathway was evaluated and validated by

two separate steps: i) comparing with random networks; and ii)

validating of disease-risk modules and their interaction relation-

ships.

The hierarchical tree
We constructed a hierarchical tree using a bottom-up approach

based on the neighborhood similarity of every two proteins or

Figure 6. Interacting modules sharing common GO functions in the disease gene interaction pathway. The nodes are modules, and the
edges are their interaction relationships. The solid edges denote two modules connected share common functions, while the dashed ones indicate
no common functions, and the width of the lines are directly proportional to the number of shared functions (1,92) of two modules. Two purple
circles denote function sharing between disease gene pair VWF and F12 of interacting disease-risk modules ‘‘3895’’ and ‘‘4944’’, and gene pair COL3A1
and SERPINE1 of interacting disease-risk modules ‘‘4287’’ and ‘‘5219’’.
doi:10.1371/journal.pone.0024495.g006
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modules in the largest connected component of the PPIN (see

Hierarchical tree construction in Methods). Proteins with large

neighborhood similarities were organized into modules in lower

hierarchies of the hierarchical tree, which were grouped into

modules in higher hierarchies until all proteins are clustered into

one module.

We obtained a hierarchical tree with 86 hierarchies using

Algorithm 1. Each hierarchy was a different presentation of the

largest connected component of the PPIN, and clustered the

proteins into modules of various sizes. Every module comprised

two or more submodules or proteins.

To evaluate the function consistency of each module, we used

the online toolkit, Functional Annotation Tool in Database for

Annotation, Visualization and Integrated Discovery (DAVID)

Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/)

[41,42], selecting the standard annotation categories: biological

process (BP), cellular component (CC) and molecular function

(MF), and the significance threshold p-value 0.05. We found that

proteins in each of the modules had significant characteristics of

sharing common functions in functional annotation categories,

some of which are in Table S1.

We note that the entire hierarchical tree not only reconstructed

the PPIN into different representations, but also associated

biological modules through functional similarities of ancestor

and descendant modules. Then, with the enriched functions for

each module, we considered the functional stability of the ancestor

and descendant modules. By comparison, some functions of

modules were consistent with those of its submodules in lower

hierarchies. In other words, modules may share most functions

with their submodules (see Samples in Figure 3 and 4). Therefore,

modules with disease genes were denoted as disease-risk modules.

This encouraging characteristic that ancestor modules shared

biological functions with descendant modules, might contribute to

the further identification of disease gene interaction pathways for

CAD, HT and T2D.

Disease gene interaction pathway
We marked disease-risk modules in the hierarchical tree

according to 61 CAD genes or proteins (see Data section). Then,

we used the proposed pathway searching algorithm (see Searching

disease gene interaction pathway in Methods section) to search for

a CAD disease gene interaction pathway. In the pathway, CAD

disease genes associated by the mechanism that disease-risk

modules interacted with each other. This led to multiple

dysfunctions of biological processes in CAD pathogenesis. Finally,

we derived a CAD disease gene interaction pathway containing 46

disease-risk modules and 182 interaction relationships. This data

arrangement is in Figure 5.

To evaluate the interaction relationships between disease-risk

modules, we examined enriched functions for each pair of 182

interacting disease-risk modules. According to results from

enriched Gene Ontology (GO, http://www.geneontology.org/)

functions [43], we found that 167 (91.8%) interaction relationships

in the disease gene interaction pathway for CAD shared at least

one common function (Figure 6 and Table S2), which suggested

that disease genes associated by virtue of interacting disease-risk

modules with shared functions, leading to multiple dysfunctions of

biological processes in the pathogenesis of complex diseases. For

example, disease gene pairs VWF (geneID: 7450) and F12 (geneID:

2161), and COL3A1 (geneID: 1281) and SERPINE1 (geneID: 5054)

are scattered in human PPIN. Notably, we found genes VWF and

F12 associated via the shared function ‘‘blood coagulation’’ for

interacting disease-risk modules ‘‘3895’’ and ‘‘4944’’, while genes

COL3A1 and SERPINE1 associated through the ‘‘fibrinolysis’’

process shared by interacting disease-risk modules ‘‘4287’’ and

‘‘5219’’ in the resulting pathway we derived (purple circles in

Figure 6). Many studies have reported that the biological processes

of blood coagulation and fibrinolysis are significantly correlated

with CAD pathogenesis [44,45,46,47].

The disease gene interaction pathways for HT and T2D are in

Figure S1 and S2.

Evaluation
Using the same disease genes for CAD, HT, and T2D, we

performed similar procedures on 100 random networks to search

for disease gene interaction pathways. We compared the proteins

and interactions of disease gene interaction pathways from

random networks with those from HPRD PPIN. Only some of

the proteins and interactions of the disease gene interaction

pathway from HPRD PPIN could be found in pathways from

random networks (Figure 7). These results illustrated that the

disease gene interaction pathway could not be obtained from

random networks, demonstrating the effectiveness of our method.

We also compared network metrics, i.e. the number of vertices,

diameters, characteristic path lengths, and clustering coefficients

for disease gene interaction pathways for the three diseases from

the PPIN of HPRD and from random networks (Figure S3) to

demonstrate the effectiveness of our method.

Validation
To verify the associations between the resulting disease gene

interaction pathway and CAD, we tested for cross-validations of

CAD in disease-risk modules under the framework of Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://www.

genome.jp/kegg/) pathways [48,49,50], and examined the

resulting interaction relationships using online research literature

on CAD.

Using DAVID online toolkits, we found that 46 disease-risk

modules in the CAD disease gene interaction pathway were

Figure 7. Network overlaps of resulting disease gene interac-
tion pathways derived from random and HPRD networks. Boxes
are the distribution of the number of proteins (A) and the distribution
of the number of interactions (B). Blue crosses are the number for
disease gene interaction pathways from HPRD PPIN, which are larger
than those for random networks.
doi:10.1371/journal.pone.0024495.g007
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significantly correlated with 123 biological pathways (Figure 8). Of

these, 43 (93.5%) were enriched in pathways including ‘‘Apopto-

sis’’, ‘‘Alzheimer’s disease’’, ‘‘Arrhythmogenic right ventricular

cardiomyopathy (ARVC)’’, ‘‘Dilated cardiomyopathy’’, ‘‘Other

glycan degradation’’. Note that only three disease-risk modules

had no pathway enrichment. However, their annotated pathways

were consistent with pathways enriched in their interacting

disease-risk modules, which were important in disease gene

association through interaction relationships. For example,

disease-risk module 5115, with no significantly enriched pathways,

had several genes annotated onto CAD-associated pathways such

as ‘‘PPAR signaling pathway’’, ‘‘Pathways in cancer’’, and the

‘‘Non-small cell lung cancer’’ pathway. Furthermore, these

pathways were enriched in the interacting disease-risk module

3866, which suggested biological associations between these two

interacting disease-risk modules.

Of all enriched pathways, 61 were validated to be CAD-related

by a literature retrieval (Table S3). For example, the ‘‘Apoptosis’’

pathway by which a cell is directed to a programmed death, has

been shown to be correlated with CAD in previous studies

[51,52,53,54]. These indicated that CAD was caused by apoptosis

(especially cardiomyocyte apoptosis)-inducing factors, such as

angiotensin-converting enzyme inhibitor, low-density lipoprotein

cholesterol, lyso-phosphatidylcholine and oxidized nonesterified

fatty acids. Evidence indicated that the Alzheimer’s disease (AD)

pathway is also related to CAD because some factors that induced

AD could also be CAD risk factors, e.g. the variants of

apolipoprotein E (especially Allele epsilon4), apolipoprotein B,

altered cholesterol levels, particularly high levels of low-density

lipoproteins together with low levels of high-density lipoproteins

[55,56,57,58]. Some studies have shown that the ‘‘Other glycan

degradation’’ pathway is related to CAD. Pro-angiogenic effects of

perlecan involved in the pathway may be used to treat various

ischemic diseases such as intractable CAD and peripheral vascular

disease [59]. Carbohydrate that is malabsorbed and fermented in

the colon, which is known as glycan degradation, increases CAD

associated risk factors [60].

The CAD disease gene interaction pathway covered 182

interaction relationships between 46 disease-risk modules. To

further evaluate the reliability of interaction relationships between

disease-risk modules, we used the NCBI PubMed module to

retrieve correlations between gene pairs and CAD with the term

‘‘GENE symbol 1+GENE symbol 2+coronary artery disease’’ (e.g.

IL1R2+ESR2+coronary artery disease). Verified were 107 inter-

actions (58.8%) related to the pathogenesis of CAD (Figure 9 and

Table S4). For example, gene pairs IL1R2 (GeneID: 7850) and

ESR2 (GeneID: 2100) in interacting modules 6116 and 5033 and

IL1R2 and PLA2G7 (GeneID: 7941) in interacting modules 6116

and 638 were related to CAD by [61]. Willer et al. identified the

relationships between CAD and genes MVK (GeneID: 4598),

LDLR (GeneID: 300438) and APOA1 (GeneID: 335) in disease-risk

modules 638, 4945, and 6433 that interact with each other [62].

McCarthy et al. validated that CAD is associated with gene pairs

LRP1 (GeneID: 4035) and MTHFR (GeneID: 4524) in interacting

disease-risk modules 4945 and 638, and LRP1 and SELP (Gene ID:

6403) in interacting modules 4945 and 4393 [63]. They also

detected connections between CAD and genes LDLR, SELP, and

IL6 (GeneID: 3569) in disease-risk modules 4945, 4393, and 5982,

which interact with each other [64]. The relationship between

CAD and gene pair TMEM57 (GeneID: 55219) and CTCF

(GeneID: 10664) in interacting disease-risk modules 638 and 6433

is also recognized [65]. Genotype information has shown a

relationship between CAD and gene pair LDLR and APOA1 in

interacting disease-risk modules 4945 and 6433 [66].

Detailed results for literature validation of modules and

interaction relationships for HT and T2D disease gene interaction

pathways are in Table S5, S6, S7, S8.

Based on our analysis, we concluded that both disease-risk

modules and their interaction relationships were verified as

associated with the pathogenesis of CAD, HT, and T2D. This

demonstrated the effectiveness of our hypothesis that disease-risk

modules can associate with each other in proposed disease gene

interaction pathways. Furthermore, we must note that disease-risk

module associations without significant evidence in the literature

still need to be verified by further studies.

Discussion

The rapid accumulation of genomics and proteomics informa-

tion, especially protein interaction data, motivated us to develop

computational approaches to mine biological pathways. In this

study, we considered function similarities of proteins in a PPIN,

and introduced a novel disease gene interaction pathway

representation and analysis paradigm. We applied our method

to find disease gene interaction pathways of CAD, HT and T2D,

and demonstrated that the pathways correlated with information

on these diseases in the literature.

We demonstrated that complex diseases often have dysfunctions

of multiple biological modules or pathways. Similar to traditional

approaches (e.g. PathFinder, BowTieBuilder and FASPAD), our

method also allows inferring biological pathways in molecular

networks when a set of source and/or target proteins are given. As

for FASPAD and Pandora, our method is similar to these

approaches at the aspect of taking into account of ‘similarity’

features of neighboring proteins in the background of biological

molecular networks. It must be noted that our method has the

following advantages. First, using the disease gene interaction

pathway reveals potential associations between disease genes or

proteins that do not connect directly. Second, representing

biological networks as combinations of multiple modules is a

lossless, compact, and less redundant representation of the PPIN

that preserves the connectivity information between modules.

Finally, our novel disease gene interaction pathway representation

and analysis paradigm could elucidate that disease genes can

associate by the mechanism of disease-risk modules with mutual

functions interacting with each other. This leads to multiple

dysfunctions of biological processes in the pathogenesis of complex

diseases.

Our method also has some limitations. For example, construct-

ing a hierarchical tree and searching for underlying associations

between disease genes based on the high-throughput biological

network is time-consuming. Another limiting factor is that

upstream or downstream relationships could not be identified in

disease gene interaction pathways using our analysis.

As demonstrated, the disease genes of CAD, HT, and T2D

associated by virtue of associations between biological modules in

Figure 8. KEGG pathway enrichment results of disease-risk modules in the disease gene interaction pathway. The nodes are disease-
risk modules, and the edges are the interactions between disease-risk modules. Different colors of each disease-risk modules represent different
pathways, the sizes of which are proportional to the number of proteins or genes in the pathway enriched. 3 white nodes have no pathway
enrichment. The pathways indicated by ‘*’ are CAD related, which are validated by literature retrieving.
doi:10.1371/journal.pone.0024495.g008
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the PPIN. We hypothesize that if the interaction relationships

between disease-risk modules were blocked, communications

would break down, preventing disease-risk modules from associ-

ating with each other. This might provide additional insights into

the pathogenesis of CAD, HT, and T2D. Therefore, the

interactions between disease-risk modules might be informational

for CAD, HT, and T2D treatment and even in fields such as drug

target analysis.

We used the examples of CAD, HT, and T2D to determine the

feasibility of this method. Once disease genes are determined in

the PPIN, our proposed method can be used to identify disease

gene interaction pathways for other types of complex diseases,

yielding additional clues in the pathogenesis of complex diseases.

Supporting Information

Figure S1 The resulting HT disease gene interaction
pathway derived from the PPIN by our method. 87 nodes

in pink are disease-risk modules that contain HT disease proteins

(purple dots) and other proteins with similar functions, and the

labels beside the nodes are their module IDs. The sizes of the

nodes are directly proportional to the log number of proteins

(1,866, of which 1,6 are disease proteins) they contain. 306

edges are the interaction relationships between disease-risk

modules they connect.

(TIF)

Figure S2 The resulting T2D disease gene interaction
pathway derived from the PPIN by our method. 123 nodes

in pink are disease-risk modules that contain T2D disease proteins

(orange dots) and other proteins with similar functions, and the

labels beside the nodes are their module IDs. The sizes of the

nodes are directly proportional to the log number of proteins

(1,866, of which 1,3 are disease proteins) they contain. 579

edges are the interaction relationships between disease-risk

modules they connect.

(TIF)

Figure S3 The distribution of four network metrics of
disease gene interaction pathways from random net-
works. Boxes are values for disease gene interaction pathways

from random networks, and blue diamonds are values for those

from HPRD PPIN.

(TIF)

Table S1 GO functions enriched for disease-risk mod-
ules for CAD.
(DOC)

Figure 9. Interacting disease-risk modules supported by literature evidences. The nodes are disease-risk modules, and the edges are the
interaction relationships between disease-risk modules. The green nodes and edges indicate that gene pairs between these interacting disease-risk
modules are related to CAD after literature search.
doi:10.1371/journal.pone.0024495.g009
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Table S2 Common GO functions shared by interacting
terms in the CAD disease gene interaction pathway.

(DOC)

Table S3 PubMed ID in which KEGG pathways en-
riched have been proved to be correlated with CAD.

(DOC)

Table S4 PubMed ID in which gene pairs between
interacting disease-risk terms have been proved to be
correlated with CAD.

(DOC)

Table S5 PubMed ID in which KEGG pathways en-
riched have been proved to be correlated with HT.

(DOC)

Table S6 PubMed ID in which gene pairs between
interacting disease-risk terms have been proved to be
correlated with HT.
(DOC)

Table S7 PubMed ID in which KEGG pathways en-
riched have been proved to be correlated with T2D.
(DOC)

Table S8 PubMed ID in which gene pairs between
interacting disease-risk terms have been proved to be
correlated with T2D.
(DOC)
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