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Aspartoacylase/aminoacylase II (ASPA/ACY II) is mainly synthesized in oligodendrocytes to contribute in myelin synthesis.
Although axonal damage is seen in the brain with human immunodeficiency virus encephalitis (HIVE), ASPA contribution in
the pathology is not known. Immunostaining study showed that ASPA protein is reduced in the white matter of patients with
HIVE compared to the control. Western blot study further confirmed ASPA deficiency in the HIVE brain compared to the control.
This paper suggests that HIVE condition affects ASPA to contribute in myelin loss/axonal damage seen in the disease.

1. Introduction

Human aspartoacylase/aminoacylase II (ASPA/ACY II; EC
no. 3.5.1.15) gene contains five introns and six exons
[1, 2]. Normal level of its substrate, N-acetylaspartic acid
(NAA/NA-Asp) is important for the maintenance of healthy
neurons. Altered levels of the NAA contribute in disease
pathophysiology by inducing oxidative stress and by sup-
pressing potential antioxidants [3—-6]. Abnormal level of this
pathway contributes in various diseases including Canavan
disease [1-4], type 2 diabetes [7], and Parkinson’s disease [8].
Aspartoacylase is mainly synthesized in oligodendrocytes to
contribute in myelin synthesis [1, 2].

Human immunodeficiency virus encephalitis (HIVE) is a
demyelinating disease of the central nervous system, caused
by the lethal virus [9-11]. Approximately 2.7 million new
HIV-1 infections and 2.0 million deaths due to AIDS were
reported in 2008 [12, 13]. In North America, the epidemic is
expanding in the population among men who have sex with
men [14, 15]. Brain regions affected in the disease include
basal ganglia and deep white matter [16, 17], and these brain
regions are also affected in the brain with Canavan disease
[1, 2], therefore studying aspartoacylase level in the white

matter of the patients with HIVE is important. Thus, the
present study was aimed to understand ASPA level in the
white matter of patients HIVE.

2. Materials and Methods

Six brain samples each from control and HIVE were used.
While control brains showed no histologic abnormalities,
HIVE brain showed leucoencephalopathy. All the procedures
were performed under the regulations of institutional ethical
committee and with the Helsinki Declaration of 1975, as
revised in 2000 (World Medical Association Declaration
of Helsinki 2000). To perform immunostaining, paraffin
sections from three each of control and HIVE brain were
deparaffinized in xylene, rehydrated in graded ethanol and
incubated with ASPA antibody (Santacruz, CA) as followed
earlier [18]. The slides were then washed in PBS and incu-
bated with antirabbit conjugated Alexa-fluor 488 (Molecular
probes, CA). Sections were photographed as described earlier
[18].

To confirm the immunofluorescence findings, western
blot was performed using three of each control and HIVE
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FIGURE 1: Immunofluorescence study of aspartoacylase in the brain of patients with HIVE. Aspartoacylase protein is reduced in the fore

brain of HIVE patients compared to the control (magnification, 20x).

brain samples. Three brain samples of each control and
HIVE were homogenized in lysis buffer and western blot
was performed as followed earlier [19]. Fifteen-microgram
protein from control and HIVE brains was loaded onto a
12% gel and the protein transferred nitrocellulose membrane
was blocked with 5% blocking buffer. Then the membrane
was incubated with ASPA antibody (Santa Cruz, CA) 1:200
dilution. After washing with PBS, membrane was incubated
with anti-rabbit HRP antibody (Invitrogen, CA). The protein
band was detected using supersignal west pico chemilumi-
nescent substrate (Fisher scientific, IL) and photographed
as described earlier [19]. Density of the bands was also
measured as described earlier [19]. Statistical analysis was
performed using ANOVA. P < 0.05 was considered as
significant.

3. Results and Discussion

Immunostaining of the HIVE brain white matter showed
reduced level of ASPA compared to the control (Figure 1).
These fluorescent cells were colocalized with oligodendrocyte
marker (Data not shown). Western blot study also further
confirmed the reduced level of ASPA in HIVE brain com-
pared to the control (Figure 2). Density analysis of the bands
showed that two-tailed P value was 0.02.

HIV has been a devastating disease over decades and
white matter degeneration is also reported [20, 21], however,
ASPA contribution in the white matter degeneration is not
known. ASPA is mainly synthesized in oligodendrocytes [1,
2] and a reduced level of ASPA impedes myelination and thus
leads to axonal damage [1, 2, 22, 23].

Human immunodeficiency virus infection starts from
periphery and subsequently enters the central nervous
system but neurological symptoms occur years later. Axonal
damage is reported in the brain with HIVE [24, 25].
Monogene alters other genes expression to contribute in
disease pathophysiology [2]. HIV is capable of inserting with
genomic DNA [26]. This insertion would impede function
of other genes. Thus, deficiency of ASPA in the brain of
patients with HIVE observed in the present study suggests
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FIGURE 2: Western blot study of aspartoacylase protein in the brain
of patients with HIVE. (a) Aspartoacylase protein was deficient
in the brain of patients with HIVE compared to the control. (b)
Density analysis of the band showed reduced amount of ASPA
protein in the brain with HIVE compared to the control brain. Two-
tailed P value was 0.02.

that HIVE condition affects ASPA to contribute in myelin
loss and axonal damage seen in the disease.

In conclusion, HIVE condition affects ASPA to con-
tribute in axonal damage seen in the disease.
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