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Abstract 

We can no w analyz e 3D ph y sical interactions of chromatin regions with chromatin conformation capture technologies, in addition to the 1D 

chromatin state annotations, but methods to integrate this information are lacking. We propose a method to integrate the chromatin state of 
interacting regions into a vector representation through the contact-weighted sum of chromatin states. Unsupervised clustering on integrated 
chromatin states and Micro-C contacts re v eals common patterns of chromatin interaction signatures. T his pro vides an integrated view of the 
complex dynamics of concurrent change occurring in chromatin state and in chromatin interaction, adding another la y er of annotation be y ond 
chromatin state or Hi-C contact separately. 
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hromatin states are regulatory annotations defined by pat-
erns of chromatin marks in genomic regions ( 1 ). These
atterns have elucidated regulatory roles of the noncoding
enome ( 2 ). ChromHMM and Segway softwares use a Hidden
arkov model and dynamic Bayesian network respectively to

nfer ‘hidden’ chromatin states based on the combination of
arious epigenomic marks ( 3–5 ). This approach has been fur-
her extended to integrate additional molecular information in
he model such as RNA-Seq, transcription factor binding and
ven 3D Hi-C data ( 6–10 ). Each approach has in common the
oal of annotating regions of the genome with interpretable
lusters to be used in subsequent studies of gene regulation,
enetic association and others. 

Of particular interest to this research is the integration of
i-C data in the state inference framework. Hi-C sequenc-

ng captures the conformation of chromatin in the cell and
his folding of DNA is an integral element of gene regulation.
hough it is still of debate whether chromatin conformation is
 cause or consequence of gene expression ( 11 ), the canonical
odel assumes that distal enhancers bound by transcription

actors require contact with promoters through DNA folding
o influence transcription ( 12 ). 

A challenge to integrating Hi-C in the previously stated
hromatin state framework is the interacting nature of the
ata: a Hi-C contact involves two genomic regions, whereas
hromatin mark ChIP-seq defines peaks in one region alone.
o incorporate interaction into a feature space defined for
ach region, one has to summarize both the strength of the
nteraction that the region has with its multiple contacts, as
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well as the characteristics of each region in contact. A few
softwares have attempted to integrate Hi-C in hidden state
models in the following ways. 

Segway-GBR ( 6 ) and SPIN ( 7 ) both use integrative meth-
ods which encourage contacting regions to be clustered within
the same state. This is based on the phenomena that large re-
gions with similar chromatin marks are often in contact ( 13–
15 ). SPIN uses a Hidden Markov random field using a resolu-
tion of 25 kb windows. Segway-GBR assigns a pairwise prior
to significant Hi-C contacts at 10 kb windows. Shokraneh
et al. ( 10 ) employ graph embedding to learn structural vec-
tor features of Hi-C data which were then passed on to an
HMM along with chromatin marks to be segmented together.
The resulting combinatorial domains recapitulated known Hi-
C sub-compartment categories ( 14 ) and provided additional
granularity to sub-compartments. But, since the segments re-
sulting from combined information tended to be broader than
traditional chromatin-based segments, it didn’t perform as
well as the traditional methods in explaining gene expression
( 10 ). 

Beyond these few examples, to our knowledge, no method
exists to broadly investigate both chromatin interactions and
chromatin states across the entire genome. The closest stud-
ies were the recent studies that used deep learning approaches
that integrate chromatin interactions and chromatin states to
predict gene expression ( 15 ,16 ), but since these studies were
framed as classification or regression studies, they were not
interested in unsupervised discovery of the patterns of inter-
action between different chromatin states at a genome-wide
scale. We propose a new method for integrating chromatin
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interaction data into a traditional framework for chromatin
state annotation. Using this approach, we can apply genome-
wide clustering to annotate patterns of chromatin interaction.
By summarizing all contacts at each individual genomic re-
gion of interest, we capture a chromatin interaction signature
(CIS) of both the summed strength of contacts as well as the
chromatin states of those contacts. These CISs provide an ad-
ditional layer of genome-wide annotation beyond contact or
chromatin state alone. Applying this approach to Micro-C
data (at 1 kb window size) ( 17 ,18 ) rather than lower reso-
lution Hi-C, we were able to annotate chromatin interaction
signatures for chromatin state segments that span smaller re-
gions, such as enhancers or promoters, rather than looking at
broad compartment activity. 

Materials and methods 

Data sources 

Chromatin states generated by ChromHMM were obtained
from EpiMap for HFF, endoderm, H1-hESC and HeLa
cells for hg38 ( 19 ). We used the 18-state Roadmap model,
re-generated by EpiMap ( 19 ) from H3K27ac, H3K4me1,
H3K4me3, H3K36me3, H3K9me3 and H3K27me3 chro-
matin marks. We refer to this data as ChromHMM18. To
investigate the effect of chromatin annotation variation, in
addition to the 18-state EpiMap model we used as our
main annotation, we also used the 15-state ChromHMM
model originally generated by Roadmap epigenomics ( 20 )
(ChromHMM15), and the Segway annotations ( 5 ). Seg-
way annotations were downloaded from https://noble.gs.
washington.edu/ proj/ encyclopedia/ interpreted/ ( 21 ). To make
the labels comparable across cell types, we translated from
the 33 Segway labels down to the 8 Segway labels that were
available for endoderm and HFF ( Supplementary Table S1 ). 

Micro-C mcool files were downloaded from the 4dnucle-
ome.org and were originally from Oksuz et al. ( 22 ). The
Formaldehyde + DSG protocol was used for each of these
Micro-C datasets. The HeLa cell data used was non synchro-
nized as opposed to the cell cycle synchronized HeLa Micro-C
data available. 

A common issue with integrating chromatin mark data and
Hi-C is the issue of window size. In general Hi-C data is inter-
preted in > 5 kb windows whereas ChIP-Seq peaks are much
smaller. For example, the smallest ChromHMM segmented re-
gions are 200 bp. To remedy this, we take advantage of avail-
able Micro-C data. Micro-C data is a derivative of Hi-C which
uses a micrococcal nuclease (MNase) to create much smaller
windows sizes ( 18 ,23 ). These high resolution fragments accu-
rately capture fine scale interactions rather than the broader
scale of traditional Hi-C enabling us to use 1 kb windows for
contact data. 

Creation of data matrix 

Through a process we named sum of chromatin state by con-
tact (SCC), we create a matrix of Micro-C scores summed by
chromatin state. The mathematical definition of the SCC ma-
trix has been described in the results, here we describe the al-
gorithm. Using Cooler ( 24 ), all Micro-C normalized weighted
contacts were pulled 2 Mb upstream and downstream for each
non-overlapping 1 kb window which contained an annotated
chromatin state (omitting quiescent regions for feasibility pur-
poses). Next, for each base region with a chromatin state, all
regions in contact with the base were assigned a chromatin 

state based on results from bedtools ( 25 ) intersect between 

ChromHMM segments and Micro-C bedpe files. In 1 kb win- 
dows where multiple chromatin states are present, each is in- 
cluded as a separate entry. If a ChromHMM segment over- 
lapped multiple windows, the mean Micro-C contact score 
across the windows was used. 

Finally, the scores are summed for each unique chromatin 

state, resulting in a matrix where each chromatin state an- 
notated base region (row) has 17 scores (columns), one for 
each chromatin state except for quiescent regions. Quiescent 
regions were excluded for this analysis because they signify 
regions with low chromatin marks. For clarity, the score is the 
summed amount of KR normalized contact the base region 

has with a particular chromatin state annotated region. All 
code for this process can be found at https:// doi.org/ 10.6084/ 
m9.figshare.25270645 . 

Comparison across annotations. 

To compare the effect of different annotations, we gener- 
ated independent SCC matrices based on ChromHMM18,
ChromHMM15 and Segway annotations. The segments that 
are common between the SCC matrices were identified with 

bedtools intersect requiring at least 80% of overlap recipro- 
cally between annotations. Mapping between annotation la- 
bels were determined based on the frequency of joint labels 
for common segments. Correlation was calculated for each 

mapped columns of the SCC matrices. 

k -Means clustering 

After creating the matrix, k -means clustering was performed.
To assess an appropriate k value of clusters, we employ the 
elbow plot method ( 26 ). In brief, the sum of squared error for 
each cluster is calculated for several k values and the ‘elbow’ 
point of the resulting plot is used to determine an appropriate 
k value ( Supplementary Figure S1 ). We chose k = 18 based on 

the elbow method and to maximize understandability. 

Differential expression and CIS association 

Bulk RNA-Seq count data from Chu et al. ( 27 ) (GSE75748) 
was analyzed with DESeq2 to obtain differentially expressed 

genes between HFF and H1 cells. Up regulation was deter- 
mined by > 2 log 2 fold change and down regulation was de- 
termined by ← 2 log 2 fold change and significance was de- 
tected at adjusted P -value < 1e-10. TSS sites were obtained 

from Fulco et al. ( 28 ), which narrowed the scope by selecting 
the single TSS for each gene with the largest number of cod- 
ing isoforms. Bedtools ( 29 ) intersect was then used to overlap 

those TSS regions with CIS and chromatin state annotations. 
Specifically, every CIS-defined region for each cell type was 

intersected with the TSS regions. Then the different cell types 
were merged based on the genes they overlapped. These re- 
gions were then used for analysis of CIS changes (Figure 5 ).
The 18-CIS model was collapsed to seven labels for ease of in- 
terpretation. The membership of the seven labels is as follows: 

TX Contact: cont_Tx_EnhG1, cont_Tx_EnhG2,
cont_TxWk_Enh, cont_TxWk_EnhWk 

TSS Contact: cont_T ss_Enh, cont_T ss_EnhG,
cont_T ss_noEnh, cont_T ss_EnhWk 

Enhancer Contact: cont_EnhA, cont_EnhA_EnhWk 

Bivalent Contact: cont_Biv 
ReprPC Contact: cont_ReprPC_Biv, cont_ReprPC 

https://noble.gs.washington.edu/proj/encyclopedia/interpreted/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://doi.org/10.6084/m9.figshare.25270645
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Het Contact: cont_Het_Rpts, cont_Het_Rpts_strong,
ont_Het_Rpts_strongest 

Low Contact: cont_Low_TssBiv, cont_Low_EnhWk 

Mutual information analysis. To quantify mutual informa-
ion between differential gene expression (up or down regula-
ion) and differential CIS / chromatin states, we concatenated
he states for the HFF and H1 cell types. We used the ari-
ode ( 30 ) package to calculate the normalized mutual infor-
ation using the NMI function for three different variables. (i)
MI between chromatin states and gene expression, (ii) NMI
etween CIS and gene expression and (iii) NMI between the
oncatenated vector of chromatin state and CIS and gene ex-
ression. 

nrichment analyses 

ata sources . To determine functional significance of the clus-
ers, we calculated the enrichment statistics of enhancer and
romoter elements for each cluster. FANTOM5 active CAGE-
efined enhancers were obtained for each of the four cell types
HFF, HeLa, H1-hESC and definitive endoderm) ( 24 ). Super
nhancer annotations were taken from SEdb ( 25 ). All TSS for
he hg38 genome were obtained from refTSS ( 31 ) and high
ersus low expression genes were determined by taking the
op 25% and bottom 25% of normalized gene expression
ounts for the following datasets: H1-GSE102311, Endoderm
 32 )-Additional File 1:Table S8C, HFF-GSM2448852, Hela-
ncode ENCSR000CPR. 
Chi-squared tests . To determine significance of enrichment,

hi-squared tests were performed for each CIS cluster within
ach cell type for each of the five sub groupings: active en-
ancers, super enhancers, high expressed gene TSS, low ex-
ressed gene TSS and zero expressed gene TSS. Resulting P -
alues were Bonferroni corrected. 

esults 

enomic contacts are widespread across multiple 

nique chromatin states 

ifferent chromatin states as marked by distinct combinations
f histone modification exhibit distinct chromatin folding and
patial organization. ( 33 ). Active (A) and inactive (B) chro-
atin compartments characterized by Hi-C are enriched in

orresponding active and inactive chromatin marks respec-
ively ( 14 ). Interestingly, a recent paper also proposed an inter-
ediate (I) state between A and B which is enriched for poised-
romoter and polycomb-repressed chromatin states, marked
ainly by presence of H3K27me3 marks ( 34 ). 
Though the interplay of several chromatin states within one

ompartment is well characterized, the degree of an individ-
al genomic region in contact with several different chromatin
tates has not been studied in detail. To explore the global view
f chromatin state interactions across different cell states, we
ocused on the four cell types (H1-hESC, HeLa, HFF, defini-
ive endoderm) that have been recently assayed with Micro-C
 22 ). Chromatin states used in this analysis correspond to the
8-state ROADMAP model inferred using ChromHMM ( 20 )
nd were obtained for the four cell types from the EpiMap
epository ( 19 ). 

Important to note is that the distribution of chromatin
tates varies greatly between the four cell types (Figure 1 ). In
articular, the endoderm cell type has many more quiescent
haracterized regions (those with low chromatin marks) com-
pared to the other three cell types used here. Though this af-
fects downstream analysis, we choose to include endoderm in
our clustering because including a cell type with larger pro-
portion of quiescent regions that have very low signals for all
available histone marks shows that the method is robust to
different distributions of marks. 

To quantify the frequency of different chromatin state inter-
actions for a single region, we counted the number of unique
ChromHMM states that each genomic region is in contact
with ( Supplementary Figure S2 ). Here, the region is defined by
the segmentation of ChromHMM and thus can be of variable
length. The median number of unique ChromHMM chro-
matin states in contact with any single region is 12 for en-
doderm and HFF cells, 11 for H1 and 13 for HeLa cells sug-
gesting a high degree of connectivity between several different
chromatin state types for any single region. 

Importantly, this high degree of interaction is not due to
the Hi-C window spanning multiple chromatin states, as one
usually finds with window size of 5 kb or more. As we are ex-
amining micro-C interactions, we can observe the interactions
between segments that are as small as 1 kb. 

Integrating chromatin interactions through the 

contact-weighted sum of chromatin states. 

Given the complex nature of interaction across different chro-
matin states, we need an approach that will summarize this
high degree of interaction for any single region. We used a
straight-forward approach of summing across the different
chromatin states, weighted by the contact intensity. For each
region segmented with a chromHMM state annotation, all
contacts 2 Mb upstream and downstream were summarized
by summing all KR-normalized Micro-C scores across corre-
sponding chromatin states, as shown in Figure 2 (see Materials
and methods). 

Sum of chromatin state by contact is defined as a N × M
matrix, where N is the total number of segments annotated
by ChromHMM and M is the number of possible chromatin
states defined by ChromHMM. Each row of the matrix, SC C i ,
i = ( 1 , . . . N ) , is defined for the focal segment i , which we call
the base region. SC C i is a vector of length M , and is defined
as the contact-weighted sum of all chromatin states that are
interacting with segment i . 

SC C i = 

∑ L i 

j=1 
c i, j · z j (1)

SCC ik = 

∑ L i 

j=1 
c i, j · z jk , k = ( 1 , . . . M ) (2)

z j = ( z j1 , . . . z jM 

) is a vector that represents the chromatin
state of the interacting segment j that is in contact with seg-
ment i . The vector consists of M binary indicator variables
that are mutually exclusive and exhaustive (i.e. one and only
one of the z jk ’s is equal to 1, and the others are 0). This indi-
cator vector is multiplied by the contact intensity c i, j between
the chromatin segment i , and the interacting segment j. When
the segment spans many Micro-C windows, the mean contact
intensity is used. Then the contact weighted indicator vector is
summed across all interacting segments j = ( 1 , . . . L i ) , within
the ±2 Mb window. 

This approach assumes that each interaction with a chro-
matin state segment contributes additively and independently
to the base region’s annotation. A similar additive approach
was proposed for enhancer-target prediction in a model called

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 1. Chromatin state distribution between cell types. For endoderm, H1, HeLa and HFF cells, annotated ChromHMM segments were divided into 
equidist ant 20 0 bp windo ws to sho w the amount of ChromHMM st ate distribution bet ween cell t ypes. 

Figure 2. Creation of sum of chromatin state by contact matrix. Region A is in contact with EnhA1 regions B and C and therefore the KR-normalized 
scores are summed for those regions and added to the matrix. Similarly, region B is in contact with region A and the KR-normalized score is included in 
the matrix for region B and likewise with region C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

activity by contact in Fulco et al. ( 28 ). Our approach here is to
extend the model to all chromatin states, rather than focusing
on enhancers, as our goal is to identify broad patterns rather
than specific enhancer-gene pairs. 

As mentioned before, these regions were of variable length
depending on the chromatin state segmentation. We chose to
define base regions by chromatin state segmentation rather
than a fixed window size because we are most interested in
how annotated regions interact with other annotated regions.
Having a fixed window size for the annotated regions can
be misleading in this regard, because due to our assump-
tions above, a large segment that is broken into multiple
smaller windows would then be summed to result in a stronger
value linear to the size of the segment, and we did not want
that effect of segment size influencing our results. Also, fur-
ther subdivision of chromatin states into smaller windows
would not provide additional information to our clustering

because the Micro-C resolution used was 1 kb. To describe 
the relationship between the variable segment size and the 
fixed size of the Micro-C windows, an example is shown in 

Supplementary Figure S3 that describes how segments with 

variable sizes that can span multiple Micro-C windows were 
incorporated. 

We plotted the resulting SCC matrix in Figure 3 . We con- 
catenated the matrices of all four cell types to detect patterns 
found across cell types. We excluded quiescent segments from 

the rows because patterns of contact with low marked regions 
are of little interest but being the most widespread segment in 

the genome (Figure 1 ), they occupy too many rows in the ma- 
trix if included. However, we included contacts to quiescent 
states in the columns to show the overall distribution of con- 
tact. A clear diagonal enrichment is evident which confirms the 
previously reported pattern that similar chromatin states in- 
teract with each other ( 13 , 35 , 36 ). More interestingly, there are 
also off-diagonal hotspots suggesting that specific interactions 
between different chromatin states can happen frequently. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 3. Sum of chromatin state by contact matrix. Each row is a ChromHMM annotated segment. Contact score in each column represents the 
KR-normalized Micro-C contact scores summed across all the interacting segments annotated with the corresponding chromatin state. The heatmap is 
ordered by base chromatin state, then by cell type. 
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lustering on integrated chromatin states and 

icro-C contacts reveals chromatin interaction 

ignatures. 

ased on the observation of off-diagonal contacts in the SCC
atrix, we employed unsupervised clustering to character-

ze the patterns of chromatin interactions for each region
cross the whole genome. The concatenated SCC matrix for
ll four cell types (Figure 3 ) was clustered using k -means
nd a k of 18 was chosen based on cluster interpretability
nd the ‘elbow’ plot method (see Materials and methods and
upplementary Figure S1 ). While we included contact with
uiescent regions in the columns of Figure 3 , we excluded con-
acts with quiescent regions in our clustering analysis because
hey represent broad regions with low chromatin signals and
an overwhelm the clustering. 

Results of k -means clustering (Figure 4 ) yielded several clus-
ers with distinct chromatin interaction signatures (CIS). We
oin this term to describe a distinct pattern of chromatin in-
eractions for a single genomic region. After clustering, we
amed each CIS according to its pattern of contact. For ex-
mple, regions in the cont_Tss_Enh cluster exhibit high con-
act with both transcription start sites (TSS) and enhancer
egions. All 18 CIS names and their ratio of contact scores
re shown in Figure 4 . The length distribution of CIS an-
otations showed longer contiguous CIS segments (median
000 bp, mean 5203 bp) compared to the lengths of contigu-
ous ChromHMM annotation segments (median 800 bp, mean
2485 bp) ( Supplementary Figure S4 ). 

The left panel of Figure 4 corresponds to the log 2 ratio of
the mean Micro-C score in contact with each chromatin state
within a CIS cluster divided by the mean Micro-C scores in
contact with each chromatin state across all CIS clusters. This
shows the enrichment of each contact type for all 18 CIS clus-
ters. The right panel is for annotation purposes only and was
not included in clustering. The percentages correspond to the
percent of the chromatin state of the base regions which be-
long to each CIS cluster, with each column summing to 100%.
Lastly, the rightmost cell type annotation shows what percent
of the cluster is made of regions from each cell type. For ex-
ample, the cont_ReprPC cluster is mostly made of HeLa cell
type regions. 

Several clear patterns emerge. The first notable pattern is
that across all regions with various base ChromHMM states, a
subset of the regions are grouped into the Low contact clusters
(cont_Low_TssBiv and cont_Low_EnhWk), while the rest are
distributed across various clusters of high contact, showing
clear difference in the contact intensity even among regions
with the same chromatin state annotation. 

The second pattern is that the enriched interaction between
the same chromatin states that showed up as the high scores
along the diagonal in the heatmap (Figure 3 ), are also present
as enriched concentrations in Figure 4 . For example, a dis-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 4. K-means clustering of the SCC matrix. Summed contact data for ChromHMM segmented regions (of variable length) for all four cell types 
were included in k -means clustering with a k = 18. The left panel shows the log 2 ratio of mean summed contact scores for each segment divided by the 
mean summed contact scores across all clusters. In essence, this shows the enrichment of contacts to different chromatin states in each cluster. 
Included for annotation on the right is the percent of the base chromatin states found as well as the cell type amount present in each cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 matrix based on ChromHMM15. The CIS clusters and the 
tinct signature of contact with bivalent states for bivalent en-
hancers and bivalent TSS, and enriched contact with repressed
polycomb states for repressed polycomb regions are clearly
notable. 

The third pattern we see is that regions with the same base
chromatin annotations are now subdivided into different clus-
ters based on the chromatin states they are interacting with.
For example, the cont_Tss_Enh cluster is contrasted with the
cont_Tss_noEnh cluster, the latter of which is depleted of en-
hancer contact, but is highly enriched for TSS contact. If one
focuses on the base region TssA column (active TSS), we can
see that 35% of TssA regions cluster into cont_Tss_EnhG,
but a sizable minority also group into cont_Tss_noEnh or
cont_Tss_Enh clusters. Likewise for EnhG2, 29% of these re-
gions cluster into cont_Tss_EnhG, but less often it also groups
into cont_Tss_Enh cluster. This perhaps shows a subdivision
of enhancers with some elements preferring singular contact
with TSS and others interacting with enhancers as well. 

Each CIS is present in all cell types, but individual 
regions often change CIS between cell types. 

To understand how the genome-wide chromatin interaction
changes across cell types, we compared the CIS clusters across
cell types. Four cell types were included in this analysis: H1-
hESC, HeLa, HFF and definitive endoderm. These cell types
were chosen based on the availability of human Micro-C data.
Each of the cell types have regions with membership in all 18
CISs, hinting at the common pattern of chromatin interaction
even among diverse cell types. This is similar to how A and B
chromatin conformation compartments are observed across
cell types. 

A notable exception is the cont_Biv cluster which has much
less HeLa membership than the other cell types (Figure 4 ).
This is most likely due to the lack of TssBiv and EnhBiv chro-
matin state regions in HeLa cells (Figure 1 ). Similarly, HeLa
cells also have a lower proportion of Het regions and therefore
have less membership in the three cont_Het_Rpts clusters. 

Though the same CISs are consistently found in all four
cell types, individual regions often change CIS between cell
types (Figure 5 ). Of particular interest are regions where
chromatin state stays constant, but CIS is different between
cell types. Depending on cell type comparison, between 12% 

and 40% of 200 bp base regions cluster into a different CIS 
despite retaining the same chromatin state between cell types 
( Supplementary Figure S5 ). This suggests that contact itself 
may indeed provide another layer of annotation beyond chro- 
matin state. We chose to use a fixed window size of 200 bp in 

this visualization, because it is the smallest unit of the chro- 
matin state segmentation observed in the data, and shows 
more accurately the distribution of chromatin state and CIS 
changes between the four cell types which each have varying 
window sizes due to the nature of cell type specific chromatin 

state segmentation. 

Sum of chromatin state by contact (SCC) is 

influenced by the variation in annotation. 

To understand how variation in chromatin annotation can 

influence our SCC measure, we generated an independent 
SCC matrix with a different annotation of ChromHMM15 

( Supplementary Figure S6 ). We identified common segments 
(rows) between the two SCC matrices, requiring 80% over- 
lap in length in both directions. To find the comparable la- 
bels (columns) between two annotations we looked at the fre- 
quency of joint occurrence among the common segments (Fig- 
ure 6 A). For eight labels, we found clear one-to-one corre- 
spondence between the two annotation versions, e.g. 5_TxWk 

in ChromHMM15 to TxWk in ChromHMM18. For the rest 
of the labels, there were more than one mapping between the 
versions. We report the correlation between one-to-one labels 
and the many-to-many labels separately (Figure 6 B, C, Table 
1 ). The SCC values showed good correlation between anno- 
tation versions, on average ρ = 0.789 across all the one-to- 
one labels. This was despite the two annotations being gener- 
ated by different labs [(21) versus ( 20 )], using different ver- 
sion of software (ChromHMM v1.12 versus ChromHMM 

v.1.10), and ChromHMM18 incorporating imputed chro- 
matin tracks. The correlation between the labels without one- 
to-one mappings were less well correlated (average ρ = 0.564) 
(Figure 6 C). 

In addition to the SCC values, we also generated the down- 
stream CIS clusters using k-means clustering on the SCC 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 5. CIS and chromatin state changes between cell types. Sank e y diagrams show the change of CIS ( A ) and chromatin state ( B ) for 200 bp regions 
between H1, endoderm, HFF and HeLa cell types. 

c  

r  

t  

b  

s
 

c  

w  

t  

b  

f  

 

 

 

 

 

 

 

 

 

 

hange in CIS across cell type based on ChromHMM15 are
eported in Supplementary Figures S7 and S8 . As seen with
he SCC matrix, the overall patterns we saw in CIS clusters
ased on ChromHMM18 were replicated consistently in re-
ults based on ChromHMM15. 

Although we found that the results were largely repli-
ated with ChromHMM15, this was not true with the Seg-
ay annotations. Overall, the lengths of the segments and

he total number of segments were significantly different
etween ChromHMM18 and Segway, as such there were
ewer segments that were common between the two an-
notations. Among those common segments, there were lit-
tle straightforward correspondence between the labels from
ChromHMM18 and Segway ( Supplementary Figure S9 ). In
addition, there were certain labels entirely missing in cell
types endoderm and HFF for Segway annotations. Since we
could not find comparable columns to compare between the
two SCC matrices, we instead went ahead and generated
the downstream results, to compare qualitatively. We did not
see that the overall patterns in the SCC matrix, CIS clusters
nor CIS change replicated when using Segway annotations.
( Supplementary Figures S10 –S12 ). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 6. Correlation in SCC values between ChromHMM annotations. (ChromHMM18 vs c hromHMM1 5). ( A ) Log-transformed frequency of joint 
occurrences of ChromHMM18 labels and ChromHMM15 labels, for segments that are common in both annotations. ( B , C ) SCC values summarizing 
contact with each state for segments that are common between ChromHMM18 and ChromHMM15. (B) eight states that ha v e 1:1 mapping between 
ChromHMM18 and ChromHMM15. (C) other states that ha v e uncertain mapping between ChromHMM18 and ChromHMM15. 

Table 1. Correlation in SCC values bet ween ChromHMM annot ations. 
(ChromHMM18 versus ChromHMM15) 

1:1 states n : n states 

Label r Label r 

EnhBiv_contact 0.757 Enh_contact 0.451 
EnhG_contact 0.597 TssAFlnk_contact 0.624 
Het_contact 0.813 TssA_contact 0.633 
ReprPCWk_contact 0.905 TssBiv_contact 0.657 
ReprPC_contact 0.890 TxFlnk_contact 0.456 
TxWk_contact 0.845 
Tx_contact 0.886 
ZNFRpts_contact 0.619 

Pearson correlation between the columns of the SCC matrix generated based 
on two different annotations. The columns represent summarized contact 
with the chromatin state. Left side shows contact with chromatin states that 
have 1:1 correspondence between annotations. Right side shows contact 
with chromatin states that have uncertain correspondence between anno- 
tations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Changes in CIS in the transcription start sites are 

associated with change in gene expression. 

To assess functional significance of CIS, we investigated CIS
clusters at the transcription start sites (TSS) of upregulated
and downregulated genes (Figure 7 ). We looked at genes with
> 2 log 2 -fold gene expression change in HFF versus H1 cell
types (Figure 7 ). In general, TSS chromatin states are TssA,
T ssFlnkU, T ssFlnkD or TssFlnk for upregulated genes and Tss-
Biv and ReprPC for downregulated genes as expected. How-
ever, CIS are more variable and therefore provide additional
information beyond chromatin marks alone. The TSS of genes
upregulated in HFF (Figure 7 A) show increased proportions
of cont_TSS, cont_EnhA, cont_Tx and the TSS of genes down-
regulated in HFF (Figure 7 B) show increased proportions of
cont_Biv, cont_Het, cont_ReprPC and cont_Low. A similar
pattern can be seen in H1, when the regions are ordered by
H1 CIS as well, with specific CIS being more pronounced
( Supplementary Figure S13 ). To understand the information
gain provided by CIS, we quantified the normalized mutual in-
formation (NMI) between the chromatin state and CIS change
in the TSS and the gene expression change, comparing HFF
and H1. The NMI between gene expression (up or downreg- 
ulation) and chromatin state change was 0.19, and the NMI 
between gene expression and CIS change was 0.15. While CIS 
shows less amount of information dependency with gene ex- 
pression, it is notable that without knowledge of the chro- 
matin state of the TSS itself, one can gain about three quarters 
of information just by observing the chromatin states of in- 
teracting partners, as one would by observing the chromatin 

state of the TSS directly. When we concatenate the CIS and 

ChromHMM states, the NMI is 0.21, showing we gain infor- 
mation by observing CIS together with chromatin state, com- 
pared to just observing the chromatin alone. For reference,
CIS clusters across TSS of all genes regardless of differential 
expression are shown in ( Supplementary Figure S14 ). 

We looked at the well-characterized H1 pluripotency gene 
NANOG ( 37 ), to understand the utility of CIS clustering com- 
pared to chromatin state alone. We show a detailed example 
of changes between H1 and endoderm cells for the NANOG 

TSS region (Figure 8 ). 
The chromatin state is largely identical in both endoderm 

and H1 cells, except for a change from TSSFlnkU to TSSBiv 
for a small region near the promoter, consistent with the pat- 
tern observed for TSS regions in Figure 7 . However, the CIS 
shows more extensive change between the two cell types, with 

endoderm cells clustered as Low contact and H1 cells clus- 
tered as Enhancer contacting. In this case, the CIS adds extra 
information which correlates with the increased NANOG ex- 
pression found in H1 cells. 

Understanding the reasons behind the CIS change are cru- 
cial as clustering is performed on a summed contact matrix.
What is the main driver for the difference between endoderm 

and H1 CIS? Because of the way that we define SCC as a sum- 
mation vector for each region (Figure 2 ), SC C i = 

∑ L 
j=1 c i, j ·

z j , there are only two ways that can result in change in this 
vector. Either the strengths of the contacts can change ( c i, j ),
or the chromatin states of the interacting regions can change 
( z j ). We decided to look at the TSS of NANOG in detail, to 

understand the components driving the change in CIS. The 
details of the chromatin interactions and the chromatin state 
of the interacting regions are shown for the NANOG TSS in 

Figure 9 . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 7. CIS and chromatin states for differentially expressed genes. Genes with adjusted P -value less than 1e-10 and with an HFF versus H1 log 2 fold 
change > 2 for upregulated genes ( A ) and ← 2 for downregulated genes ( B ) were selected between H1 and HFF cell types. CIS and chromatin states are 
sho wn f or each gene’s 500bp TSS region. The genes (heatmap rows) are ordered by proportion of clusters in the order of HFF CIS, HFF Chromatin state, 
H1 CIS, then H1 Chromatin state. Alternative ordering can be found in Supplemental Figure S5 . 

Figure 8. Chromatin state and CIS annotations at the NANOG TSS. Though the endoderm and H1 chromatin state annotations are largely similar, the 
CIS shows extensive differences. This corresponds with decreasing NANOG expression as H1 develops into endoderm cells. 
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In this example, we observe a dynamic change in both con-
act strength and chromatin state for most regions in con-
act with the TSS. This is to be expected as chromatin in-
eractions are known to occur between similar chromatin
tates and therefore a change in histone marks can affect
ontact strength. There are however a few regions in this
xample which maintain chromatin state such as the Tss-
lnk regions found around the NANOG TSS in both cell
ypes and the EnhA2 region downstream of the NANOG
SS. This example shows how our method is able to inte-
grate the complex dynamics of concurrent change in chro-
matin state and in chromatin contact and summarize it down
to lower interpretable dimensions. The CIS annotations that
represent the combination of chromatin state and Micro-
C data make it easier to identify regions of interest that
are undergoing change in both chromatin interaction and
in the chromatin state of its interacting regions. This is a
unique strength of our approach, since such identification
is not possible based on chromatin state or Micro-C data
alone. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae136#supplementary-data
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Figure 9. Bars are representative of genomics regions in contact with NANOG. They are in genomic order, but are not to scale. Regions are labeled by 
chromatin state and weighted Micro-C strength. Red connections signify Micro-C contact with a KR-normalized score above 0.015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acti ve enhancer s and super enhancer s are 

enriched in CIS clusters 

To determine if CIS clusters are enriched in cell-type specific
regulatory elements, we conducted enrichment analyses look-
ing at relevant enhancer and promoter regions in each cell
type. For each cell type, we conducted chi-squared tests within
each CIS for super enhancer annotations ( 25 ) and FANTOM5
CAGE-defined active enhancers ( 24 ) as well as TSS regions for
highly expressed genes and lowly expressed genes (see Mate-
rials and methods). 

As shown in Figure 10 , several CIS show significant
and strong enrichment across cell types for unique annota-
tions. Of particular interest are the CIS cont_Tss_Enh and
cont_Tss_EnhG which are enriched in active enhancers in
both H1 and HeLa cells. These CIS represent regions that
are in strong contact with both TSS chromatin states and en-
hancer chromatin states. 

Regions clustered into cont_Tss_noEnh are enriched in the
TSS of highly expressed genes in each cell type and less en-
riched for active enhancer regions. CIS cont_Tss_noEnh rep-
resent regions that are mainly in contact with TSS chromatin
states but not in contact with enhancer chromatin states. 

Another interesting pattern is the super enhancer enrich-
ment in enhancer-contacting CIS across all cell types. CIS
cont_EnhA and cont_EnhA_EnhWk represent regions that are
in strong contact with enhancer chromatin states and in weak
contact with TSS chromatin states, which is to be expected
as super enhancers are generally defined as clusters of active
enhancers ( 38 ). 

A last observation is the enrichment of cont_Biv CIS in
lowly and zero expressed genes, in line with our observa-
tion based on differential gene expression in Figure 7 B. CIS
cont_Biv represent regions in strong contact with bivalent TSS
and bivalent enhancer chromatin states. Bivalent chromatin
states are regions of the genome marked simultaneously by
both active and inactive chromatin marks purported to be re-
pressed but ‘poised’ for rapid activation upon a cell differen-
tiation signal ( 39 ). The pattern we see here is consistent with
such hypothesis, but it emphasizes the role of contact with bi-
valent chromatin in addition to the bivalent state of the TSS
itself ( 40 ). 

Discussion 

Methods for integrating 3D Hi-C data and traditional 1D data
such as ChIP-Seq are a crucial step towards understanding
the shifting dynamics of cell regulation. We show that cluster-
ing on an integrated matrix of Micro-C scores and chromatin
states adds an additional layer of annotation to the genome. 

Though chromatin states are known to interact with simi-
lar chromatin states in the genome ( 13 , 35 , 36 ), we show that
there are regions in contact with different chromatin states.
These associations present an opportunity for pattern detec- 
tion which further aid with interpretation. 

As shown in our enrichment analysis, cont_EnhA and 

cont_EnhA_EnhWk clusters are enriched for super enhancers,
cont_T ss_Enh and cont_T ss_EnhG are enriched for active en- 
hancers. Therefore, by clustering across the entire genome, we 
can effectively narrow the list of candidate regions with reg- 
ulatory potential based on both contact and chromatin state 
evidence. 

Most importantly, we present a framework for integrating 
chromatin conformation data into a more traditional vector 
representation across the genome. This creates possibilities for 
future machine learning and clustering approaches. Addition- 
ally, this summative approach could be extended to include 
A T AC-seq, transcription factor binding, or DNA methylation 

data to further enhance regulatory predictions. 
It is important to caution against the uncertainty and in- 

stability of the chromatin annotations that our method relies 
on. There is growing evidence in the literature that chromatin 

state annotations are not completely reproducible across dif- 
ferent experimental replicates or even different runs of anno- 
tation ( 41 ,42 ). The effect of this variation was seen in our 
comparison between two different ChromHMM annotations.
There were good correlations in the SCC values, and the 
overall patterns were replicated, but there was considerable 
noise in the values for individual segments. In the case of the 
comparison with Segway, even qualitative patterns were not 
replicated. This suggests that although unsupervised learning 
based on chromatin states and contact can provide insight for 
global patterns, relying on these annotations for inference on 

individual loci may be fraught with uncertainty. 
Another limitation of our approach is the loss of informa- 

tion on specific pairwise interactions as a result of summing 
across all interactions with the same chromatin states. Future 
work to remedy this could include clustering based on pair- 
wise relationships rather than on a summarized vector of con- 
tacts for one each base region. An alternative approach would 

be to utilize the graph structure of the contact data in order 
to preserve the individual contacts, and use graph embedding 
techniques to transform relational data into a vector form 

( 10 , 15 , 16 ). This would allow one to learn on segments (nodes) 
as well as pairwise contacts (edges), and has been shown to be 
a powerful approach in prediction of gene expression ( 15 ,16 ).

In conclusion, we show a simple and straight-forward me- 
thodical approach to integrate contact and chromatin mark 

data across the genome, allowing researchers to distill com- 
plex chromatin interaction information into a vector repre- 
sentation, and then to an interpretable annotation, by further 
clustering on the vector. Using this method, we present the 
first set of chromatin interaction signatures for the human 

genome that summarizes the genome-wide pattern of contact 
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Figure 10. Enrichment results for CIS of all four cell types. Based on data availability, we performed chi-squared tests to test enrichment for super 
enhancers, high, low, and zero gene expression TSSs and active enhancers in each CIS cluster. 
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etween chromatin states at the Micro-C resolution. Our re-
ults show that most chromatin interaction signatures are fre-
uently and repeatedly found across the genome and in all
our cell types investigated here. Between 12–40% of the re-
ions change chromatin interaction signatures between the
ell types despite maintaining chromatin state, hinting at the
ynamic nature of chromatin conformation. Although regions
ith similar chromatin states are often in contact as expected,

ubcategories of enhancers and transcription start sites have
istinct chromatin interaction signatures that are associated
ith gene expression. Thus, these chromatin interaction sig-
atures allow a genome-wide view of chromatin interaction,
nd provide more information about gene regulation than ei-
her chromatin state or Hi-C contacts alone. 
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