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Heme oxygenase-1 (HO-1), encoded by HMOX1 gene and regulated by Nrf2 transcription factor, is a cytoprotective enzyme. Its
deficiency may exacerbate abdominal aortic aneurysm (AAA) development, which is also often associated with hyperlipidemia.
Beneficial effects of statins, the broadly used antilipidemic drugs, were attributed to modulation of Nrf2/HO-1 axis. However,
the effect of statins on Nrf2/HO-1 pathway in patients with AAA has not been studied yet. We analyzed AAA tissue from
patients treated with simvastatin (N= 28) or without statins (N= 14). Simvastatin treatment increased HO-1 protein level in
AAA, both in endothelial cells (ECs) and in smooth muscle cells (SMCs), but increased Nrf2 localization was restricted only to
vasa vasorum. Nrf2 target genes HMOX1, NQO1, and GCLM expression remained unchanged in AAA. In vitro studies showed
that simvastatin raises HO-1 protein level slightly in ECs and to much higher extent in SMCs, which is not related to Nrf2/ARE
activation, although HMOX1 expression is upregulated by simvastatin in both cell types. In conclusion, simvastatin-induced
modulation of HO-1 level in ECs and SMCs in vitro is not related to Nrf2/ARE activity. Likewise, divergent HO-1 and Nrf2
localization together with stable expression of Nrf2 target genes, including HMOX1, in AAA tissue denotes Nrf2 independency.

1. Introduction

Abdominal aortic aneurysm (AAA) is characterized by over-
production of free radicals and depletion of antioxidative
enzymes which localization may vary depending on the
aortic layer and the stage of aneurysm development. Yajima
et al. [1] indicated that during AAA development in rodents,
over 200 genes involved in oxidative stress are upregulated
including heme oxygenase-1 (HMOX1), inducible nitric
oxide synthase (NOS2), or 12-lipoxygenase (ALOX12). Recent
studies of Ho et al. [2] presented that mice lacking HO-1 are
more prone to angiotensin II-induced AAA with more severe
elastin degradation, medial degeneration, increased macro-
phage recruitment, and matrix metalloproteinase- (MMP-)
9 level. Also, Azuma et al. [3] showed that HO-1 heterozygote

mice have higher concentration of proinflammatory cyto-
kines in blood such as monocyte chemoattractant protein-1
(MCP-1), tumor necrosis factor-α (TNF-α), interleukin-
(IL-) 1β, and IL-6, which emphasizes the anti-inflammatory
role of HO-1. Those authors also reported that HO-1 induc-
tion by heme slows down AAA progression. Other protective
effects of HO-1 may include reduction of vascular smooth
muscle cell (VSMC) proliferation, inhibition of platelet
aggregation, and attenuation of vasoconstriction [4, 5].

HO-1 is an inducible enzyme which catalyzes oxidative
degradation of heme to equimolar amounts of carbon
monoxide (CO), biliverdin, and ferrous iron [6]. The control
of HO-1 expression occurs primarily at the transcriptional
level and is mediated by different transcription factors such
as nuclear factor kappa B (NF-κB) and nuclear factor E2-
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related factor-2 (Nrf2) [7]. However, our recent studies indi-
cated that HO-1 expression may be regulated not only at the
mRNA level but also at the protein level by increased ubiqui-
tination and proteasomal degradation of HO-1 and that this
effect is independent of Nrf2 [8].

Under normal conditions, Nrf2 remains in the cytoplasm
in a complex with Keap1. Upon stress conditions, Nrf2 is
released from the inhibitory complex and translocates to
the nucleus leading to the activation of antioxidant
response element- (ARE-) mediated gene expressions.
Nrf2 binding to its consensus sequence ARE is forerun
by dissociation of Bach1 from ARE and its relocation to
the cytoplasm [9, 10]. Activation of Nrf2 may have a
protective role in VSMC due to induction of antioxidative
genes such as HMOX1, NAD(P)H quinone dehydrogenase 1
(NQO1), or glutamate-cysteine ligase modifier subunit
(GCLM) and decrease in synthesis of proinflammatory
mediators [11]. It was recently shown that antioxidant urso-
deoxycholic acid prevents acute aortic dissection via activa-
tion of Nrf2 and Nrf2-regulated antioxidant redox enzymes
in aortic VSMC [12]. Furthermore, Nrf2 activation that leads
to the higher expression of HMOX1 is regulated by oxidative
stress and can be augmented by therapeutic agents such as
statins [13, 14].

Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coen-
zyme A (HMG-CoA) reductase, decrease the conversion of
HMG-CoA to L-mevalonate and coenzyme A. They improve
endothelial cell function, modify inflammatory response,
reduce VSMC proliferation, and attenuate cholesterol
accumulation by reducing concentration of low-density lipo-
protein (LDL), triglyceride-rich lipoproteins, and nonsteroi-
dal isoprenoid compounds in plasma [15–17]. Our previous
reports showed that patients treated with simvastatin had
decreased oxidative stress, reduced proinflammatory TNF-α
level, changed concentration of matrix metalloproteinase-
(MMP-) 2, MMP-9, and tissue inhibitors of MMPs (TIMPs),
and attenuated activity of proinflammatory mediators such
as NF-κB and extracellular signal regulated kinases (ERK)
1/2 [18–20]. Furthermore, statins target circulating neutro-
phil gelatinase-associated lipocalin (NGAL) and MMP-9/
NGAL, the biomarkers of cardiovascular diseases [21]. It
was also presented that statins may activate antiapoptotic
protein kinase B- (Akt/PKB-) related signaling pathways,
which increase HMOX1 resulting in optimal human aortic
SMC cytoprotection [22]. Moreover, five-day simvastatin
treatment (120mg/kg/day) of rats triggers the nuclear trans-
location of Nrf2 in the liver and enhances Nrf2 recruitment
to its binding sites on DNA, including ARE sequence in
HMOX1 gene promoter [23]. Statins may also suppress atrial
tachypacing-induced cellular remodeling via the activation of
Akt/Nrf2/HO-1 [24] and inhibit angiotensin II-induced
VSMC inflammation by activation of Nrf2-dependent genes
NQO1 and HMOX1 [25]. Therefore, simvastatin may influ-
ence HMOX1 expression via Nrf2 in inflammatory-related
diseases. However, its influence on Nrf2/HO-1 has not been
studied in patients with AAA, yet.

The aim of this study was to verify the localization of
HO-1 and Nrf2 in human AAA wall and to analyze the
influence of simvastatin treatment on Nrf2/ARE system

and Nrf2-related genes in AAA wall as well as in cells
composing aortic wall: aortic endothelial cells and smooth
muscle cells.

2. Material and Methods

2.1. Patients. This study comprised 59 patients who under-
went open AAA repair between September 2009 and
December 2011 at the Department of Surgery, Medical
University of Vienna, according to our previously described
analysis [18]. We chose patients treated only with simva-
statin or who had taken no statins for at least 6 months before
the AAA repair and matched them by AAA diameter and
age. Finally, 42 patients were selected and divided into 14
“nonstatin” patients (10 men and 4 women) and 28
simvastatin-treated patients (25 men and 3 women) to study
the effects of simvastatin on HO-1 and Nrf2 in AAA. The
treated group took 20mg to 40mg of simvastatin daily
(according to body weight, liver enzymes, and blood lipids)
for a minimum of 6 months. The exclusion criteria included
(1) taking statins other than simvastatin and nonsteroidal
anti-inflammatory drugs, except aspirin in the medication
list; (2) chronic diseases such as liver, inflammatory, and
malignant diseases; (3) recreational drug intake; and (4)
alcohol abuse. All patients signed written informed consent
before data and sample collection.

Aneurysm wall tissue was harvested during surgery for
retrospective analysis. AAA diameter was measured with
preoperative computed tomography angiography.

The study was approved by the local institutional
ethics committee (EC 294/2009) at the Medical University
of Vienna.

2.2. Tissue Harvesting and Sample Processing. After aortic
cross-clamping and longitudinal incision of the aneurysm,
thrombus was removed and about 3 cm2 of the aneurysm
sack at the site of its maximum diameter was excised. Aneu-
rysm wall samples were cut in half and placed in 10% forma-
lin or immediately frozen in liquid nitrogen and stored at
−80°C. For subsequent biochemical analyses, aneurysmal
tissues were cut into 50mg pieces and rinsed with ice-cold
saline to eliminate liquid components such as blood and
residual thrombi. Tissue processing was always conducted
on ice to avoid tissue degradation. Samples in formalin were
further paraffinized for histological analyses.

2.3. In Vitro Experiments on Primary Human Aortic
Endothelial Cells and Aortic Smooth Muscle Cells. Primary
human aortic endothelial cells (HAoEC) isolated from
67-year-old Caucasian male (Gibco) were cultured in EBM-
2 medium with 10% FBS and supplements (EGM 2MV,
Lonza). Before stimulation, cells were starved for 24h with
EBM-2 with 0.5% of FBS and streptomycin/penicillin.

Primary human aortic smooth muscle cells (HAoSMC)
isolated from 54-year-old Caucasian male (Gibco) were cul-
tured in M231 medium with 10% FBS and supplements
(Gibco). Before stimulation, cells were starved for 24 h with
M231 with 0.5% of FBS and streptomycin/penicillin.
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As AAA samples came from elder patients, we used
the cells between passages 8 and 18. HAoEC or HAoSMC
were stimulated with activated simvastatin at the dose of 1
and 10μM for 6 h and/or 24 h to analyze changes in gene
expression and protein level. Simvastatin (Sigma-Aldrich)
was activated using the protocol previously described by
Dong et al. [26]. Simvastatin doses which did not influence
cell viability, measured with 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay, were chosen
for experiments [27].

2.4. Verification of the Role of Nrf2 in Simvastatin-Induced
Changes of HO-1. To analyze Nrf2 localization, cells were
stimulated with simvastatin (1 and 10μM) or sulforaphane
(SFN; 10μM) for 1 h, fixed with absolute methanol, and
stained as described below.

To analyze Nrf2 role in simvastatin-induced upregula-
tion of HO-1 in HAoEC and HAoSMC, we diminished
Nrf2 expression using siRNA and transduced cells with Ad-
Nrf2-DN (encoding transcriptionally inactive Nrf2), respec-
tively. In the first experiments, HAoECs were transfected
with 50 nM siRNA targeted against human NFE2L2 (Nrf2)
or scrambled siRNA (Life Technologies; cat. number
s9493) using Lipofectamine™ 2000 Transfection Reagent
for HAoEC (Life Technologies) and Lipofectamine RNAi-
MAX for HAoSMC (Life Technologies) in Opti-MEM I
Reduced Serum medium (Life Technologies). 48 h after
transfection, cells were starved, stimulated with simvastatin
(1 and 10μM) for 6 h, and collected for RNA isolation
(described below).

In the second experiments, HAoECs or HAoSMC were
transduced with adenoviral vectors Ad-Nrf2-DN (encoding
transcriptionally inactive Nrf2) or Ad-GFP at the 50
multiplicity of infection (MOI) dose. The efficiency of trans-
duction was confirmed by detection of GFP expression with
the fluorescent microscope and qPCR assessment of Nrf2 tar-
get genes. At 48h after transduction, cells were starved and
stimulated with simvastatin (1 and 10μM) or sulforaphane
(SFN; 10μM) for 6 h after which cells were collected for
RNA isolation.

Transcriptional activity of Nrf2 was performed on
HAoECs cotransfected with 0.4μg of plasmid ARE-luc con-
taining the sequence ARE driving the expression of luciferase
and with 0.1μg of the pCMV-LacZ plasmid containing the β-
galactosidase gene driven by the CMV promoter (Promega)
using Lipofectamine 2000 Transfection Reagent (Life Tech-
nologies) as previously described [28]. At 48 h after transfec-
tion, cells were stimulated with simvastatin (1 and 10μM) or
sulforaphane (SFN; 10μM) for 6 h. Luciferase activity was
quantified using the Luciferase Assay System (Promega),
according to the manufacturer’s protocols. Luminescence
was measured for a period of 10 seconds in Tecan Spectra
II Microplate Reader (Tecan). β-Galactosidase activity was
measured using the β-Galactosidase Enzyme Assay with
Reporter Lysis Buffer (Promega). Absorbance was measured
at 420nm using Tecan Spectra II Microplate Reader (Tecan).

2.5. Immunohistochemical Staining of Nrf2 and HO-1 in AAA
Samples and Immunofluorescent Staining of Nrf2 in Cells.

Paraffinized samples were cut to 5μm slices using microtome
(Thermo Fisher Scientific), deparaffinized and boiled for
15min in citric acid buffer (pH6.0) to activate antigen,
permeabilized in 0.01% of Triton X-100 for 2min, washed,
and incubated with 0.25% of glycine in PBS for 30min. Next,
tissue scraps were blocked for 1 h in 0.5% of goat serum (GS)
at room temperature. After washing in PBS, samples were
incubated overnight (4°C) with anti-rabbit Nrf2 polyclonal
antibodies (dilution 1 : 50 H-300, Santa Cruz) diluted in
0.5% GS. At the next day, samples for Nrf2 IHC were washed
and incubated with anti-rabbit HRP-conjugated antibody for
1 h at room temperature and the reaction was visualized with
DAB substrate kit (Abcam). Nuclei were counterstained with
haematoxylin. Samples were analyzed under a light micro-
scope (Nikon).

Frozen samples were cut to 5μm slices using cryostat
(Leica), permeabilized in 0.01% of Triton X-100 for 2min,
washed, and incubated with 0.25% of glycine in PBS for
30min. Next, tissue scraps were blocked in 0.5% of goat
serum (GS) (for Nrf2) or in 10% bovine serum albumin
(BSA) with 0.05% Tween 20 (for HO-1, von Willebrand fac-
tor (vWF) or myosin smooth muscle heavy chain (SMV)) for
1 h at room temperature. After washing in PBS, samples were
incubated overnight (4°C) with rabbit anti-Nrf2 polyclonal
antibodies (dilution 1 : 100; H-300, Santa Cruz), rabbit anti-
HO-1 polyclonal antibodies (dilution 1 : 100; Enzo SPA894),
mouse anti-vWF (1 : 250; Abcam), and mouse anti-myosin
smooth muscle heavy chain (SMV clone N1/5; dilution
1 : 400; Sigma-Aldrich) diluted in either 0.5% GS or 1%
BSA. On the next day, samples were washed and incubated
with anti-rabbit antibodies conjugated with Alexa Fluor 488
(dilution 1 : 1000; IgG H+L, Life Technologies) or anti-
mouse antibodies conjugated with Alexa Fluor 568 (dilution
1 : 1000; IgG, Life Technologies) for 1 h at RT. Nuclei were
counterstained with Hoechst 33342 (dilution 1 : 10,000)
during the second washing. Samples were analyzed under a
fluorescent microscope (Nikon).

For immunofluorescence staining, HAoECs and
HAoSMC were washed in PBS, fixed (in 4% PFA for HO-1
and Bach1 and methanol for Nrf2 and tubulin), and washed
3 times in PBS. Afterwards, the cells were incubated in 0.25%
glycine in PBS solution for the next 30 minutes at room tem-
perature and washed 3 times in PBS, then blocked in 3% BSA
in PBS for 1 h at room temperature. The cells were probed
with primary antibody for HO-1 (dilution 1 : 100; SPA 894,
Enzo), Bach1 (dilution 1 : 100, Santa Cruz Biotechnology),
Nrf2 (1 : 100, Santa Cruz Biotechnology, H-300), and tubulin
(dilution 1 : 500, Calbiochem) in 3% BSA in PBS, overnight at
4°C. On the next day, cells were 3 times washed in PBS and
incubated with secondary antibodies conjugated with Alexa
Fluor 488 or Alexa Fluor 568 (dilution 1 : 1000, Life Technol-
ogies). The cells were stained with Hoechst 33342 (dilution
1 : 10,000) to visualize nuclei. High-resolution images were
taken using a fluorescent microscope (Nikon) or a metalaser
scanning confocal microscope (LSM-510; Carl Zeiss).

2.6. Analysis of HMOX1, NQO1, GCLM, and NFE2L2 Gene
Expressions by Real-Time Quantitative Polymerase Chain
Reaction (RT-qPCR). RNA from 30mg of aortic tissue or
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from cultured cells was extracted with RNeasy Mini Kit
(Qiagen, Germany) according to the manufacturer’s
instructions. cDNA was synthesized using High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific,
USA). RT-qPCR was conducted on StepOne Plus Real-
Time PCR Systems using a Power SYBR® Green PCR Master
Mix according to the manufacturer’s instructions (Thermo
Fisher Scientific). Primer sequences are gathered in Table 1.
Eukaryotic translation elongation factor 2 (hEF-2) was used
as a reference gene. The results are presented as ΔCT for tis-
sue or ΔCT and fold change for cells. All experiments were
run in three independent replicates.

2.7. Assay of Glutathione in Tissue Samples. Enzymatic color-
imetric analysis for assessment of total and oxidized glutathi-
one level in tissue samples was performed following a
protocol described by Giustarini et al. [29] with further
modifications. Briefly, aortic wall samples were homogenized
in Tris-BSAN buffer (50mM Tris buffer with serine/boric
acid/acivicin/NEM; pH8.0), acidified with 60% trichloroace-
tic acid, and centrifuged (14,000×g, 2min, room tempera-
ture). Total GSH was measured in supernatants after
adding 5-5′-dithiobis[2-nitrobenzoic acid] (DTNB), β-nico-
tinamide adenine dinucleotide phosphate (NADPH), and
glutathione reductase. Changes in absorbance were moni-
tored for 5 minutes at λ=412nm. Total glutathione was
calculated from calibration curve prepared from increasing
values of reduced glutathione standards (10, 25, 50, 75, and
100μM). Oxidized GSSG was analyzed in the same sample
after extraction of N-ethylmaleimide (NEM) with dichloro-
methane (DCM). Reduced GSH was calculated by subtrac-
tion of GSSG form total GSH. The results were presented as
μM per mg of tissue. Experiments were done in duplicates.

2.8. Analysis of HO-1 and Nrf2 Protein Expressions by
Western Blot and Enzyme-Linked Immunosorbent Assays
(ELISA). Aortic wall samples or cells were homogenized in
ice-cold RIPA buffer containing protease and phosphatase
inhibitors. After 30min incubation on ice and centrifugation
(8000×g, 10min, 4°C), supernatant was collected and protein
concentration was assayed using previously described
bicinchoninic acid protein assay method [30]. A total of
30μg of protein were separated electrophoretically and trans-
ferred to nitrocellulose membrane (0.45μm) by wet transfer
(Bio-Rad Laboratories). After blocking in 5% nonfat milk
for 1 h, membranes were incubated overnight (4°C) with pri-
mary rabbit antibody against Nrf2 (Cell Signaling) (dilution
1 : 500), rabbit anti-HO-1 polyclonal antibodies (dilution
1 : 1000; Enzo), or mouse anti-β-tubulin antibody as a refer-
ence (dilution 1 : 1000; Merck Millipore). Next, membranes
were washed with Tris-buffered saline-Tween 20 (TBST)
buffer and incubated for 1 h with secondary antibodies con-
jugated with HRP: anti-rabbit IgG (Cell Signaling) and
anti-mouse IgG (BD) (dilutions 1 : 5000). Following three
washes in TBST buffer, the bands were visualized using
SuperSignal HRP Substrate (Merck Millipore) and X-ray
films. Densitometric analysis of protein expression levels
was conducted using ImageJ version 1.51f software (http://
rsbinfo.nih.gov/ij/; USA). The results were calculated as the

ratio of HO-1 and Nrf2 over β-tubulin expression. All exper-
iments were conducted in triplicate.

HO-1 protein concentration was determined in tissue
lysates using human HO-1 ELISA kit (ADI-EKS-800,
Enzo) following the manufacturer’s protocol. 1 g of tissue
was lysed in 1ml of extraction reagent from the kit. Sam-
ples were diluted twice in reaction buffer before assay. The
concentration of HO-1 was read from calibration curve
and presented as ng/ml of tissue lysate. Samples were mea-
sured in duplicates.

2.9. Statistical Analysis. Continuous demographic and
biochemical data are presented as median, minimum, and
maximum or mean± SE; demographic categorical data were
described with absolute frequencies and percentages.
Comparisons between groups were performed using the
Student t-test, Kruskal-Wallis test (or nonparametric
Mann–Whitney U test), and χ2 test. Two-way analysis of
variance and the Dunn’s posttest were used to calculate dif-
ferences depending on the normality of distribution. To
calculate correlations, Spearman’s rank correlation coeffi-
cient (r) test was used. Grubbs’ test was performed to calcu-
late statistically significant outliers (p < 0 05), which were
not included in statistical analysis of the results (GraphPad
Prism software).

3. Results

3.1. Patient Characteristic. The characteristic of examined
groups is presented in Table 2. The aneurysm diameter did
not differ significantly between the analyzed groups (median
55mm (49–102mm) in the nonstatin group and 56.0mm
(49–120mm) in the simvastatin group). Patients on simva-
statin had significantly lower total cholesterol and LDL cho-
lesterol levels compared to the nonstatin group (p = 0 009
and p = 0 007, resp.). No differences in C-reactive protein
(CRP), fibrinogen, creatinine, hemoglobin, or leukocyte
levels were noticed (all p ≥ 0 05).

3.2. Effect of Simvastatin on HO-1 and Nrf2 Level, Expression
of Nrf2-Regulated Genes, and Redox Status in AAA Wall.
Activated Nrf2 translocates to the nucleus and stimulates

Table 1: Primer sequence.

Primer Sequence

HMOX1
Forward: 5′ TTCTTCACCTTCCCCAACATTG 3′
Reverse: 5′ CAGCTCCTGCAACTCCTCAAA 3′

NQO1
Forward: 5′ AGGACCCTTCCGGAGTAAGA 3′
Reverse: 5′ CCAGGATTTGAATTCGGGCG 3′

GCLM
Forward: 5′ ACAGCGAGGAGCTTCATGAT 3′
Reverse: 5′ TGTGCAACTCCAAGGACTGA 3′

NFE2L2
Forward: 5′ TTGAGCAAGTTTGGGAGGAGCTA 3′

Reverse: 5′ GGAGAGGATGCTGCTGAAGG 3′

hEF2
Forward: 5′ GAGATCCAGTGTCCAGAGCAG 3′
Reverse: 5′ CTCGTTGACGGGCAGATAGG 3′
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expression of target genes such as HMOX1, NQO1, and
GCLM, which in turn regulate cell antioxidant capacity
by influencing the production and scavenging rate of reac-
tive oxygen species (ROS) or affecting the glutathione
metabolism [31]. HO-1 is an antioxidative enzyme whose
expression is regulated by inflammatory- or oxidative
stress-related signaling pathways, not only by Nrf2 but
also by NF-κB or AP2 [32].

It was previously shown that simvastatin exerts its pro-
tective effect on vascular system through induction of HO-1
[33]. Therefore, we first analyzed HO-1 protein level within
AAA tissue in patients treated with simvastatin and in
untreated patients. As determined by ELISA, the protein
level of HO-1 in tissue extracts was higher in the
simvastatin-treated patients compared to the untreated
group (23.68± 4.42 versus 16.37± 3.40 ng/ml, resp.; p =
0 022; Figure 1(a)). As HO-1 is an antioxidative enzyme,
its upregulation might affect cellular redox status. There-
fore, we analyzed the influence of simvastatin on total,
reduced, and oxidized GSH in AAA wall (Figure 1(b)).
The results indicated that simvastatin-treated patients
had significantly higher level of total GSH (122.3± 16.45
versus 80.96± 9.45μM in the simvastatin versus control;
p = 0 003; Figure 1(b)). This was accompanied with mark-
edly increased GSH/GSSG ratio in AAA wall of the
simvastatin-treated group in comparison to the nonstatin
(10.82± 1.79 versus 5.80± 0.97, resp.; p = 0 002; Figure 1(b)).
Interestingly, total GSH positively correlated with HO-1

protein concentration (rho= 0.35, p = 0 041, Spearman’s rank
correlation test), which might indicate the role of HO-1 in
maintenance of redox status in AAA wall. Then, we aimed to
determine the localization ofHO-1 inAAAwall.We observed
that HO-1 is expressed in whole tissue (primarily endothelial
cells and smooth muscle cells) and its expression is upregu-
lated in patients treated with simvastatin, at least in EC
(Figure 1(c)).

As both HO-1 and glutathione are regulated by Nrf2,
taking the next step, we aimed to verify the effect of statins
on the level of Nrf2 and its main targets. Analysis of tissue
lysates indicated a comparable level of Nrf2 protein in both
groups (Figure 1(d)). What is more, there were no significant
changes in the mRNA levels of Nrf2 target genes: HMOX1,
NQO1, andGCLMwithin AAA tissue in patients treated with
simvastatin and in untreated patients (Figure 1(e)). We
found a statistically significant positive correlation between
expression of HMOX1 and NQO1 (rho= 0.46, p < 0 01),
GCLM and NQO1 (rho=0.50, p < 0 01), and HMOX1 and
GCLM (rho=0.68, p < 0 001) in patients, as analyzed by
Spearman’s rank correlation test. All these results indicate
that simvastatin treatment does not influence Nrf2 transcrip-
tional activity in AAA wall. Interestingly, the expression of
HMOX1 at mRNA level did not correlate with concentration
of HO-1 protein (rho=−0.09, p = 0 56, Spearman’s rank cor-
relation test). The discrepancy between mRNA and protein
level of HO-1 might indicate an additional, posttranscip-
tional regulation of HO-1 in this case.

Table 2: Patient characteristic.

Nonstatin Simvastatin (20 or 40mg/day) p value

N = 14 N = 28
Age (range) 70 (50–80) 66 (50–80) 0.48

AAA diameter (mm) (range) 55.0 (49.0–102.0) 56.0 (49.0–120.0) 0.70

Body mass index (kg/m2) (range) 25.62 (21.97–37.55) 25.95 (20–34.6) 0.80

Coronary artery disease 7/14 (50%) 7/28 (25%) 0.31

Cerebrovascular artery disease 7/14 (50%) 4/28 (14%) 0.77

Hypertension 13/14 (93%) 14/28 (50%) 0.28

Peripheral artery disease 2/14 (14%) 7/28 (25%) 0.20

Diabetes 2/14 (14%) 4/28 (14%) 0.34

Nicotine 8/14 (57%) 11/28 (39%) 0.80

CRP (mg/dl) median (range) 0.40 (0.04–3.0) 0.26 (0.06–9.45) 0.75

Cholesterol (mg/ml) median (range) 240 (143.0–323.0) 206.5 (110.0–300.0) 0.009

HDL (mg/ml) median (range) 46.0 (32.0–68.0) 47.0 (29.0–75.0) 0.61

LDL (mg/dl) median (range) 159.0 (79.2–218.0) 117.3 (56.0–195.0) 0.007

Creatinine (mg/dl) median (range) 1.18 (0.76–1.48) 1.045 (0.78–1.60) 0.45

Hematocrit median (range) 40.9 (30.10–47.30) 40.75 (30.0–51.3) 0.98

Fibrinogen (mg/dl) median (range) 384.0 (240–557.0) 359.0 (213.0–650.0) 0.67

Leukocytes (mln/ml) median (range) 8.45 (6.55–11.60) 8.0 (5.1–13.0) 0.18

Lymphocytes (%) median (range) 22.8 (12.2–41.1) 24.95 (9.7–45.3) 0.82

Monocytes (%) median (range) 8.7 (5.4–14.2) 7.7 (4.5–14.8) 0.07

Neutrophils (%) median (range) 63.10 (46.3–81.6) 64.20 (44.50–82.30) 0.52

Data are presented as frequencies or median (minimum–maximum). Statistical significance for binary variables was assessed using generalized linear models,
while metric values were analyzed using linear mixed regression models.
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Furthermore, histological staining showed that expres-
sion of Nrf2 and HO-1 is not homogenous in the vessel
wall and could be regulated locally. We observed that
simvastatin-treated patients had a higher local expression of
Nrf2 protein in aneurysmal wall, especially in vasa vasorum
(Figure 1(f)). What is more, we noticed different distribution
of HO-1 and Nrf2 in the AAA wall (Figure 1(g)), which indi-
cates Nrf2 independency.

3.3. Simvastatin Leads to Upregulation of HMOX1 mRNA
Expression in HAoEC and HAoSMC That Is Not Associated
with Nrf2/ARE Axis. Immunohistochemical staining and
ELISA indicated that Nrf2 and HO-1 proteins can be locally
upregulated within AAA wall in the simvastatin-treated
patients, mainly in endothelial and smooth muscle cells
(Figures 1(a), 1(c), 1(f), and 1(g)). Therefore, we checked if
the response to simvastatin could be observed in primary

NQO1 HMOX1GCLM

Nonstatin Simvastatin Nonstatin Simvastatin Nonstatin Simvastatin
0.00

0.01

0.02

0.03

0.04

N
Q

O
1/

EF
2 

(Δ
CT

)

0.00

0.02

0.04

0.06

0.08

N
Q

O
1/

EF
2 

(Δ
CT

)

0.0

0.5

1.0

1.5

N
Q

O
1/

EF
2 

(Δ
CT

)

(e)

Nrf2 (H-300; 100x) Nrf2 (H-300; 200x) Isotype control (100x)

N
on

sta
tin

Si
m

va
sta

tin

⁎

⁎

⁎

⁎

#

#

(f)

Hoechst Nrf2

Hoechst HO-1

Is
ot

yp
e

Is
ot

yp
e

St
ai

ne
d

St
ai

ne
d

Mag. 200x
(g)

Figure 1: Simvastatin treatment increases HO-1 protein, but not mRNA level in AAA. (a) Protein level of HO-1 (measured with ELISA) in
aneurysm wall of nonstatin and simvastatin-treated patients. (b) Changes in total glutathione and the ratio of GSH/GSSG in aortic aneurysm
wall. (c) Immunofluorescent staining of HO-1 in ECs and SMCs in aortic aneurysm wall. HO-1, heme oxygenase 1; Nrf2, nuclear factor E2-
related factor-2; vWF, von Willebrand factor (EC marker); SMV, myosin smooth muscle heavy chain (SMC marker). (d) Nrf2 level in AAA
tissue. Densitometry data and representative blot. (e) mRNA levels of Nrf2-dependent genes: NQO1, GCLM, and HMOX1 in AAA wall. (f)
Localization of Nrf2 in AAA wall. The brown color represents positive staining (IHC). Vasa vasorum is indicated by asterisks (∗).
Inflammatory infiltration indicated by hash (#) was stronger in the nonstatin patient. (g) Illustrates the distribution of Nrf2 and HO-1
staining (IF) within AAA tissue. Average data from panels a, b, d, and e represents mean± SE.
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HAoEC and HAoSMC. We used in vitro cell cultures to
detect the direct cellular effects of simvastatin and exclude
those resulting from modulation of metabolism at the organ-
ismal level [20].

First, we verified the influence of simvastatin on HAoEC
viability. Here, we showed that simvastatin at concentrations
of 0.1, 1, and 10μM did not inhibit growth of cultured cells
up to 24h. However, some decrease in HAoEC proliferation
was noticed after 48 h (Figure 2(a)). Therefore, concentra-
tions of 1 and 10μM were chosen for further tests. What is
more, basing on the literature data, such concentrations of
simvastatin increased HO-1 expression in human ECs [33]
and human RPE cells [34]. Also, 10μM of simvastatin was
shown to correspond with simvastatin concentration in
human serum (2.2–4.3 nM) when a patient is treated with
40mg simvastatin, which was the common dose in our
simvastatin-treated group of patients [35, 36].

As half-life for statins is between 0.7 and 3 hours [37], we
stimulated HAoEC for 6 h or 24 h. The results indicated that
simvastatin might have a transient and early effect on
HMOX1, as an increase in HMOX1 mRNA after 6 h of incu-
bation was noticed (Figure 2(b)). However, we observed that
HO-1 at the protein level remained rather stable with some
tendency to increase (Figures 2(b)–2(d)). Moreover, GCLM
and NQO1, as well as Bach1, a signaling molecule that disso-
ciates from ARE when Nrf2 binds to DNA, remained rather
stable (Figures 2(b) and 2(c)). This may indicate that the
effect of simvastatin on HMOX1 mRNA is not strictly
followed by the level of HO-1 protein and that simvastatin
has no direct influence on Nrf2 transcriptional activity in
HAoEC. However, the weak and transient effect observed
in cultured cells may also suggest that the influence of simva-
statin on HO-1 protein level in AAA tissue could have been
associated with modulation of metabolism at the organismal
level, for example, changes in cholesterol or LDL cholesterol
level (Table 1), rather than with direct effect on Nrf2 expres-
sion or transcriptional activity.

As simvastatin-treated patients had upregulated Nrf2
level in vasa vasorum (Figure 1(f)), we next studied its influ-
ence on HAoSMC. First, we confirmed that the tested doses
of simvastatin (0.1, 1, and 10μM) did not influence the
viability of HAoSMC, although some toxicity of the highest
dose after 48 h incubation was noticed (Figure 3(a)). There-
fore, we chose 1 and 10μM doses for further experiments.

The results indicated that simvastatin might have an
effect on HO-1 as upregulation of HMOX1 mRNA
(Figure 3(b)) and a strong increase in HO-1 at the protein
level (Figures 3(c)-3(d)) with an increase in Bach1, a signal-
ing molecule that dissociates from ARE when Nrf2 binds to
DNA, was observed (Figures 3(b)-3(c)). However, GCLM
and NQO1 remained stable (Figure 3(b)).

Finally, we wanted to verify if simvastatin-induced
changes in HMOX1 gene and protein are dependent on
Nrf2/ARE system. Our results indicated that simvastatin at
higher doses (10μM) led to significant upregulation of
HMOX1 at the mRNA in both HAoEC and HAoSMC
(Figures 2(b) and 3(b), resp.). However, Western blot results
showed that higher dose of simvastatin has slight effect on
HO-1 protein level in HAoEC (Figure 2(d)) and it

increases HO-1 level in HAoSMC (Figure 3(d)). Interest-
ingly, Nrf2 protein level was not influenced by simvastatin
in both cell lines (Figures 2(d) and 3(d)); however, an
upregulation of Bach1 in the cytoplasm was observed in
HAoSMC (Figure 3(c)). Therefore, having such cell type-
dependent results on the protein expression of HO-1, with
simultaneous increase in HMOX1 gene in both cell lines,
we decided to further analyze the subject and to verify
the possibility of Nrf2/ARE-dependent increase of HMOX1
after simvastatin treatment.

First, to verify if simvastatin leads to nuclear transloca-
tion of Nrf2, we stimulated cells with simvastatin or sulfo-
raphane for 1 h and checked Nrf2 localization. The results
indicated no significant increase in Nrf2 translocation to
the nucleus after simvastatin compared to the control.
However, treatment with SFN led to an increase in Nrf2
protein in cytoplasm and nucleus in both cell lines
(Figures 4(a) and 5(a)).

As HO-1 expression may be modulated by Nrf2
transcriptional activity, we transfected cells with ARE-luc
plasmid, encoding luciferase under control of promoter con-
taining Nrf2 consensus sequence. The reporter assay showed
that simvastatin, unlike sulforaphane, did not induce tran-
scription of luciferase driven by ARE promoter, thus indicat-
ing no influence of simvastatin on Nrf2 transcriptional
activity in HAoEC (Figure 4(b)). Moreover, we found no
effect of simvastatin on HMOX1 expression in HAoEC and
HAoSMC after transduction of cells with transcriptionally
inactive Nrf2 (Ad-Nrf2-DN) (Figures 4(c) and 5(b), resp.).
It is worth pointing out that in both groups, we observe
around 2-fold induction of HMOX1 gene. Also, despite suc-
cessful silencing of Nrf2, confirmed by decreased expression
of NFE2L2 gene in siNFE2L2-treated cells, we did not
observe any influence of Nrf2 silencing on induction of
HMOX1 upon stimulation with simvastatin (Figures 4(d)
and 5(c)). The level of NQO1 was not affected by treatment
with simvastatin in any examined groups.

Therefore, we conclude that simvastatin-induced upreg-
ulation of HO-1 in HAoEC or HAoSMC is not associated
with Nrf2/ARE system and simvastatin-induced upregula-
tion of HMOX1 gene with simultaneous downregulation of
HO-1 at the protein level might be associated other mecha-
nisms such as posttransciptional regulation of HO-1 as it
was shown in our recently published paper [8].

4. Discussion

Our results give insights into expression ofHMOX1 and Nrf2
within AAA tissue in relation to statin therapy. We found
that simvastatin-treated patients have upregulated HO-1 in
EC and SMC as well as higher GSH/GSSG ratio in aneurys-
mal wall. Both HO-1 and GSH are regulated by Nrf2 in aortic
cells [38, 39]. However, we noticed increased Nrf2 localiza-
tion only in vasa vasorum, and no change in the expression
of Nrf2 targeted genes suggesting that HO-1 in AAA tissue
is not directly regulated by Nrf2.

Additionally, we demonstrated that distribution of HO-1
and Nrf2 is not homogenous within AAA wall. Both proteins
were highly expressed in the media layer, but expression was
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not equally distributed. Previously, Ishizaka et al. [40]
showed that in normal murine aorta, HO-1 is localized to
the medial SMC and adventitial cells but not to EC; however,
during pathological conditions, like hypertension, HO-1
expression increases especially in adventitial and endothelial
cells. Furthermore, a study on vascular injury in mice
demonstrated that Nrf2 level may increase in apoptotic
cells in the middle stages of neointimal expansion [41].

This suggests that Nrf2-dependent genes may also be ele-
vated in those regions.

We also found that simvastatin treatment can upregulate
HO-1 protein in AAA tissue, but as Nrf2 was only higher in
vasa vasorum, and taking into account lack of effect on
NQO1 level, we assume the regulation is Nrf2 independent.
The possible physiological importance of HO-1 upregulation
after simvastatin treatment may be associated with HO-1
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Figure 2: Simvastatin upregulates HMOX1 mRNA and slightly increases HO-1 protein in HAoEC. (a) Simvastatin influence on HAoEC
viability after 24–48 h of stimulation (MTT assay). (b) mRNA level of HMOX1, GCLM, and NQO1 in HAoEC after simvastatin treatment
(1 and 10 μM) for 6 h and 24 h. (c) Immunofluorescent staining of HO-1 (green) and Bach1 (red) in HAoEC after stimulation with
simvastatin (1 and 10μM) for 6 h. (d) Protein level of HO-1 and Nrf2 after 24 h stimulation with simvastatin (1 and 10μM) in
representative Western blot. Data are presented as mean± SE; ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001 (N = 3‐4).
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modulation of the vascular tone (via CO production) and the
increasing antioxidative capacity of the tissue, for example,
through elevated GSH synthesis [40, 42]. Moreover, it was
presented that other statins like rosuvastatin may induce
HO-1 in aortic tissue and suppress AAA progression [3]. In
addition, rosuvastatin also acts protectively against atrial
fibrillation via the activation of Akt/Nrf2/HO-1 signaling

[24]. Another statin, atorvastatin, downregulates NF-κB,
promotes Nrf2 activity, and upregulates NQO1 and GCLC
in HAoSMC subjected to oxidative stress induced by
angiotensin II [25]. Our previous reports also showed that
AAA patients treated with simvastatin have lower oxidative
stress and reduced NF-κB and ERK1/2 signaling pathways
[19, 20], thereby supporting the antioxidative role of
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simvastatin. The increased level of HO-1 protein observed in
this study may suggest a higher antioxidative capacity of
AAA tissue of simvastatin-treated subjects. The increased
level of total GSH and GSH/GSSG ratio and a positive

correlation between tissue HO-1 and total GSH concentra-
tion further support this hypothesis.

On the contrary, recently published data pointed out that
upregulation of cholesterol caused oxidative damage in
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Figure 4: Simvastatin does not influence HMOX1 via Nrf2/ARE system in HAoEC. (a) Nrf2 localization after 1 h stimulation with
simvastatin (1 and 10μM) or sulforaphane (10 μM; positive control). Confocal microscopy: Nrf2 (red), nuclei (blue), and tubulin (green)
(Mag. 400x). (b) β-Galactosidase activity measured with luciferase reported assay of HAoEC transfected with the ARE-dependent
luciferase gene plasmid and stimulated for 6 h with simvastatin (1 and 10 μM) or sulforaphane (10 μM, positive control). (c) Changes in
gene expression of NQO1 and HMOX1 in HAoEC with transcriptionally inactive Nrf2 (Ad-Nrf2-DN) stimulated for 6 h with simvastatin
(1 and 10 μM). (d) Efficiency of Nrf2 silencing in HAoEC transfection with siNFE2L2 (Nrf2) and changes in expression of NQO1 and
HMOX1 after 6 h stimulation with simvastatin (1 and 10 μM). Data are presented as mean± SE; ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001
versus siNFE2L2/AdGFP; $p < 0 05 versus simva 1 μM siNFE2L2 (N= 3).
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vascular EC and increased the expression of HO-1 via the
activation of Nrf2 and the MAPK/ERK signaling pathway.
Therefore, overexpression of HO-1 may alleviate oxidative
damage [43]. Following this mechanism, simvastatin-
induced decrease in total and LDL cholesterol levels of our
AAA patients may partially explain the weak effects of simva-
statin on HO-1 and Nrf2.

As there was a visible cell-dependent distribution of HO-
1 and Nrf2 in subjects treated with simvastatin, we further
verified the effect of simvastatin on those proteins in cultured
HAoEC and HAoSMC. With this approach, we could detect
the direct cellular effects of simvastatin and exclude those
resulting from modulation of metabolism at the organismal

level. The results indicated a transient upregulation of
HMOX1 after simvastatin both in HAoEC and HAoSMC.
This effect, however, seemed to be independent of Nrf2 acti-
vation as we did not observe any translocation of Nrf2 to the
nucleus or increase in Nrf2/ARE activity after simvastatin
treatment. Moreover, silencing of Nrf2 with siRNA or silenc-
ing of Nrf2 transcriptional activity with adenoviruses did not
alter NQO1 but 2-fold induction on mRNA level was main-
tained despite Nrf2 inhibition. Thus, we hypothesize that
there is an additional regulation of HO-1 protein level. We
cannot exclude that in patients with AAA, simvastatin influ-
ences ubiquitination and proteasomal degradation of HO-1,
therefore regulating its expression directly on the protein
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Figure 5: Simvastatin does not influence HMOX1 via Nrf2/ARE system in HAoSMC. (a) Nrf2 localization after 1 h stimulation with
simvastatin (1 and 10μM) or sulforaphane (10 μM, positive control). Confocal microscopy: Nrf2 (red), nuclei (blue), and tubulin (green)
(Mag. 400x). (b) Changes in gene expression of NQO1 and HMOX1 in HAoSMC with transcriptionally inactive Nrf2 (Ad-Nrf2-DN)
stimulated for 6 h with simvastatin (1 and 10 μM). (c) Efficiency of Nrf2 silencing in HAoSMC transfection with siNFE2L2 (Nrf2)
and changes in expression of NQO1 and HMOX1 after 6 h stimulation with simvastatin (1 and 10 μM). Data are presented as mean± SE;
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level and independently of Nrf2 which we recently shown in
human and murine cells by our group [8]. Moreover, as
aneurysmal tissue is infiltrated by inflammatory cells, the
effect of simvastatin may be masked. Additionally, our exper-
iments were performed on cells stimulated solely with simva-
statin and without oxidative stress, induced, for example, by
angiotensin II. Therefore, we cannot exclude that under
stress conditions, effects of simvastatin on HO-1 and Nrf2
could differ from our results as it was indicated by others
[39, 44]. However, Lee et al. [33] reported that simvastatin
did not change HO-1 in cultured endothelial cells or macro-
phages but it increases HO-1 level in SMC in vivo. The
increase of HO-1 in SMC was associated with activation of
phosphoinositide 3-kinase (PI3K) and Akt pathway [33].
Additionally, Loboda et al. reported that atorvastatin has a
weak and transient effect on HO-1 expression in human
microvascular EC [45]. However, simvastatin has been
described to increase HO-1 in human and rat umbilical
ECs, but not in mice or bovine ECs [33, 46]. Consequently,
the effect of simvastatin on HO-1 may depend on species, cell
types, or cell culture conditions.

In conclusion, we presented that simvastatin-induced
modulation of HO-1 level in ECs and SMCs in vitro is not
related to Nrf2/ARE HMOX1 transactivation. Increased
HO-1 and GSH levels in aneurysmal tissue of simvastatin-
treated patients were not associated with higher Nrf2 expres-
sion. Therefore, divergent HO-1 and Nrf2 localization
together with stable expression of Nrf2 target genes, includ-
ing HMOX1, in AAA tissue denote Nrf2 independency.

4.1. Limitation to the Study. It should be stated that primary
cell, especially HAoEC, response to stimulation highly
depends on donor’s age and concomitant diseases. We
noticed that cells isolated from elder donors have senescent
phenotype and impaired response to proangiogenic stimu-
lators such as SDF-1 (data not shown). Donor medical
history, as is also of importance as primary cells isolated
from donors with metabolic diseases such as diabetes mel-
litus, may have highly impaired proliferation. Therefore,
primary cell response to stimulation is not only dose-
and time-dependent but may be as well affected by the
age of donors from which primary cells were isolated.

Furthermore, we observed that simvastatin influenced
HO-1 gene and protein expression in HAoEC and
HAoSMC. However, we did not perform functional tests
related to HO-1 influence on EC or SMC proliferation as
well as anti-inflammatory and antioxidant effects. Never-
theless, biological function of HO-1 regarding proliferation
of endothelial and smooth muscle cells was thoroughly
studied by our group in the past. We found that the poly-
morphism of HMOX1 gene significantly modulates a cyto-
protective, proangiogenic, and anti-inflammatory function
of HO-1 in human endothelium [42]. We also showed
that HO-1 is necessary for a proper proangiogenic func-
tion of bone marrow-derived cells [47] and that mice
injected with medium from murine myoblasts (C2C12
cells) overexpressing HO-1 improved angiogenesis in the
hind limb after ischemia-reperfusion probably via increas-
ing stromal cell-derived factor- (SDF-) 1α [48]. Moreover,

activation of HO-1 augmented myoblast proliferation and
improves their viability under oxidative stress [49]. Also,
chemical activation of HO-1 with hemin increased vascu-
lar endothelial growth factor (VEGF) production in
human microvascular EC [50] and keratinocytes [51]. It
was also suggested that angiogenic effects of hypoxia-
inducible factor 1 in EC were associated with HO-1 over-
expression by Nrf2. However, HO-1 upregulation did not
influence the expression of an important angiogenic medi-
ator, IL-8 [52]. Finally, we also presented that activation of
HO-1 with tin protoporphyrin in rat VSMC improved cell
viability, reduced production of VEGF, and increased
expression of iNOS [53, 54].
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