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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the most effective
and potentially curative treatment for a variety of hematologic malignancies. However,
graft-versus-host disease (GVHD) is a major obstacle that limits wide application of allo-
HSCT, despite the development of prophylactic strategies. Owing to experimental and
clinical advances in the field, GVHD is characterized by disruption of the balance between
effector and regulatory immune cells, resulting in higher inflammatory cytokine levels.
A reduction in regulatory T cells (Tregs) has been associated with limiting recalibration of
inflammatory overaction and maintaining immune tolerance. Moreover, accumulating
evidence suggests that immunoregulation may be useful for preventing GVHD.
As opposed to CD4+ Tregs, the CD8+ Tregs population, which constitutes an
important proportion of all Tregs, efficiently attenuates GVHD while sparing graft-
versus-leukemic (GVL) effects. CD8+ Tregs may provide another form of cellular therapy
for preventing GVHD and preserving GVL effects, and understanding the underlying
mechanisms that different from those of CD4+ Tregs is significant. In this review, we
summarize preclinical experiments that have demonstrated the role of CD8+ Tregs during
GVHD and attempted to obtain optimized CD8+ Tregs. Notably, although optimized CD8+

Tregs have obvious advantages, more exploration is needed to determine how to apply
them in the clinic.

Keywords: hematopoietic stem cell transplantation, graft-versus-host disease, CD8, CD4, regulatory T cells
1 INTRODUCTION

Allo-HSCT was established to treat patients with hematological malignancies. Rejection, GVHD
and infections are major clinical complications after allo-HSCT and are associated with graft failure
and transplant-related morbidity and mortality. These complications continue to impede successful
transplantation and limit its curative effect. Thus, overcoming such complications is the main
objective to improve allo-HSCT outcomes and to patient quality of life. Preventing GVHD
with immunosuppressant may lead to side effects such as severe infection, hematologic
org November 2021 | Volume 12 | Article 7647861
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malignancy relapse and multiorgan dysfunction, which are
important factors in transplantation-related mortality. In
addition, broad- and long-term immunosuppressive therapy
for GVHD may subsequently dampen beneficial GVL
responses, constituting an ongoing challenge.

Researchers have discovered several regulatory cell subsets
that prevent the occurrence and development of GVHD, among
which adoptive regulatory Tregs suppress the function of effector
T cells (1) and play a crucial role in limiting immune response
overaction, regulating immune homeostasis (2) and maintaining
tolerance (3), improving the outcome of GVHD. In addition to
CD4+ Tregs, which dominate regulatory cells in autoimmune
diseases, CD8+ suppressor T cells are emerging as an important
subset of regulatory T cells and have received much attention.
Recently, more and more clinical data have verified the
significant roles. Researchers have found a lower proportion of
CD8+ Tregs in GVHD patients (4). Moreover, patients with
autoimmune diseases like multiple sclerosis (5), type 1 diabetes
(6), common variable immunodeficiency (7) have shown the
same tendency of CD8+ Tregs. In addition, patients after HSCT
with lupus remission have a greater number of CD8+ Tregs (8)
and anti-CD20 treatment in multiple sclerosis is also associated
with increased CD8+ Tregs (9), indicating that CD8+ Tregs could
alleviate immune response. However, CD8+ Tregs do not always
benefit to health, which showed higher proportions in chronic
lymphocytic leukemia (10), multiple myeloma (11) and solid
tumors like hepatocellular carcinoma, ovarian cancer and lung
cancer (12–14). But alloreactive CD8+ Tregs are less stable than
CD4+ Tregs but efficiently attenuate GVHD while preserving the
GVL effect. Although CD8+ Tregs were described before CD4+

Tregs, their biology is less well understood due in part to their
small numbers, thus rendering functional studies difficult.

In this review, we discuss the biology and development of
CD8+ Tregs, their contribution to reducing GVHD while
preserving GVL effects apart from CD4+ Tregs as well as their
heterogeneity, focusing on questions and future improvements
through genetic technologies.
2 REVIVAL OF CD8+ TREGS

CD8+ Tregs were the first suppressive cells reported (15). Despite
many studies, the exact definition of CD8+ Tregs remains
unclear, and a lack of assessment has caused difficulty in
marker discovery. Expression of the common and sensitive
marker FOXP3 is lower in CD8+ Tregs than in CD4+ Tregs in
both mouse and human studies. However, FOXP3 correlate with
the activation and potential suppressive capacity of CD8+ Tregs
(16). A study in 2018 involving CD4+ Tregs single-cell RNA
sequencing highlighted some important transcription factors and
membrane molecules related to immunosuppressive functions,
including FOXP3, IKZF2 (IKAROS), TNFR2, IL2RA and IL2RB,
in mice and humans (17). Recent data on CD8+ Tregs confirm
that Bim andMcl-1 expression contributes to immune regulation
(18), though the regulatory ability of Tregs subsets differ. Studies
have demonstrated that CD4+ Tregs function correlates with the
Frontiers in Immunology | www.frontiersin.org 2
repertoire of TCRs (19, 20), whereas CD8+ Tregs are largely
related to the proapoptotic phenotype (18). CD8+ Tregs mainly
interact with CD8+ T cells, which is different from the interaction
and collaboration of CD4+ Tregs and CD4+ T cells and the
collaboration between them really truly exists (21), yet several
studies suggest that CD8+ Tregs act on CD4+ T cells or both
CD4+ and CD8+ T cells (22, 23). For CD8+ Tregs, anti-PD-1 can
only block suppression of CD8+ T cells, but has no effect on
CD4+ T cells, even though the combination of anti-PD-1 and
anti-CTLA-4 completely abrogates the suppressive effect on
CD4+ T cells (24). We speculate that CD8+ Tregs may affect
both CD4+ and CD8+ T cells in different ways, and the specific
signaling pathways hence need to be clarified.

During the GVHD process, CD8+ Tregs are more remarkable
than CD4+ Tregs to some extent, constituting a suppressive
population and attenuating the severity of this disease (25). Prior
studies have shown that not only does the proliferation of CD8+

Tregs exceed that of CD4+ Tregs under certain conditions (16, 25),
but the induced CD8+ Tregs (CD8+ iTregs) represent a larger
proportion of induced Tregs (iTregs) in GVHD (26), which
implies that it is easier to induce the formation of CD8+ iTregs in
vitro and may help to address the insufficient source of CD4+ Tregs.
In addition, the generation of CD8+ Tregs only occurs in the
presence of allogeneic MHC (26) and correlates positively with
the level of MHC disparity (25, 27). Further studies have shown that
the antigen-specific regulatory abilities related to MHC-I only
involve CD8+ Tregs (28). Importantly, CD8+ iTregs conditionally
suppress allogeneic reactions without impairing general immunity
against pathogen infection and residual tumor recurrence, in
contrast to unselective CD4+ Tregs (29). Nevertheless, the CD8hi

Tregs induced by CD40-activated B cells (30) and CD4+ Tregs
induced by allogeneic antigens in vitro (21) are both antigen-
specific. We speculate that the proportion of CD4+ iTregs decides
whether CD4+ Tregs are antigen-specific and such conflicting
results may derive from the fact that there is a larger proportion
of natural occurring Tregs (nTregs) in CD4+ Tregs populations
during GVHD, which present less targeted immunoregulation.
There has been significant progress in our understanding of the
immune regulation ability of CD8+ Tregs, becoming a hot topic for
immune disorders.
3 CD8+ TREGS ALLEVIATING GVHD
WHILE PRESERVING GVL EFFECTS

Unlike CD4+ Tregs, the mechanisms by which CD8+ Tregs
alleviate GVHD are not entirely clear. Furthermore, growing
evidence support the maintenance of GVL effect for CD8+ Tregs.
Here, we summarize the regulatory mechanisms of CD8+ Tregs
in GVHD and GVL effects (Figure 1).

3.1 Initiation of CD8+ Tregs in GVHD
A previous study illustrated that CD8+Foxp3- T cells can convert
to CD8+Foxp3+ Tregs with the help of DCs and TGF-b from
hosts in mesenteric lymph nodes after allo-HSCT (28).
Gut-associated DCs induce CD8+ Tregs, depending on TGF-b
November 2021 | Volume 12 | Article 764786
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and retinoic acid (RA) (31). Therefore, antigen-presenting cells
(APCs) may initiate induction, with cytokines assisting in the
process. The CD8+ iTregs largely migrate and proliferate into the
gastrointestinal tract and spleen, and the instability of Fxop3 will
eventually result in conversion to effector cells, leading to GVHD
(32). For skin allografts, CD8+ Tregs would mainly gather in
draining lymph nodes (33). In summary, CD8+Foxp3+ Tregs
preferentially migrate to the site of immunoreaction; and
communication with the local microenvironment is highly
important, including the response to cytokines and cell contact.

3.2 Intercellular Interactions of CD8+

Tregs in GVHD
In GVHD, CD8+Foxp3+ Tregs exert protective effects principally by
inhibiting CD4+ T cells and B cells, or including CD8+ T cells (22,
23). However, there are inconsistent results indicating that CD8+

Tregs significantly suppress CD8+ T cells instead of CD4+ T cells
(21). The contradictory results come from different measurement
indexs and show discrepant effects in different aspects, which needs
further study to acquire a credible answer. In the humanized GVHD
mouse model, CD8+ Tregs suppress T cell proliferation and
inflammatory cytokine factor release for a long time in CTLA-4
(34) and PD-1 (24) dependent manners. In addition to T cell
suppression, CD8+Foxp3+ Tregs induce CD4+ Tregs in vivo in a
manner dependent on TGF-b secretion by CD8+Foxp3+ Tregs (33).
Subsequent experiments show that CD8+ Tregs induce both CD8+
Frontiers in Immunology | www.frontiersin.org 3
and CD4+ Tregs in a GVHD model (22). CD8+CCR7+ Tregs
coexpressing CD45RA, Foxp3 and CD28 exert regulatory
functions by suppressing TCR signal-mediated phosphorylation of
ZAP70 in CD4+ T cells, the initial step of T cell activation, and
decreasing intracellular calcium signaling (35). Phosphorylation of
ZAP70 has also been found to play an important role in GVHD
(36). Many results indicate that CD8+ Tregs is closely linked to DCs.
CD8+Foxp3+ Tregs actually react with DCs by decreasing the
expression of CD40 and CD80/CD86, which also indicates that
CD8+Foxp3+ Tregs contribute to the immune reactions (28, 33).
Evidence demonstrates that CD8+ Tregs become conditioned to
react with plasmacytoid DCs but not conventional DCs (16).
However, whether discrepant responses influence their regulatory
abilities regarding GVHD development in vivo remains unclear.
CD8+ Tregs participate in other mechanisms, such as modulating
Th17 (37), though more direct evidence for relevance to GVDH
is needed.

3.3 IL-10 and TGF-b Immunoregulation in
CD8+ Tregs
Among all regulatory factors, IL-10 and TGF-b attract the most
attention. As analyzed in human serum, IL-10 and TGF-b exhibit a
negative correlation with the occurrence of GVHD (38), which
supports their regulatory roles. In vitro, CD8+ Tregs perform
regulatory functions on allogeneic antigens in a fashion extremely
dependent on IL-10 and TGF-b but not cytotoxicity (30). In lupus
patients, CD8+Foxp3+ Tregs play a regulatory role dependent on
TGF-b after allo-HSCT, with no contact with CD4+ T cells (8).
Similarly, IL-10 possesses strong regulatory abilities, and TGF-b is
significant for maintaining CD8+ Tregs (39). However, ex vivo-
induced CD8hi Tregs decrease expression of IL-10 and TGF-b in a
humanized GVHD mouse model, which does not negate their
contribution to GVHD (34). Researchers have also found that
CD8+Foxp3+ Tregs produce minor amounts of IL-10, ruling out
toxicity in regulatory capacity (28). In conclusion, IL-10 and TGF-b
are important for CD8+Foxp3+ Tregs, even though their expression
is decreased. CD8+CD103+ Tregs also depend on IL-10 and TGF-b
and show no relationship with cytotoxicity in an autoimmune
disease model (40). In a cGVHD lupus mouse model,
CD8+CD103+ Tregs effectively alleviate the severity of GVHD,
demonstrating the dependence on TGF-b and IL-10 without any
cytotoxicity, with cell contact being indispensable (41). However, it
has also been reported that human alloantigen-induced
CD8+CD103+ Tregs are independent on IL-10 and TGF-b in vitro
as well as cytotoxicity (42). Overall, the inconsequent expression and
dependence of IL-10 and TGF-b and cytotoxicity in CD8+ Tregs
remain uncertain and may be associated with different induction
methods or complex inflammatory microenvironments.

3.4 CD8+ Tregs in Preserving GVL Effects
Mature donor T cells found in the graft become allo-activated
during allo-HSCT, which leads to not only T cell proliferation
and migration to target organs but also to activation for clearance
of residual malignant cells, which is GVL effects (43). To date, it
has been very difficult to separate GVHD and GVL effects. It is
commonly reported that CD4+ Tregs impair the GVL effect when
FIGURE 1 | The different manifestations between CD8+ Tregs and CD4+

Tregs with regard to source, function and evaluation. CD8+ Tregs mainly
derive from CD8+ T cells and rarely from the thymus; CD4+ Tregs originate
from both sources. CD8+ Tregs secrete cytokines, such as IL-10 and TGF-b,
and exert an influence on GVHD, but their GVL effect mainly depends on the
Fas-Fasl interaction, perforin and granzyme B This may be the reason why
CD8+ Tregs retain GVL but that CD4+ Tregs partially impair GVL. Studies also
indicate that CD4+ Tregs are more powerful in regulating GVHD.
November 2021 | Volume 12 | Article 764786
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alleviating GVHD. Surprisingly, CD8+ Tregs maintain and even
exert the GVL effects (21, 23, 32), which is another distinctly
superior aspect of CD8+ Tregs and indirectly reflects antigenic
specificity. It has also been reported that CD8+ Tregs virtually exert
GVL effects through the Fas-FasL and perforin–granzyme B
pathways without affecting general immunity but that CD4+

Tregs do not (34), which is consistent with results that the CD8+

iTregs retain cytotoxicity and preserve the GVL effect (22). Further
results demonstrate that the cytotoxicity of CD8+ Tregs in tumor
cell killing is the basis of GVL effects and that the combination of
CD4+ Tregs and CD8+ Tregs is an ideal therapy that would more
effectively prevent GVHD and preserve GVL effects (21).
4 CD8+ TREGS HETEROGENEITY

In general, the CD4+ Tregs phenotype is identified, as
CD4+CD25highFoxp3+ and/or CD127low/- and Foxp3 is
necessary for maintaining regulatory functions, but CD8+

Tregs display much more heterogeneity in phenotype and
function (44, 45). There are diverse types of CD8+ Tregs for
different disease conditions, presenting various effects (33, 46–
48). (Table 1) Several CD8+ Tregs could naturally occur and
participate in normal living activities. And researcher have found
that there are abnormal CD8+ Tregs in several circumstances,
including decreasing in GVHD and autoimmune disease
patients, while elevating in patients with cancers. But some
other CD8+ Tregs such as CD8+CD103+ Tregs could be
cultured in vitro and infused back for disease therapy.

4.1 CD8+CD25+Foxp3+ Tregs
CD25+ T cells have a unique regulatory function mainly via
consuming endogenous IL-2. In contrast, previous studies have
Frontiers in Immunology | www.frontiersin.org 4
found that CD8+CD25+ T cells and CD4+CD25+ T cells play an
active role in the GVHD process (67, 68), suggesting that CD25 is
insufficient to identify CD8+ Tregs. The regulatory functions of
CD4+ Tregs have been proven to be extremely dependent on
Fxop3 (69), which is considered a regulatory marker for Tregs.
CD8+CD25+Foxp3+ Tregs in vivo have similar regulatory ability
and express CTLA-4 and TNFR2 (49), and induced
CD8+CD25+Foxp3+ Tregs similarly express CTLA-4, PD-1,
PD-L1, and TNFR2 in vitro. Furthermore, expression of PD-L1
and TNFR2 is imperative for regulatory functions, which are
maintained by IL-2 and TGF-b (33, 39, 50). Most importantly,
there is considerable evidence showing that CD8+CD25+Foxp3+

Tregs effectively regulate GVHD (25, 29, 51). Despite expressing
GITR and CTLA-4 like CD4+ Tregs, CD8+CD25+Foxp3+ Tregs
rarely express Helios regarded as a marker for nTregs from the
thymus, which means that almost all CD8+CD25+Foxp3+ Tregs
are induced to generate, relying on the receptors of IL-2 and
TGF-b (26, 28).

4.2 CD8+CD103+ Tregs
CD103 is generally expressed on the surface of partial T cells and
DCs and is related to tissue location as the receptor of E-cadherin.
Experiments have identified that expression of CD103 on CD4+

Tregs contributes to local regulatory abilities (70) and that
expression on effector CD8+ T cells aids in entry into and
destruction of the intestinal epithelium in animal models
of GVHD (71), which indirectly supports the same role
for CD8+CD103+ Tregs. CD8+CD103+ Tregs usually derive from
CD8+CD103- T cells, and CD103 is regarded as the marker of
CD8+CD103+ Tregs (42). The regulatory ability of CD8+ Tregs is
independent of Foxp3; for CD8+Foxp3- Tregs, CD103 is needed and
seemingly remedies Foxp3 deficiency (40). CD103 expression
induced by human cord blood mononuclear cell (CBMC) on
TABLE 1 | Heterogeneity of CD8+ Tregs.

Phenotype Features Ways to acquire Source Effect in
GVHD

Ref.

CD8+CD25+Foxp3+ Expressing CTLA-4, TNFR2 and other various surface
makers for different situations such as GITR, CD44,
CD102 and CD133, dependent on IL-2 and TGF-b
for phenotype and function

Naturally occurring and
induced

Humans and Mice Yes (25, 26, 28,
29, 31, 33,
39, 49–51)

CD8+CD103+ CD103 may compensate the deficiency of Foxp3 in
regulating immune response, and dependent on
IL-2 and TGF-b and is more stable than CD4+Tregs to
some extent.

Induced Humans and Mice Yes (40–42, 52,
53)

CD8hi Tregs Antigen-specific and expressing CD25, Foxp3 and CTLA-
4 extremely similar to CD8+CD25+Foxp3+ Tregs

Induced Humans Yes (30, 34, 54)

CD8+CD45RClow/- Expressing foxp3 and dependent on production of IL-10
and TGF-b

Naturally occurring and
induced

Humans and Rats Yes (16, 55)

CD8+CD28-/low Less dependent on Foxp3 for immunoregulatory
properties, and other molecules may be
highly relevant

CD8+CD28low Tregs are
more likely to occur
naturally, and
CD8+CD28- Tregs tend
to be induced

Humans and Mice not
described

(56–59)

CD8+CD122+ Dependent on PD-1 and CD28 but not Foxp3,
which is related to recognition of CD80/86 and
production of IL-10; sometimes more powerful
than CD4+ Tregs

Induced Mice (human CD8+CXCR3+

Tregs may be the counterparts
of mice CD8+CD122+ Tregs)

not
described

(60–66)
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CD8+ T cells has been proven, and culture conditions can drive
differentiation of CD8+CD25+Foxp3+CD103+ Tregs from human
CBMCs (52). During GVHD, CD8+CD103+ Tregs induced by
TGF-b effectively alleviate disease severity; they are more stable
than CD4+ Tregs because they express CD103 (41). CD39 also plays
a regulatory role in CD8+CD103+ Tregs, and anti-CD39 abrogates
regulatory abilities (53).

4.3 CD8hi Tregs
CD8hi Tregs induced by CD40-activated B cells are antigen-
specific, and functional markers, such as CD25, Foxp3, CTLA-4,
GITR, IL-10, and TGF-b, are upregulated (30). These findings
are consistent with the results that CD8hi Tregs induced in vitro
with expression of CD25, Foxp3 and CTLA-4 alleviate GVHD
without affecting general immunity and graft-versus-tumor
activity (34). CD8hi Tregs are also induced by human
monocyte-derived suppressor cells (HuMDSCs) in vivo,
showing upregulation of CD25, Foxp3 and CD103 (54).
Despite plentiful evidence for the existence of CD8hi Tregs, it
is uncertain whether they are entirely different from
CD8+CD25+Foxp3+ Tregs. Indeed, both express the phenotype
analogously, and expression of CD25 and Foxp3 may
be concomitant.

4.4 CD8+CD45RClow/- Tregs
Natural CD8+CD45RClow/- Tregs coexpressing Foxp3 and
CTLA-4 indicate an immunosuppressive function (55).
Similarly, CD8+CD45RClow/- Tregs induced in vitro richly
expressing Foxp3, CD25, CD103, CD122 and GITR have been
identified to play a vital role in GVHD (16).

4.5 Other Subgroups of CD8+ Tregs
For some types of CD8+ Tregs, direct evidence to identify their
immunomodulatory effects in GVHD is currently lacking.

4.5.1 CD8+CD28-/low Tregs
CD28 plays a key role as a costimulatory signal in adaptive
immunity by activating T cells. However, a subset of CD8+

Tregs was recently identified as CD28- or CD28low. In that
study, CD8+CD28- Tregs developed naturally in vivo with
expression of CD25, Foxp3 and CTLA-4, along with low
expression of CD127 and high expression of CD122 (56, 57).
CD8+CD28- Tregs can be induced in vitro without expression of
Foxp3, whereas CD4+ Tregs cannot. GITR expression is crucial for
their generation (58). CD39 (ectonucleoside triphosphate
diphosphohydrolase 1; encoded by ENTPD1) binds extracellular
ATP (eATP) and converts it to extracellular adenosine which is
expressed by various immune cells and non-immune cells (72)
and expression of CD39 plays an important role in CD8+CD28-

Tregs without Fxop3, CD103 and CD122 expression (59).
Regarding the origin of CD8+CD28- Tregs, researchers have
suggested that they may derive from CD8+CD28- T cells
associated with IL-10 secretion but not from CD8+CD28+ T
cells (73). Regardless, CD8+CD28low Tregs are present in the
thymus locally without recirculating from the periphery; they
express Helios but not traditional CD4+ Treg markers such as
Foxp3, CD25 and neuropilin-1 (74), and these cells tend to be
Frontiers in Immunology | www.frontiersin.org 5
generated from the thymus (57). In general, CD8+CD28- Tregs
and CD8+CD28low Tregs differ from each other, and their
regulatory capacities and application in GVHD should be
studied further.

4.5.2 CD8+CD122+ Tregs
CD122 is usually known as the beta chain of IL-2 or IL-15.
Initially, transferred CD8+CD122+ T cells prevent the
development of activated CD69+ T cells, indicating a single
group of regulatory T cells (60). Subsequent experiments
discovered the importance of PD-1 and CD28 for regulatory
abilities, and CD8+CD122+PD-1+ T cells can be distinguished
from CD8+CD122+ T cells (61). In addition, CD28 may help
CD8+CD122+ Tregs recognize target cells by interacting with
CD80/86, excluding the regulatory function of CTLA-4 and
ICOS, but Foxp3 is not expressed in CD8+CD122+ Tregs (62).
It is worth noting that previous studies have shown that the
addition of PD-L1 enhances IL-10 expression, but another study
indicated that anti-PD-1 was unable to inhibit IL-10. These
discrepancies may be due to different induction methods, thus
affecting the response to PD-1 signals. IL-10 expression is
strongly reduced by blocking CD28, which indicates that the
interaction between CD28 and CD80/86 is indispensable for
regulatory abilities (63). Considering the discrepancy between
humans and animals, CD8+CD122+ Tregs in mice correspond to
CD8+CXCR3+ Tregs in humans (64). In allotransplant animal
models, the regulatory abilities of CD8+CD122+ Tregs are
superior to those of CD4+ Tregs in terms of the production of
IL-10 (65). In addition, emodin can alleviate immunological
rejections by inducing CD8+CD122+ Tregs and CD4+ Tregs in
vivo (66). However, the exact function of CD8+CD122+ Tregs in
GVHD remains unclear, and further study is urgently needed.
5 CD8+ TREGS OPTIMIZATION

Continuing research on CD8+ Tregs to support a stable state and
enhanced regulatory ability is needed to attenuate GVHD
effectively, which means the need for CD8+ Tregs optimization.
In addition, ensuring safety is of much significance. Attempts for
CD8+ Tregs improvement are provided in Figure 2.

5.1 Promoting Generation
Several cytokines have been described as playing a role in CD8+

Tregs. IL-2 is a proinflammatory factor, and recent studies have
demonstrated its regulatory functions in GVHD. Expansion of
CD4+ Tregs induced by IL-2 occurs during GVHD treatment (75,
76), and the ability of this cytokine to regulate CD8+ Tregs needs to
be further studied. Rapamycin and IL-2 have been described as
expanding CD8+Foxp3+ Tregs in vivo, contributing to GVHD
severity alleviation (28). Consistently, rapamycin enhances the
immunoregulatory properties of CD8+Foxp3+ Tregs (32).
Rapamycin and IL-2 show a limited effect on the stability of
CD8+Foxp3+ Tregs compared to CD4+ Tregs; thus, the former
may not completely eradicate GVHD due to conversion into
effector T cells (32). Moreover, CD8+CD45RClow/- Tregs prevent
GVHD via extensive regulatory functions and proliferation abilities
November 2021 | Volume 12 | Article 764786
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induced by rapamycin (16). A study on all-trans retinoic acid
(ATRA) suggested that it promotes Foxp3 demethylation to
increase CD4+ Tregs production (77). In GVHD models, ATRA
promotes CD4+ Tregs generation to effectively alleviate GVHD but
is unfavorable for CD8+ Tregs (78), which in turn indicates a
differential response to ATRA by CD4+ and CD8+ Tregs and
suggesting this possibility in vivo. In addition to blocking IL-6 for
CD4+ Tregs expansion (79), deficiency in IL-27 signals enhances the
proliferation of both CD4+ Tregs and CD8+ Tregs, suppressing the
GVHD process (80). Moreover, coadministration of anti-IL-27 and
resiquimod, agonists of Toll-like receptor 7, increases the number of
CD4+ and CD8+ Tregs and alleviates GVHD (81). Nevertheless, IL-
27-primed CD4+ Tregs show immunoregulatory properties to
provide a protective role in GVHD (82). IL-27 acts on multiple
cells, including proinflammatory and regulatory cells and the final
results depend on the overwhelming mechanism. It also has been
speculated that IL-27 exerts diverse effects in different stages of the
GVHD process. In addition, transient anti-CD45RC treatment
appears to induce CD45hi T cell apoptosis and preserve
CD8+CD45low/- Tregs and CD4+CD45low/- Tregs, enhancing
regulatory ability (83). Immunoglobulin-like transcript 3 (ILT3) is
an inhibitory receptor expressed on antigen-presenting cells
(APCs), and some studies have identified the effect of ILT3-Fc in
reducing GVHD, which may be due to induction of CD8+ Tregs
(84). Inhibition of Cdk2 inactivates EZH2 and induces epigenetic
regulation of Foxp3, leading to more CD8+ Tregs generation and
GVHD prevention (85). These results reveal an unexpected
mechanism by which Cdk2 inhibitors induce CD8+ Tregs. From
another point of view, this is a great attempt to change the
epigenetic characteristics of CD8+ Tregs.

5.2 Strengthening Stabilization
Pacritinib, a blocking agent of Janus kinase 2 (JAK2), has been
reported to prevent GVHD while preserving the GVL effects
Frontiers in Immunology | www.frontiersin.org 6
(86). CD4+ Tregs generation is restrained by JAK2 signals, and
the same effect on CD8+Foxp3+ Tregs indicates that blockade of
JKA2 signals in CD8+Foxp3+ Tregs may effectively alleviate
GVHD while preserving the GVL effects (22). Regarding
mechanisms, blocking JAK2 signaling enhances the stability of
CD8+Foxp3+ Tregs with upregulated expression of CD25, and
even generates more CD4+ and CD8+ Tregs, which correlates
with higher expression of neuropilin-1, a marker of Tregs, as well
as demethylation of CNS2. An analogous mechanism has been
reported for vitamin C (Vit-c), which exerts an effect on CD4+

Tregs (87), and the CNS2 region plays a significant role in
expression of Foxp3 (88). However, it remains unclear whether
Vit-c alleviates GVHD by affecting CD8+Foxp3+ Tregs. Vit-c as
the cofactor of TET enzymes treatment can maintain
demethylation of CNS2, and stabilize the expression of Foxp3
in CD8+ Tregs, thus promoting expression of CD25, Nrp1,
Helios, CTLA-4 and PD-1 in vitro, preventing GVHD and
maintaining the GVL effects (23). Indeed, Bim expression is
able to impact Tregs by restraining proliferation and regulating
apoptosis (89), which also contributes to imbalance between
Tregs and effector T cells (90). Recent studies have found that
Bim deficiency largely prolongs the survival of CD8+ Tregs, thus
enhancing protection from GVHD (18). Notably, it is very
different from earlier studies aiming at the stability of Foxp3.

5.3 Optimizing Function
With the maturation of immune cell-based targeting therapy
technology, chimeric antigen receptor-redirected T cells (CAR-
T) have been successfully used for the treatment of hematological
malignancies, with curative effects (91, 92). HLA-A2-specific
CAR CD4+ Tregs have greater regulatory GVHD abilities than
polyclonal CD4+ Tregs (93), and accordingly, HLA-A2-specific
CAR CD8+ Tregs are reported to prevent GVHDmore effectively
(94). However, there have been no studies to date demonstrating
FIGURE 2 | Schematic depicting several attempts to optimize CD8+ Tregs. Two aspects were included: promoting conversion and maintaining self-stabilization.
How to maintain stable expression of Foxp3 is a priority. Some approaches offer new therapeutic ideas for the clinic. A dotted box indicates gene knockout.
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the influence on general immunity and the GVL effects.
Engineered Tregs (eTregs) might offer an effective means to
obtaining sufficient Tregs in the clinic. Much evidence shows
that CD8+ eTregs derived from lentiviral transfection
coexpressing Helios and Foxp3 effectively alleviate GVHD in a
manner slightly superior to that of CD4+ eTregs (95).
Furthermore, different isoforms of Helios show disparate
influences on CD8+ and CD4+ Tregs, which should be taken
into consideration in future studies.
6 CONCLUSION AND PROSPECTS

The ability to prevent GVHD without weakening GVL effects
renders CD8+ Tregs superior to CD4+ Tregs, including enhancing
GVL effects. Inducing CD8+ Tregs may ensure an adequate cell
source. Although there is no doubt that CD8+ Tregs will be applied
extensively for treating GVHD in the clinic, some obstacles and
unsolvedmechanisms remain to be explored. First, CD8+ Tregs are
onlypresent for a short time inGVHD, and such instability strongly
affects application. Thus, we need feasible methods to stabilize
phenotypes and regulatory abilities or to block factors that
contribute to CD8+ Tregs conversion. Second, most CD8+ Tregs
do not express Foxp3, and the exact function of Foxp3 in CD8+

Tregs remains unclear. Hence, other specific markers for CD8+

Tregs need to be identified to improve and facilitate their induction
and isolation to achieve thebest treatment in the clinic. Third,CD8+

Tregs can produce several inflammatory cytokines, such as IFN-g,
IL-2 and TNF-a (26, 28, 29, 49), which indicates that GVHD risk
should be taken into consideration and that ensuring safe therapy
needs more study. Optimal regulatory cell design may result in an
ideal outcome, such as the combination of CD8+ and CD4+ Tregs
exerting ameliorative results. In addition,microRNAsparticipate in
regulating CD8+ Tregs function by regulating cytokine secretion or
transcription factor expression; for example, miR-27b-3p andmiR-
340-5p negatively regulate the IL-10 level, and miR-330-3p acts on
TGF-b expression (96). Foxp3 andCTAL-4are negatively regulated
by miR-335, miR-9 and miR-155 (97). Overall, the effect of
microRNAs on CD8+ Tregs may influence the development of
GVHD, and more evidence is needed.

For GVHD treatment, more studies are needed to identify
different effects of drugs on CD8+ Tregs to improve outcomes of
GVHD, because of the clearance or inhibition of these cells by
immunosuppressive agents. For instance, cyclosporine (28) and
cyclophosphamide suppress the generation and function of CD8+

Tregs (98). However, CD8+CD28- Tregs are not influenced by
methylprednisolone (58), which indicates their superiority in the
combined application ofCD8+CD28- Tregs and glucocorticoids for
GVHD. In addition, extracorporeal photopheresis (ECP), which is
superior to other strategiesbecauseof the lackofbioactivematerials,
has been adopted to cure GVHD in the clinic, as ECP enhances the
generation of both CD4+ and CD8+ Tregs (99). Nonetheless, the
detailed mechanisms need to be elucidated.

In addition to immunoregulation to alleviate GVHD, how to
exert powerful GVL effects remains another challenge for the
development of cellular therapy technology. CAR CD8+ Tregs
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effectively alleviate GVHD, making it possible to achieve
efficient GVL effects via CAR-T technology. However,
immunosuppression or combination therapy may restrict
CD8+ Tregs in vivo, and effective methods need to be
identified for CD8+ Tregs application. Methods to eradicate
such restriction may avoid tumor recurrence. In general, we
should realize that the most abundant CD8+ Tregs are generated
by autologous CD8+ T cells, and it is the key to constructing a
suitable microenvironment in vivo.

Other approaches to strengthen immunoregulation capacity as
well as novel solutions may be found in the interaction between
CD8+ Tregs and other immune cells; for example, the regulatory
function ofmesenchymal stemcells (MSCs) is related to bothCD4+

and CD8+ Tregs (100). In a human study of refractory cGVHD,
MSC infusion induced a higher proportion (101) and enhanced the
regulatory capacities of CD8+ Tregs, subsequently suppressing the
proliferation and activation of CD4+ effector T cells and effectively
alleviating cGVHD (102). Therefore, MSC-primed CD8+ Tregs
may have much more potential, and other cell types have been
proven to influence CD8+ Tregs function. Deficiency in liver kinase
B1 (Lka1) in DCs greatly enhances the generation of CD8+ Tregs
while maintaining high levels of Nrp1 and Helios, which indicates
that the cells originate from the thymus (103). Lka1 may be a
limitation for CD8+ Tregs, and therapy targeting Lka1 will
overcome the intrinsic defect in the generation of CD8+ Tregs in
GVHD. Moreover, human CD36hi monocytes induce CD8+ Tregs
in vitro and ameliorate GVHD by suppressing T cell proliferation,
which also indicates that monocytes may assist in regulatory
functions (104). However, the underlying mechanisms of cellular
interactions in vivo need to be further investigated.

Taken together, we believe that CD8+ Tregs are powerful
players in immune regulation and should be developed further
through deeper and more systematic studies. Although much
work is needed, all advances will provide understanding of CD8+

Tregs and optimization for CD8+ Tregs to ensure better
outcomes for cell therapy in transplantation.
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