
entropy

Review

Modern Text Hiding, Text Steganalysis, and
Applications: A Comparative Analysis

Milad Taleby Ahvanooey 1,* , Qianmu Li 1,2,*, Jun Hou 1, Ahmed Raza Rajput 1 and Yini Chen 1

1 School of Computer Science and Engineering, Nanjing University of Science and Technology,
P.O. Box 210094, Nanjing, China; houjunnjust@163.com (J.H.); Ahmedrajput@njust.edu.cn (A.R.R.);
Yini_Chen@126.com (Y.C.)

2 Intelligent Manufacturing Department, Wuyi University, P.O. Box 529020, Jiangmen, China
* Correspondence: Taleby@njust.edu.cn (M.T.A.); Qianmu@njust.edu.cn (Q.L.); Tel.: +86-02584315982 (Q.L.)

Received: 9 March 2019; Accepted: 27 March 2019; Published: 1 April 2019
����������
�������

Abstract: Modern text hiding is an intelligent programming technique which embeds a secret
message/watermark into a cover text message/file in a hidden way to protect confidential
information. Recently, text hiding in the form of watermarking and steganography has found broad
applications in, for instance, covert communication, copyright protection, content authentication,
etc. In contrast to text hiding, text steganalysis is the process and science of identifying whether a
given carrier text file/message has hidden information in it, and, if possible, extracting/detecting the
embedded hidden information. This paper presents an overview of state of the art of the text hiding
area, and provides a comparative analysis of recent techniques, especially those focused on marking
structural characteristics of digital text message/file to hide secret bits. Also, we discuss different
types of attacks and their effects to highlight the pros and cons of the recently introduced approaches.
Finally, we recommend some directions and guidelines for future works.

Keywords: modern text hiding; text steganography; text steganalysis; covert communication

1. Introduction

Reflecting the new trends and rapid progress in the field of information technology in the form of
smart gadgets, communications, and digital content, an extensive environment with the capability
to transfer, copy, duplicate, and share information over the Internet has been built, although this
revolution in the digital world and the online distribution of digital media also implies that such
information is vulnerable to malicious attacks, unauthorized access, forgery, plagiarism, etc. Moreover,
digital texts in the form of text messages/files are used in many applications, such as password
authentication, chatting, mobile banking, online news, commerce, and so on. However, when we send
a text message via short message service (SMS), email, social media, and so on, the information included
in the message is transmitted as plain text, exposing it to attacks. In some cases, this information
may be sensitive/confidential, such as password authentication, banking credentials, and so on; also,
sending such information via SMS or unsecured communication channels is a significant drawback,
as neither provides security before transmission. On the other hand, hackers are regularly trying to
break the safety of communication channels (e.g., network protocols, SMS, etc.) to access sensitive
information during data transmission. Therefore, demand is growing for intelligence and multimedia
security studies that involve not only encryption, but also covert communication whose essence lies
in concealing data [1–19]. Recently, information hiding or data hiding in digital texts, known as text
hiding, has drawn considerable attention due to its extensive usage, and potential applications in the
cybersecurity and network communication industries [20–127]. Text hiding is the process of embedding
secret data through a cover text or supportable technologies such as network protocols, SMS, etc. so

Entropy 2019, 21, 355; doi:10.3390/e21040355 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5052-5492
http://dx.doi.org/10.3390/e21040355
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/4/355?type=check_update&version=3

Entropy 2019, 21, 355 2 of 31

that the existence of the data is invisible/undetectable for adversaries or casual viewers [1,6,8]. It has
been widely considered as an attractive technology to improve the use of conventional cryptography
algorithms in the area of multimedia security by concealing a secret message/watermark into a cover
text file/message to protect confidential information. As depicted in Figure 1, the various information
security systems categories that are utilized to protect sensitive data from crackers, deceivers, hackers,
and spies are divided into cryptography and information hiding [3]. Cryptography scrambles a
plain-text (secret data) into cipher to prevent unauthorized access to its content. On the other hand,
information hiding conceals a secret message in a cover medium (e.g., text, image, audio, or video) so
that the embedded hidden data trace is unnoticeable/undetectable. Cryptography and information
hiding are both similar in the way which is employed to protect confidential/sensitive information.
Nonetheless, the invisibility is the difference between both systems, i.e., information hiding involves
how to conceal information so it is not noticeable. In practice, information hiding can be classified into
watermarking and steganography. The goal of watermarking is providing proof of ownership for the
cover media against malicious attacks such as tampering, forgery, and plagiarism (e.g., the embedded
watermark indicates the original owner). While, the aim of steganography is the invisible transmission
of confidential information so that no one (except an intended recipient) can discover/encode it,
i.e., steganography concerns concealing the fact that a medium contains secret data that is invisible/
indiscernible [1,3,41].

Entropy 2018, 20, x FOR PEER REVIEW 2 of 29

invisible/undetectable for adversaries or casual viewers [1,6,8]. It has been widely considered as an
attractive technology to improve the use of conventional cryptography algorithms in the area of
multimedia security by concealing a secret message/watermark into a cover text file/message to
protect confidential information. As depicted in Figure 1, the various information security systems
categories that are utilized to protect sensitive data from crackers, deceivers, hackers, and spies are
divided into cryptography and information hiding [3]. Cryptography scrambles a plain-text (secret
data) into cipher to prevent unauthorized access to its content. On the other hand, information hiding
conceals a secret message in a cover medium (e.g., text, image, audio, or video) so that the embedded
hidden data trace is unnoticeable/undetectable. Cryptography and information hiding are both
similar in the way which is employed to protect confidential/sensitive information. Nonetheless, the
invisibility is the difference between both systems, i.e., information hiding involves how to conceal
information so it is not noticeable. In practice, information hiding can be classified into watermarking
and steganography. The goal of watermarking is providing proof of ownership for the cover media
against malicious attacks such as tampering, forgery, and plagiarism (e.g., the embedded watermark
indicates the original owner). While, the aim of steganography is the invisible transmission of
confidential information so that no one (except an intended recipient) can discover/encode it, i.e.,
steganography concerns concealing the fact that a medium contains secret data that is invisible/
indiscernible [1,3,41].

Figure 1. Various categories of information security systems [3,19,20].

During the last two decades, many text hiding algorithms have been introduced in terms of text
steganography and text watermarking for covert communication [1,6,8,9–14,20,31,36,39,51,91],
copyright protection [3–5,7,18,20–29,44,49–68,72–75,87–92,98–109], copy control and authentication
[31,57,60,74,78,93–98].

The main contributions of this paper are summarized as follows:

• We provide a brief review of existing literature on text hiding schema, attacks, text steganalysis,
applications, and fundamental criteria.

• We summarize some of the recently proposed text hiding techniques which are focused on
altering the structure of the cover text message/file to conceal secret information.

• We present a comparative analysis of the structural based algorithms and evaluate their
efficiency with respect to common criteria.

The rest of the paper is organized as follows: Section 2 presents some background literature and
related studies on the information hiding area. Section 3 explains various types of text hiding
approaches, along with their limitations. In Section 4, we evaluate some of the recently proposed

Figure 1. Various categories of information security systems [3,19,20].

During the last two decades, many text hiding algorithms have been introduced in terms of text
steganography and text watermarking for covert communication [1,6,8–14,20,31,36,39,51,91], copyright
protection [3–5,7,18,20–29,44,49–68,72–75,87–92,98–109], copy control and authentication [31,57,60,74,
78,93–98].

The main contributions of this paper are summarized as follows:

• We provide a brief review of existing literature on text hiding schema, attacks, text steganalysis,
applications, and fundamental criteria.

• We summarize some of the recently proposed text hiding techniques which are focused on altering
the structure of the cover text message/file to conceal secret information.

• We present a comparative analysis of the structural based algorithms and evaluate their efficiency
with respect to common criteria.

The rest of the paper is organized as follows: Section 2 presents some background literature
and related studies on the information hiding area. Section 3 explains various types of text hiding
approaches, along with their limitations. In Section 4, we evaluate some of the recently proposed

Entropy 2019, 21, 355 3 of 31

structure-based algorithms and highlight their pros and cons. In Section 5, we give some suggestions
for future works. Finally, Section 6 concludes the paper with a summary of contributions.

2. Literature Review

In what follows, we present the existing literature on the text hiding area consisting of the schema,
fundamental criteria, the Unicode standard, and text steganalysis.

2.1. Text Hiding Schema

The basic scenario of a cryptography covert channel is Simmons’ prisoner problem [108]. Alice
and Bob are locked up in two separated cells but are permitted to communicate under the watch of
Eve, the prison warden. If Eve discovers the existence of hidden information in a transmitted message,
she stops their communication punishes them. Eve is an active warden is she makes noise to make
Alice and Bob’s task more difficult. She is a passive warden if she merely detects and investigates the
transmitted data [12]. From the digital data hiding point of view, text steganography/watermarking
is a different scenario which works based on the practice of hiding a secret message (SM) through
a cover message/file (CM) by marking invisible symbols where the trace of embedding the SM is
invisible/undetectable by human vision systems. In theory, the Modern Text Hiding schema (MTH)
can be considered as a form of communication. Figure 2 demonstrates the modern text hiding schema
which is represented as MTHS [3,9,10,12,47,48,76,77,79].

Where, MTHS = 〈{CM, SM, K, CMHM}, {Att(), CMHM, CM′HM}, {Emb(), Ext()}〉

Entropy 2018, 20, x FOR PEER REVIEW 3 of 29

structure-based algorithms and highlight their pros and cons. In Section 5, we give some suggestions
for future works. Finally, Section 6 concludes the paper with a summary of contributions.

2. Literature review

In what follows, we present the existing literature on the text hiding area consisting of the
schema, fundamental criteria, the Unicode standard, and text steganalysis.

2.1. Text Hiding Schema

The basic scenario of a cryptography covert channel is Simmons’ prisoner problem [108]. Alice
and Bob are locked up in two separated cells but are permitted to communicate under the watch of
Eve, the prison warden. If Eve discovers the existence of hidden information in a transmitted
message, she stops their communication punishes them. Eve is an active warden is she makes noise
to make Alice and Bob’s task more difficult. She is a passive warden if she merely detects and
investigates the transmitted data [12]. From the digital data hiding point of view, text
steganography/watermarking is a different scenario which works based on the practice of hiding a
secret message (SM) through a cover message/file (CM) by marking invisible symbols where the trace
of embedding the SM is invisible/undetectable by human vision systems. In theory, the Modern Text
Hiding schema (MTH) can be considered as a form of communication. Figure 2 demonstrates the
modern text hiding schema which is represented as MTHS [3,9,10,12,47,48,76,77,79].

Where, { , , , },{ (), , ' },{ (), ()}HM HM HMMTHS CM SM K CM Att CM CM Emb Ext=

Figure 2. Modern text hiding schema.

As depicted in Figure.2, the modern text hiding scenario consists of two main phases, and a third
party phase, namely Embedding “Emb(),” Extraction “Ext(),” and Attacks “Att().”

Algorithm 1: Pseudocode of Emb()
Input: a cover text (CM), a secret message (SM), a secret key (K)
Output: a carrier text message or stego-object (CMHM) which consists of CM and HM
1. SM← Secret Message (e.g., confidential information such as password, banking credentials, etc.);
2. CM← Cover Message (e.g., an innocent text message such as prank, joke, etc.);
3. K← Secret Key (e.g., a symmetric or asymmetric key algorithm such as One-Time-Pad, AES, DES, etc.);
4. for each { }1 2, , ...,i nc SM c c c∈ = do

5. SMbits← SMbits + Convert each []iSM c to a 8-bit string based on the ASCII Code;

6. end for
7. Encrypted _SMbits← Encrypts the SMbits based on K using a special encryption function;
8. HM← Convert the Encrypted_SMbits to invisible symbols such as space between words, text color, etc.;
9. CMHM← Embed the HM into the CM, where the attacks may not detect/remove it easily;
10. Return CMHM;

(1) Embedding (Emb()): Alice employs this function to hide an SM into the CM which consists of
three stages. In the first stage, the embedding function converts the letters of the SM into a binary
string (SMbits). In the second stage, it encodes the SMbits by using an encryption algorithm based on an

Figure 2. Modern text hiding schema.

As depicted in Figure 2, the modern text hiding scenario consists of two main phases, and a third
party phase, namely Embedding “Emb(),” Extraction “Ext(),” and Attacks “Att().”

Algorithm 1: Pseudocode of Emb()

Input: a cover text (CM), a secret message (SM), a secret key (K)
Output: a carrier text message or stego-object (CMHM) which consists of CM and HM
1. SM← Secret Message (e.g., confidential information such as password, banking credentials, etc.);
2. CM← Cover Message (e.g., an innocent text message such as prank, joke, etc.);
3. K← Secret Key (e.g., a symmetric or asymmetric key algorithm such as One-Time-Pad, AES, DES, etc.);
4. for each ci ∈ SM = {c1, c2, . . . , cn} do
5. SMbits← SMbits + Convert each SM[ci] to a 8-bit string based on the ASCII Code;
6. end for
7. Encrypted _SMbits← Encrypts the SMbits based on K using a special encryption function;
8. HM← Convert the Encrypted_SMbits to invisible symbols such as space between words, text color, etc.;
9. CMHM← Embed the HM into the CM, where the attacks may not detect/remove it easily;
10. Return CMHM;

Entropy 2019, 21, 355 4 of 31

(1) Embedding (Emb()): Alice employs this function to hide an SM into the CM which consists of
three stages. In the first stage, the embedding function converts the letters of the SM into a binary
string (SMbits). In the second stage, it encodes the SMbits by using an encryption algorithm based on an
optional key(K) to secure its content, and produces encoded SMbits, i.e., One-Time-Pad, AES, DES, etc.
Then, it converts the encrypted SMbits to a hidden message (HM) by marking/embedding invisible
symbols through the CM. For example, to mark each bit ‘1′, Emb() adds two spaces between words
and a single space is represented as a bit ‘0′. Finally, it generates a carrier message (CMHM). Algorithm
1 depicts the sequence of the Emb() with more details [1,10,12].

(2) Attack(Att()): During the communication process, attackers may attempt to break the security
of the CM HM by decoding or manipulating the HM using steganalysis techniques. This process
may cause alteration/removal of the HM form the CM’ HM. It is assumed that the attackers do not
have any clue about the encoding function, secret key, and Emb(). In some cases, attackers employ
conventional approaches to guess the invisible/hidden symbols which are statistically distinguishable,
and extract/decode the original message, but in practice, this is an impossible task for attackers if
the text hiding algorithm utilizes an encryption function during the embedding/extraction process.
Algorithm 2 explains the sequence of the Att() with more details [1,9,10,12].

Algorithm 2: Pseudocode of Att()

Input: a carrier message (CMHM), an estimated secret key (EK)
Output: a compromised carrier message (CM’HM), an estimated Secret Message (ESM)
1. HS← Estimates the hidden/invisible symbols from the CMHM;
2. for each ci ∈ HS = {c1, c2, . . . , cn} do
3. Estimated_SMbits ← Estimated_SMbits + Guess the binary string of each symbol based on the HS[ci];
4. EKbits← EKbits + Guess the secret key according to the HS[ci] using the conventional approaches;
5. end for
6. SMbits← Tries to decrypt the Estimated_SMbits based on the ESK;
7. ESM← If it is possible, estimates/decodes the SMbits using conventional approaches;
8. CM’HM←Manipulate the CM’HM in order to remove the HM;
9. Return CM’HM, ESM;

3. Extraction (Ext()): Bob utilizes this function to extract/discover the original SM from the CM’HM.
Since the CM’HM is transmitted via communication channels, the HM may be exposed to attacks, so it
is necessary to verify the original SM using the same encryption function which already used during
the embedding process, i.e., Alice already shared the key with Bob or he has knowledge about the
special symbols of the key through the CM’HM. Two different terms are employed for this function,
which are “detection” and “extraction”. However, researchers often define both as similar functions
in the literature; we classify them in this way: extraction (Ext()) discovers/extracts the SM from the
CM’HM and authenticates its integrity, while detection verifies the existence of the SM from the CM’HM.
Algorithm 3 outlines the sequence of the Ext() with more details [1,9,10,12].

Algorithm 3: Pseudocode of Ext()

Input: an affected carrier message (CM’HM), a secret key (K)
Output: a secret message (SM’)
1. HS← Discovers the existing hidden marks/symbols from the CM’HM;
2. K← Secret Key (e.g., the symmetric or asymmetric key algorithm such as One-Time-Pad, AES, DES, etc.);
3. for each ci ∈ HS = {c1, c2, . . . , cn} do
4. Encrypted_SMbits← Encrypted_SMbits + Detects the binary string of each invisible symbol from HS[li];
5. Kbits←Kbits+ Utilizes a shared key from Alice or Extracts the secret key from the CM’HM.
6. end for
7. SMbits← Decrypts the Encrypted _SMbits based on Kbits using corresponding decryption function;
8. SM’← Extracts the original SM characters from the SMbits based on their ASCII codes.
9. Return SM’;

Entropy 2019, 21, 355 5 of 31

2.2. Information Theoretic and Modern Text Hiding

This subsection discusses an ideal text hiding system in which the CM and CMHM (cover message
with and without the hidden information) are statistically indistinguishable or unnoticeable, i.e.,
it means that the CM & CMHM have the same probability distribution. We employ the stego-system
models presented in [10,127] to clarify this requirement. As depicted in Figure 2, Alice and Bob could
exchange messages of a certain kind (called cover message/file) over a public/private channel which
is accessible to Eve. Alice wishes to transmit an SM in cover of the CM to Bob so that Eve cannot
observe whether there exists an HM through the CMHM.

The entropy of information theory (H) is a popular metric for information measurement
introduced by Shannon [128]. It computes the quantity of randomness existing in a message. The
equation (1) is commonly utilized to compute Shannon’s entropy [129–131]. Let us assume that CM
consists of unique symbols (or characters) appear into it, i.e., CM = {c1, c2, c3, . . . , cn}. Herein, ci is the
occurrence of ith symbol in all sequences with probability 0 < P(ci) < 1, ∑n

i=1 P(ci) = 1, i.e., P(ci) is
the probability of occurrence for ci

th element. Thus, the entropy of CM can be calculated as follows:

HCM = −
n

∑
i=1

P(ci) log2 P(ci) (1)

Let us suppose that Eve does not try to disrupt communication between Alice and Bob, but only
attempts to determine if hidden information is being transmitted. In [10], Cachin presented the first
formal analysis on the stegosystem in which, depending on the fact that the probability distribution of
CM and CMHM is identified, and both cover texts (CM and CMHM) are statistically close. Later in [127],
Ryabko and Ryabko commented that the CM and CMHM are statistically indistinguishable. They
assumed that Alice has access to an oracle which makes independent and identically distributed cover
texts (CM and CMHM) based on some fixed but unknown distribution µ. The CM/CMHM consists of
some symbols that belong to some (possibly infinite) alphabet A. Alice wishes to employ this source as
cover to transmit hidden messages. An HM is a sequence of symbols or letters from B = {0,1} produced
independently by equal probabilities of ‘0′ and ‘1′. Also, it is assumed that Alice encrypts SMs using a
key shared only with Bob, i.e., similar to a common cryptosystem scenario. If Alice utilizes the Vernam
cipher then, the encrypted SMs are certainly produced according to the Bernoulli (1/2) distribution,
while if Alice employs “modern block” or “stream” ciphers, the encoded sequence thus “looks like”
a sequence of random Bernoulli (1/2) trials. Herein, “look like” means that it is indistinguishable
in polynomial time, or that the resemblance is proved experimentally by statistical data, known for
all broadly utilized ciphers [132,133]. Eve or a third party is monitoring all messages transmitted
from Alice to Bob and is attempting to detect whether SMs are being passed in the CM or not. In the
best case scenario, if the text hiding technique does not change the CMHM by embedding the SM it
means that the CM and CMHM have the same probability distribution (µ), hence, it is impossible to
distinguish the presence of the HM from the CMHM. In [127], the authors confirmed that if the alphabet
A is finite, then the average number of invisible/hidden symbols per character Ln goes to Shannon’s
entropy H(µ) for the source µ, as n goes to infinity; as a result of this statement the definition can
be expressed as follows: H(µ) = −∑a∈A µ(a) log2 µ(a). Since, some existing text hiding techniques
embed invisible symbols into the CM for marking the SMbits, the trace of embedding into CMHM is
visually imperceptible, but, in practice, the CM and CMHM are statistically distinguishable, and their
variation rate can be calculated by Equation (2), i.e., a Jaro similarity function [29,125,126].

2.3. The Unicode Standard

Unicode is a universal standard which has been introduced for the processing, encoding, and
handling of the digital texts expressed in most of the world’s writing systems from 1987 until
now [100–104]. In other words, the Unicode standard is an encoding system which designed to
support the worldwide display, processing, and interchange of the texts with different languages

Entropy 2019, 21, 355 6 of 31

and technical disciplines. Moreover, it also supports classical and historical characters of many
languages. Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP,
FTP, and HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and
BlackBerry) and programming languages for processing and displaying digital texts. This standard
consists of three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides
17 planes, each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of
1,114,112 possible symbols/characters in various formats such as numbers, letters, emoticons, and
a vast number of current characters in different languages, i.e., the UTF-8 presents one byte for
any ASCII character, which have the same code values in both ASCII and UTF-8, and up to four
bytes for other symbols [1–7]. In the Unicode, there are special zero-width characters (ZWC) which
are employed to provide specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two
supportable characters together in particular languages, POP directional, and Zero Width Non-Joiner
(ZWNJ), etc. Practically, the ZWC characters do not have traces, widths or written symbol in digital
texts [1–8,11,15,18,25–28,33,34,41–43,50–68,86–100]. Recently, many text hiding techniques that utilize
social media, email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a
particular social media platform, if it employs the Unicode standard to process digital texts in different
languages, then the ZWCs represent invisible written symbols. Otherwise, they might just show
some unusual symbols. As listed in Table 1, We have collected all of the utilized characters from the
literature and tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have
no trace with respect to the written symbol. In practice, when ZWCs/special spaces are employed
for embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text which
contained some ZWCs in the new host file, then these characters will be considered as the Unicode
encoding and show an invisible text trace. Otherwise, they display some unsupported characters and
raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol

[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width
[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,27,34,54] Six-Per-Em Space U+2006 8198

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,27,34,54] Figure Space U+2007 8199

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,27,34,54] Punctuation Space U+2008 8200

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,34,54,58] Thin Space U+2009 8201

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,34,54] En Quad U+2000 8192

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,34,54] Three-Per-Em Space U+2004 8196

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,34,54] Four-Per-Em Space U+2005 8197

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces

[5–7,27,34,100] Normal Space U+0020 32

Entropy 2018, 20, x FOR PEER REVIEW 6 of 30

technical disciplines. Moreover, it also supports classical and historical characters of many languages.
Necessarily, Unicode is required by the various Internet protocols (e.g., TCP/IP, SMTP, FTP, and
HTTP, etc.) and implemented in all operating systems (e.g., Android, Windows, iOS, and BlackBerry)
and programming languages for processing and displaying digital texts. This standard consists of
three different encoding forms, UTF-8, UTF-16, and UTF-32, for which Unicode provides 17 planes,
each with “65,536” possible letters (or ‘code points’). Therefore, it affords a total of 1,114,112 possible
symbols/characters in various formats such as numbers, letters, emoticons, and a vast number of
current characters in different languages, i.e., the UTF-8 presents one byte for any ASCII character,
which have the same code values in both ASCII and UTF-8, and up to four bytes for other symbols
[1–7]. In the Unicode, there are special zero-width characters (ZWC) which are employed to provide
specific entities such as Zero Width Joiner (ZWJ), e.g., ZWJ joins two supportable characters together
in particular languages, POP directional, and Zero Width Non-Joiner (ZWNJ), etc. Practically, the
ZWC characters do not have traces, widths or written symbol in digital texts [1–8,11,15,18,25–
28,33,34,41–43,50–63,64–68,86–100]. Recently, many text hiding techniques that utilize social media,
email, SMS, as communication channels have been introduced [1,6,8,11,20,36,37]. In a particular social
media platform, if it employs the Unicode standard to process digital texts in different languages,
then the ZWCs represent invisible written symbols. Otherwise, they might just show some unusual
symbols. As listed in Table 1, We have collected all of the utilized characters from the literature and
tested them by Java programming in .txt, MS .docx, and HTML files, i.e., the ZWCs have no trace
with respect to the written symbol. In practice, when ZWCs/special spaces are employed for
embedding a secret data in the cover text, the default encoding used must one of the Unicode
encodings like UTF-8, UTF-16, or UTF-32. In case of attack, if a malicious user copies a target text
which contained some ZWCs in the new host file, then these characters will be considered as the
Unicode encoding and show an invisible text trace. Otherwise, they display some unsupported
characters and raise suspicions about the existence of secret information [1,3,6,7].

Table 1. The most utilized special Unicode characters in recent introduced techniques.

Algorithm Name Hex Code Decimal Code Written Symbol
[1,27,28,33,42,55,58,91] Zero-Width-Non-Joiner U+200C 8204 No symbol and width

[1,4] POP Directional U+202C 8236 No symbol and width
[1,4] Left-To-Right Override U+202D 8237 No symbol and width

[1,28,33,42] Left-To-Right Mark U+200E 8206 No symbol and width
[4] Right -To- Left Override U+202E 8238 No symbol and width

[5,6,53,54,91] Narrow No-Break Space U+202F 8239 No symbol and width
[55,56] Left-to-right embedding U+202A 8234 No symbol and width
[55,56] Right-to-left embedding U+202B 8235 No symbol and width

[7,55,56] Mongolian-vowel separator U+180E 6158 No symbol and width
[28,33] Right -To- Left Mark U+200F 8207 No symbol and width

[28,33,42,55,56] Zero-Width-Joiner U+200D 8205 No symbol and width
[42,55,56,58] Zero-Width-Space U+200B 8203 No symbol and width

[55,56] Zero-Width-Non-Break U+FEFF 65279 No symbol and width
[5–7,27,34,53,54,58] Hair Space U+200A 8202 “ ”

[5–7,27,34,54] Six-Per-Em Space U+2006 8198 “ ”
[5–7,27,34,54] Figure Space U+2007 8199 “ ”
[5–7,27,34,54] Punctuation Space U+2008 8200 “ ”
[5–7,34,54,58] Thin Space U+2009 8201 “ ”

[5–7,34,54] En Quad U+2000 8192 “ ”
[5–7,34,54] Three-Per-Em Space U+2004 8196 “ ”
[5–7,34,54] Four-Per-Em Space U+2005 8197 “ ”

[5–7,27,34,100] Normal Space U+0020 32 “ ”

Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does not
allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode spaces
Based on our experiments, Gmail blocked the “U+200B” character, and the Apple iOS does

not allow one to transmit the “U+200D” character. Moreover, we highlighted the special Unicode

Entropy 2019, 21, 355 7 of 31

spaces between double quotation marks and changed the font color to show their width, but they are
transparent in practice.

These days, social media play a vital role in the new digital world; the end users are using it
to keep in touch with their friends or make some new friends. Sometime to exhibit confidence they
post/share their latest accomplishments with friends. Everyone utilizes it differently. Some end users
are employing social media as per their priorities and awareness to achieve their means. Further, these
tools are all handy for online advertisements, payments, and business systems. At the early stages,
social media was not that big yet, but now people can use it for almost anything in their daily life.
Also, people’s cultures have been more impacted than anything else by social media in recent years.
Large media companies are not expected to go away overnight, nor will the demand to communicate
by smartphone or meet people in person, but social media provides one more means of engaging with
users on this enormous planet, and if employed effectively could give all a more desirable option in
how to live and communicate to each other in the digital world. Since the text message in the form of
SMS, chat, email, and so on, has become a popular and easy form of communication, concerns about
data leakage attacks, such as hacking, hijacking, and phishing, have emerged [1,6,8,11]. Table 2 lists
the text character limitation of social media and messenger apps which support the Unicode standard
to process digital texts in different languages (except for ‘Twitter’ and ‘Telegram’).

Table 2. Text Character Limitation of Social Media and Messenger apps [1,6].

Number Social Media or
Messenger Name Message/Post Text Limits Number

of ASCII Characters
Text Limits Number
of UTF-8 Characters

1 SMS Message 2048 1024
2 Facebook Wall Post 63,206 31,603
3 LinkedIn Post 52,286 29,718

4 Twitter Tweet 280 140 (Exclusive
encoding)

5 Google+ Post 100,000 50,000
6 Instagram Pic Caption 2200 1100
7 Pinterest Pin Description 500 250

8 YouTube Video
Description 5000 2500

9 WhatsApp Message 30,000 30,000
10 Gmail Mail Text 35,000,000 35,000,000
11 WeChat Message 16,207 16,207
12 Imo Message Virtually Unlimited Virtually Unlimited
13 Hangouts Message Virtually Unlimited Virtually Unlimited

14 Telegram Message 4096 (Exclusive
encoding)

4096 (Exclusive
encoding)

15 Line Message 10,000 10,000
16 Tango Message 520 520
17 QQ Message 16,207 16,207

2.4. Text Hiding Applications

Text Steganography algorithms are applicable in many applications. The following points are the
most significant applications of text steganography.

2.4.1. Hidden Communication

Text hiding could be utilized to communicate hidden information over public networks such as
the Internet. One may embed secret bits into an unnoticeable text message/file which is routinely
transmitted over such networks: a greeting, joke, story, etc. Since the text messages/files are sent using
unsecured communication channels such as SMS, social media and so on, they are exposed to attacks.
Users of such techniques may consist of intelligence or people who are subject to censorship such as
detectives, journalists, judges, and so on [1,6,10–12].

Entropy 2019, 21, 355 8 of 31

2.4.2. Network Covert Channels

Text hiding can be used to make covert channels that provide unexpected stealthy communication
over the networks. Recently, covert channels were employed by cyber-attacks, i.e., to permit a covert
transmission of malware data. Nevertheless, they could also be applied for legitimate goals, such as
transmitting illicit information under Internet censorship [14,98,107].

2.4.3. Unauthorized Access Detection

Text hiding could also be employed to detect unauthorized access to sensitive documents over
private networks. For example, sensitive/confidential documents in a governmental or commercial
organization can be marked with identifiers that are difficult to detect. The aim is to trace unauthorized
access/use of a sensitive document to a specific user who may have obtained a copy of the
marked document. The receiver of such documents should not be aware of the existence of the
identifiers [12,40,64].

2.5. Text Hiding Criteria

There are many things to be considered when programmers design a text hiding algorithm.
However, the fundamental criteria can be easily found in recently introduced algorithms: invisibility,
embedding capacity, robustness, and security [1]. The communication channel over which the CMHM
is transmitted can be noisy or noiseless, for the case of an active or a passive warden, respectively. Also,
the steganographer capability to select the CM is often restricted if not altogether non-existent [12]. In a
network (private or public) application, the CM is produced by a steganographer (in a public channel)
or a content provider (in a private channel), i.e., for the private network application, the authority
responsible for document security. Moreover, for the covert channel application, the CM is created by
the computer, not by the infringer. Depending on these applications, a trade-off must be sought for
satisfying the criteria on any point inside the magic triangle as depicted in Figure 3 [1,7,10,12].

Entropy 2018, 20, x FOR PEER REVIEW 8 of 29

Users of such techniques may consist of intelligence or people who are subject to censorship such as
detectives, journalists, judges, and so on [1,6,10–12].

2.4.2. Network Covert Channels

Text hiding can be used to make covert channels that provide unexpected stealthy
communication over the networks. Recently, covert channels were employed by cyber-attacks, i.e.,
to permit a covert transmission of malware data. Nevertheless, they could also be applied for
legitimate goals, such as transmitting illicit information under Internet censorship [14,98,107].

2.4.3. Unauthorized Access Detection

Text hiding could also be employed to detect unauthorized access to sensitive documents over
private networks. For example, sensitive/confidential documents in a governmental or commercial
organization can be marked with identifiers that are difficult to detect. The aim is to trace
unauthorized access/use of a sensitive document to a specific user who may have obtained a copy of
the marked document. The receiver of such documents should not be aware of the existence of the
identifiers [12,40,64].

2.5. Text Hiding Criteria

There are many things to be considered when programmers design a text hiding algorithm.
However, the fundamental criteria can be easily found in recently introduced algorithms: invisibility,
embedding capacity, robustness, and security [1]. The communication channel over which the CMHM
is transmitted can be noisy or noiseless, for the case of an active or a passive warden, respectively.
Also, the steganographer capability to select the CM is often restricted if not altogether non-existent
[12]. In a network (private or public) application, the CM is produced by a steganographer (in a public
channel) or a content provider (in a private channel), i.e., for the private network application, the
authority responsible for document security. Moreover, for the covert channel application, the CM is
created by the computer, not by the infringer. Depending on these applications, a trade-off must be
sought for satisfying the criteria on any point inside the magic triangle as depicted in Figure 3
[1,7,10,12].

Figure 3. Evaluation criteria of text hiding algorithms.

2.5.1. Invisibility

Quantifying an attacker or Eve’s capability to discover/detect the existence of HM is called
invisibility (or imperceptibility/detectability/transparency), i.e., the embedding trace of an HM in the
CMHM must be invisible and avoid raising the suspicions of human vision systems. In other words,
invisibility refers to how many perceptual modifications are made in the CMHM after embedding an
HM. Practically, it cannot be measured numerically. The best way of analyzing the degree of
invisibility is to compare the variation of CM and CMHM, i.e., with and without the HM [1,7,10,12]. In

Figure 3. Evaluation criteria of text hiding algorithms.

2.5.1. Invisibility

Quantifying an attacker or Eve’s capability to discover/detect the existence of HM is called
invisibility (or imperceptibility/detectability/transparency), i.e., the embedding trace of an HM in the
CMHM must be invisible and avoid raising the suspicions of human vision systems. In other words,
invisibility refers to how many perceptual modifications are made in the CMHM after embedding an
HM. Practically, it cannot be measured numerically. The best way of analyzing the degree of invisibility
is to compare the variation of CM and CMHM, i.e., with and without the HM [1,7,10,12]. In some
literature, researchers utilized the Jaro–Winkler Distance (or Jaro Similarity) for analyzing the similarity
of the original CM and CMHM. It can be defined as follows:

Entropy 2019, 21, 355 9 of 31

The Jaro distance dj of two given strings s1 = Lenngth(CM) and s2 = length(CMHM) is:

dj =

{
0 i f m = 0
1
3

(
m
|s1|

+ m
|s2|

+ m−t
m

)
else

(2)

where, m is the number of matching characters, and t is half the number of transpositions. Two letters
from CM and CMHM, respectively, are considered identical only if they are equal and not higher
than

⌊
max(|s1|,|s2|)

2

⌋
− 1. Each letter of CM is compared with all the matching characters in CMHM.

The number of identical letters (but in different sequence order) divided by 2 specifies the number of
transpositions. If the dj is “0”, then the CM and CMHM are not similar, and “1” means both are exactly
the same. A dj nearest to 1 represents that the CM and CMHM are closely similar [29,125,126]. However,
it does not consider the similarity of the structural techniques due to the fact they do not modify the
characters of the CM to hide the SMbits.

2.5.2. Embedding Capacity (EC)

The number of secret bits which can be embedded in the CM is called embedding capacity
(or payload). This feature could be measured numerically in units of bit-per-locations (BPL) or
character-per-locations (CPL). Location means a changeable feature (or character/word) which can be
considered as an embeddable location (EL) in the CM such as between words, after special characters,
etc. Nevertheless, a text steganography algorithm provides a large EC; it is not efficient if it modifies
the CM profoundly [1,7,10,12]:

ECCM = BPL× ELCM or ECCM = CPL× ELCM (3)

2.5.3. Distortion Robustness (DR)

Multiple attacks may occur on the CMHM while it is transmitted on the channels where it may be
exposed to a hazard that could destroy the HM. Moreover, attackers may try to manipulate the HM
rather than remove it. Therefore, any type of distortion might occur deliberately or even unintentionally
on the CMHM. A robust text hiding algorithm makes the HM extremely difficult to alter or destroy.
It could also be measured numerically based on losing or removing probability P(L). In other words,
P(L) is the probability of how much proportion of the hidden symbols has been lost from CMHM.
Let us suppose that the number of ELs in the CM is NL, the length of the CM is stand as TC. Thus,
the P(L) = NL/TC and the P(DR) can be computed as follows [1,3]:

P(DRHM) = [1− P(L)]; 1 < NL < TC, NL ∈ N, TC ∈ N. (4)

2.5.4. Security

There is a certain level of safety that prevents attackers from detecting the HM visually or from
removing it from the CMHM (i.e., quantifying decoding reliability in the presence of channel noise when
Eve is an active warden). This measure depends on three other criteria: invisibility, embedding capacity,
and distortion robustness. An efficient steganography algorithm must provide an optimum trade-off
among these criteria. If a method affords a large EC, the embedding trace of HM is invisible, and
robustness is high, then the security of the algorithm can be calculated using Equation (4). In modern
text hiding techniques, a cryptosystem can be utilized to protect secret bits against decoding attacks.
In practice, the encryption function is employed to secure the SMbits before embedding them into the
CM, and alters the sequence of the secret bits such that they can only be extracted by the corresponding
decryption function [1,12]. Decoding Probability (DP) is the probability of decoding an original SMbits
by guessing attacks. Let us suppose that, an attacker speculates a message may contain an HM (e.g.,
he/she does not have any clue about the approach that was utilized to conceal the SM). Moreover,
the attacker may try to decode the SM using conventional approaches or guessing the SMbits (using

Entropy 2019, 21, 355 10 of 31

probability distribution analysis) from the invisible symbols or features. Since an encryption function
is used to secure the SMbits based on a secret key (K), it is impossible to decode the original SM from
the encrypted SMbits without having the secret key and the corresponding decryption function. If NS
is the length of the SM binary, the P(DP) for guessing a correct encrypted binary string of the SM can
be calculated as follows:

P(DP) =
NS

∑
i=i|k

(
1
2i)

NS
i , i : ∃k∈N|i×k=NS, i ∈ [1, . . . , NS], i ∈ N (5)

2.5.5. Computational Complexity

The computational cost or complexity is the least significant measure for the next-generation
smart devices such as computers, smartphones, tablets, etc. Nevertheless, there could be many pages in
some text files; thus, it is preferable that steganography/watermarking techniques be computationally
less complex. It is obvious that the long text files need more hardware or software resources, that is,
they have higher computational complexity. Generally, the less complex approaches are employed for
resource-limited systems such as embedded microprocessors and mobile devices. Let us assume that
the NS is the length of the SM, and the LC is the length of CM; Then, the minimum computational
cost for the Emb()/Ext() is O(NS×LC) due to need for searching LC times to finding the embeddable
locations for marking each letter of the SM (or SMbits). However, the complexity of the additional
costs such as encryption function, the dictionary of words, etc. must be considered in those techniques
utilizing them during the embedding/extraction process [3,46,49].

2.6. Modern Text Hiding & Kerckhoffs’s Principle

Since modern steganography/watermarking is a key-based algorithm similar to cryptography,
the question for adhering to Kerckhoffs’s principle may emerge [1,17]. Kerckhoffs introduced for the
first time the prudent tradition known as “Kerckhoffs’s principle” for cryptology in which an ideal
crypto-system should be secure even if everything about the system is identified to the public except
the secret key [104]. Therefore, an ideal text hiding algorithm should guarantee that it adheres to
Kerckhoffs’s principle. Even if the attacker identifies how the stego-system works, it should not be
possible to discover the system design. As depicted in Figure 2, the CMHM is just like CM and the
original CM is not sent to the recipient in the transmission process—thus any receiver cannot compare
the CMHM with the original CM. Therefore, the original SM is only extractable by the key which is
encrypted using a specific algorithm, so without knowing the original secret key, no one could break a
modern text hiding algorithm [10,12,17,104].

2.7. Text Steganalysis and Attacks

In contrast to text steganography (or watermarking), text steganalysis is the estimation process
and science of identifying whether a given text message/file has hidden information in it, and,
if possible, extracting/recovering the secret message. This term is similar to the way cryptanalysis
is utilized in cryptography. In practice, the text steganalysis is a complicated task, because of the
wide variety of digital text characteristics, the extensive variation of embedding approaches and
usually, the low embedding distortion. In some cases, text steganalysis is possible due to the fact
data embedding modifies the statistics of the cover message/file. In other words, the existence
of embedded symbols (e.g., those techniques which modify the CM in order to hide the secret
bits) still makes an original CM and its corresponding CMHM different in some aspects, though
this is often imperceptible to the human vision system. Concerning the application, steganalysis
methods could be typically classified into two categories: specific and universal. While the former
attempt to break a unique watermarking/steganography algorithm, the latter aim to thwart all
watermarking/steganographic algorithms. In practice, specific techniques achieve higher detection
accuracy as compared to universal ones due to the fact they use prior knowledge of how the particular

Entropy 2019, 21, 355 11 of 31

target algorithm works. However, the universal steganalysis is more attractive in practical application
since they could operate independently of the embedding method and even be generalized to
unknown steganography/watermarking approaches [16,17,105,106]. From a steganalysis point of
view, we can classify the possible attacks into three types, including visual attacks, structural attacks
and statistical/probabilistic attacks.

2.7.1. Visual Attacks

The visual attacks or Manipulation by Readers (MBR) refers to a human factor, often a viewer
who could perceptually (visually) observe the modifications through the CMHM or stego object. These
modifications may consist of syntactic, semantic paraphrasing, lexical, rhetorical changes, and so on.
Let us assume that an attacker has complete access to the CMHM, and if he suspects that there exist
some unconventional modifications through the CMHM, then, he might manipulate it (i.e., it could
be an intentional deletion, insertion, or re-ordering of words/characters). In practice, any types of
manipulations through the CMHM may destroy the HM [1,3,17,23,111].

2.7.2. Structural Attacks

This attack involves modifying the layout of the CMHM. In some cases, attackers may change the
formatting (e.g., font or copy from the CMHM to a new host file), encoding (e.g., ASCII, UTF-8, UTF-16,
etc.) of the CMHM that may lead to destroying the HM [1,3,17].

2.7.3. Statistical Attacks

This attack works based on the possibilities of guessing a correct SM in which the adversary
can discover occult symbols from the CMHM by considering the number of words, spaces, and so on.
Basically, this attack utilizes the knowledge of existing approaches to decode/guess the original SM
using probability distribution functions [10]. When the CMHM does not show any visible alterations,
the adversary processes the characters/letters of the CMHM to analyze the statistical variations, i.e., it
may happen during the data transmission using MITM attacks [1,31,110]. Let us suppose that a CMHM

contains NC characters, NH hidden symbols (spaces, zero-width characters, etc.). If the length of the
SM is NS, then there are 2NS possible secret messages which can occur. Thus, the number of possible
solutions (NP) for guessing the SM can be obtained as follows:

NP = k× 2NS, SM = {c1, c2, . . . , cNS}. (6)

Moreover, the number of guessing the NH symbols from the CMHM can be computed using
Equation (7):

P(NH, NC) =

(
NC
NH

)
=

NC!
(NC− NH)!× NH!

, NH ≤ NC. (7)

Therefore, the probability of guessing a correct SM (i.e., cracking probability) from the CMHM can
be calculated as follows:

P(SM) =
1

NP
× 1

P(NH, NC)
=

1
2NS × NC!

(NC−NH)!×NH!

. (8)

If a text hiding algorithm utilizes an encryption function to secure the SMbits using a secret key,
then the P(SM) is equal to zero (i.e., it is impossible to break) [10].

3. Various Types of Text Hiding Techniques

Technically, there are various algorithms employed for information hiding in the form of the
text steganography and text watermarking in the literature [3,19,46,49]. In practice, these two terms
are different in the goal of embedding hidden data into a cover text message/file, where the concern

Entropy 2019, 21, 355 12 of 31

is the protection of cover text content (called “text watermarking),” and the concern is the hidden
transmission of the secret information (called “text steganography”). We can classify the existing text
hiding techniques into one of the categories in Figure 4, namely, structural, linguistic, and random and
statistics [2,3,20,29,49].

Entropy 2018, 20, x FOR PEER REVIEW 12 of 29

is the protection of cover text content (called “text watermarking),” and the concern is the hidden
transmission of the secret information (called “text steganography”). We can classify the existing text
hiding techniques into one of the categories in Figure 4, namely, structural, linguistic, and random
and statistics [2,3,20,29,49].

Figure 4. Various types of text hiding techniques.

3.1. Structural Techniques

Structural or format-based algorithms involve modifying the layout features or format of the
CM to mark/hide the SMbits, i.e., based on the Unicode or the ASCII encoding without altering the
sentences or words. These features consist of word spacing, line spacing, font style, text color, and so
on [1–8,11,20,34,41,54,65,66,100,112–114]. Herein, we classify the structural-based techniques into
four categories, including, open space, line/word shift, zero-width, feature/format, and emoticons.

3.1.1. Open Space

The open space (or white space)-based techniques utilize special Unicode spaces to mark/embed
secret bits into the CM, i.e., for example: between words, end of the sentences, and so on. Many
approaches have been introduced using the idea of open space during the last two decades. In
practice, these techniques provide high invisibility, low embedding capacity and modest robustness
against visual attacks. Moreover, they can be applied in multilingual digital texts
[6,7,15,27,34,41,54,65,66,100].

3.1.2. Line/Word Shift

Line/Word shift-based techniques involve shifting lines vertically or words horizontally to hide
the SMbits through the cover text file. In other words, these techniques evaluate the scanned images of
the printed documents to extract or reveal the watermark. In practice, they are not applicable in
digital texts because if someone copies the carrier text to a new host file, the extraction algorithm
cannot discover the hidden information. From the criteria point of view, these techniques typically
provide low embedding capacity, high invisibility, and low robustness against structural attacks
[112–114].

3.1.3. Zero-Width

The zero-width-based techniques employ the ZWC Unicode characters to embed/mark the SMbits
into the cover text. From the text processing point of view, the ZWCs have no text trace (written
symbols) and can be embedded in different locations through the CM, but, they can be processed by

Figure 4. Various types of text hiding techniques.

3.1. Structural Techniques

Structural or format-based algorithms involve modifying the layout features or format of the
CM to mark/hide the SMbits, i.e., based on the Unicode or the ASCII encoding without altering the
sentences or words. These features consist of word spacing, line spacing, font style, text color, and so
on [1–8,11,20,34,41,54,65,66,100,112–114]. Herein, we classify the structural-based techniques into four
categories, including, open space, line/word shift, zero-width, feature/format, and emoticons.

3.1.1. Open Space

The open space (or white space)-based techniques utilize special Unicode spaces to mark/embed
secret bits into the CM, i.e., for example: between words, end of the sentences, and so on. Many
approaches have been introduced using the idea of open space during the last two decades. In practice,
these techniques provide high invisibility, low embedding capacity and modest robustness against
visual attacks. Moreover, they can be applied in multilingual digital texts [6,7,15,27,34,41,54,65,66,100].

3.1.2. Line/Word Shift

Line/Word shift-based techniques involve shifting lines vertically or words horizontally to hide
the SMbits through the cover text file. In other words, these techniques evaluate the scanned images of
the printed documents to extract or reveal the watermark. In practice, they are not applicable in digital
texts because if someone copies the carrier text to a new host file, the extraction algorithm cannot
discover the hidden information. From the criteria point of view, these techniques typically provide
low embedding capacity, high invisibility, and low robustness against structural attacks [112–114].

3.1.3. Zero-Width

The zero-width-based techniques employ the ZWC Unicode characters to embed/mark the SMbits
into the cover text. From the text processing point of view, the ZWCs have no text trace (written
symbols) and can be embedded in different locations through the CM, but, they can be processed
by programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width

Entropy 2019, 21, 355 13 of 31

steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate
a random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, B = “

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, C = “

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches have
high embedding capacity, they suffer from visible transparency (low invisibility), and low distortion
robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs,
nouns, adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics
such as synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a
CM [17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two
types: syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling
of words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In this

Entropy 2019, 21, 355 14 of 31

approach, the primary form of “La” (“ A�Ë”) is employed for hiding a bit “0,” and specific form of the

word “La” (“B”) is employed for concealing a bit “1” through the CM. In practice, the syntactic-based
techniques have low embedding capacity, high invisibility and high robustness against structural
attacks. They are also vulnerable to visual attacks.

3.3. Random and Statistics Techniques

The random and statistics generation algorithms employ the statistical features of the SM to
generate the CM automatically. In other words, these techniques do not require an existing CM, and
utilize the structures and properties of a particular language i.e., what is the past format of a verb, how
to generate the sentences, etc. [21,23,24,29,34,35,39,47,51,124]. In general, these methods have higher
computational complexity which consumes more time and space to generate a CM.

3.3.1. Compression

The compression-based methods utilize a lossless compression algorithm such as Huffman coding,
Lempel–Ziv–Welch (LZW), arithmetic coding, etc. to hide the SMbits into the CM [21,24,34,35,39].
For example, a LZW compression-based steganography algorithm presented in [39] embeds the SMbits
in e-mail addresses. This method considers the statistical distance for each letter of the SM such that a
dependent ‘distance’ of the same letter in the cover text is computed. Therefore, a ‘distance vector’ is
derived for the SM and a ‘distance matrix’ is produced for each CM. A text which gives the highest
frequency of the distance values is finally selected from the text-based as a CM as well as the stego key.
Moreover, the LZW code is computed for this distance matrix and the produced bits are divided into
blocks of 12 bits including 9-bit, and 3-bit segregations. These segregations are employed to choose the
domain name and the user-name from the available options to make a valid e-mail address. In practice,
the compression-based algorithms require high computational complexity, and they are not efficient
for hiding the SM in short cover texts. However, they provide high invisibility, optimum capacity, and
low robustness against structural attacks.

3.3.2. Random Cover

The random cover-based techniques work by generating a cover according to the SM letters.
Initially, the Emb() must generate a CM based on the SM letters, and then embed/mark the SMbits inside
the CM [23,47,51,124]. For instance, a random cover generation technique called AH4S introduced
in [51], which employs the structure of the omega network to conceal the SMbits in a generated
CM. This method picks a character from the SM and utilizes the omega network to generate two
related letters based on a picked character. Moreover, it searches in a predefined dictionary for
an appropriate English cover word to hide the two generated characters and reproduces the same
process for all characters of the SM. This approach generates a long unknown text for a short SM and
increases suspicions for readers/attackers. Practically, the random cover-based techniques provide
perceptual transparency (low invisibility), low capacity, and high robustness. Moreover, they have
high computational complexity for generating the CM during the embedding/extraction process.

3.4. An Empirical Comparison

To demonstrate the variations between various types of text hiding techniques, we summarized
an example of embedding method for each category as depicted in Figure 5. Let us assume that the
Emb() of each approach hides an SM (or SMbits) through the CM, and each one produced a CMHM,
which are different from the other ones. Thus, we can observe that there are some pros & cons for each
category as listed in Table 3. We rated each type empirically based on the criteria, including, invisibility
(Imperceptible, Perceptible), EC (Low, Modest, and High), and DR (Low, Medium, and High).

Entropy 2019, 21, 355 15 of 31

Entropy 2018, 20, x FOR PEER REVIEW 14 of 29

this approach, the primary form of “La” (“لـا”) is employed for hiding a bit “0,” and specific form of
the word “La” (“لا”) is employed for concealing a bit “1” through the CM. In practice, the syntactic-
based techniques have low embedding capacity, high invisibility and high robustness against
structural attacks. They are also vulnerable to visual attacks.

3.3. Random and Statistics Techniques

The random and statistics generation algorithms employ the statistical features of the SM to
generate the CM automatically. In other words, these techniques do not require an existing CM, and
utilize the structures and properties of a particular language i.e., what is the past format of a verb,
how to generate the sentences, etc. [21,23,24,29,34,35,39,47,51,124]. In general, these methods have
higher computational complexity which consumes more time and space to generate a CM.

3.3.1. Compression

The compression-based methods utilize a lossless compression algorithm such as Huffman
coding, Lempel–Ziv–Welch (LZW), arithmetic coding, etc. to hide the SMbits into the CM
[21,24,34,35,39]. For example, a LZW compression-based steganography algorithm presented in [39]
embeds the SMbits in e-mail addresses. This method considers the statistical distance for each letter of
the SM such that a dependent ‘distance’ of the same letter in the cover text is computed. Therefore, a
‘distance vector’ is derived for the SM and a ‘distance matrix’ is produced for each CM. A text which
gives the highest frequency of the distance values is finally selected from the text-based as a CM as
well as the stego key. Moreover, the LZW code is computed for this distance matrix and the produced
bits are divided into blocks of 12 bits including 9-bit, and 3-bit segregations. These segregations are
employed to choose the domain name and the user-name from the available options to make a valid
e-mail address. In practice, the compression-based algorithms require high computational
complexity, and they are not efficient for hiding the SM in short cover texts. However, they provide
high invisibility, optimum capacity, and low robustness against structural attacks.

3.3.2. Random Cover

The random cover-based techniques work by generating a cover according to the SM letters.
Initially, the Emb() must generate a CM based on the SM letters, and then embed/mark the SMbits
inside the CM [23,47,51,124]. For instance, a random cover generation technique called AH4S
introduced in [51], which employs the structure of the omega network to conceal the SMbits in a
generated CM. This method picks a character from the SM and utilizes the omega network to generate
two related letters based on a picked character. Moreover, it searches in a predefined dictionary for
an appropriate English cover word to hide the two generated characters and reproduces the same
process for all characters of the SM. This approach generates a long unknown text for a short SM and
increases suspicions for readers/attackers. Practically, the random cover-based techniques provide
perceptual transparency (low invisibility), low capacity, and high robustness. Moreover, they have
high computational complexity for generating the CM during the embedding/extraction process.

Figure 5. An empirical comparison between linguistic, structural, and random & statistics algorithms.

Linguistic Structural

CM: I Love an Apple.

CMHM: I Like an Apple. CMHM: I love an Apple.

CM: I Love an Apple.

1 or 0 “01,…10, 11”

Topkara et al., 2006 [71] Taleby Ahvanooey et al., 2018 [1]

V.S V.S

Random & Statistics
SM: A
CMHM: aard aard aard
aard aard aard aard aard
aard aard aard aard 2
Hamdan and Hamarsheh, 2016 [51]

Figure 5. An empirical comparison between linguistic, structural, and random & statistics algorithms.

Table 3. Highlighted pros & cons of various types of text hiding techniques concerning criteria.

Type Name Invisibility EC DR Language
Coverage Pros & Cons

Linguistic
[17,62,70,71,80–

85,106,109]
Imperceptible Low Medium Exclusive

â Having high complexity due to using
an additional dictionary to replace the
words/characters in the CM.

â Altering the meaning of original CM
after embedding an SM.

â Depending on an exclusive language
(e.g., English, Persian/Arabic, etc.)

â Providing high invisibility, Low EC
(e.g., 1 bit per synonym), and Medium
robustness against visual attacks.

Structural
[1–8,11,20,34,

41,54,65,66,100,
112–114]

Imperceptible High High Multilingual

â Having no perceptible changes on the
original CM after embedding an SM.

â Increasing the length of the CM by
embedding additional Unicode
invisible symbols.

â Depending on the encoding features of
the CM (e.g., not the CM content, or
language).

â Providing high invisibility (except color
based methods), higher EC (e.g., n-bit
per location), and high robustness
against structural and visual attacks.

Random &
Statistics

[21,23,24,29,34,
35,39,47,51,124]

Perceptible Modest High Exclusive

â Having high complexity due to
employing an extra compression
algorithm to encode the SMbits.

â High robustness against visual attacks
â Depending on the language of the CM.
â Providing perceptible transparency

(low invisibility), modest EC, and high
robustness against visual attacks

As listed in Table 4, we summarized some highlights and limitations for each category separately
by considering their characteristics and their applications.

Entropy 2019, 21, 355 16 of 31

Table 4. Highlights & Limitations of various types of text hiding techniques.

Type Hidden
Transmission

Network Cover
Channels

Unauthorized
Access Detection Highlights and Limitations

Linguistic 3 3 ×

â The linguistic-based methods
are not applicable to
unauthorized access detection
due to altering the original
meaning of the CM during the
embedding an SM.

â For employing in covert
channels, they need a long CM,
and can only be used in a CM
with exclusive language.

â For utilizing in hidden
transmission, they are not
enforceable in limited
communication channels.

Structural 3 3 3

â The structural-based
approaches can provide all of
three applications.

â For utilizing in hidden
transmission, they are not
applicable in limited
communication channels.

â Due to employing
language-independent features
of the CM to embed the SM,
these methods could be used in
multilingual texts.

Random &
Statistics 3 3 ×

â The random cover–based
algorithms are not applicable to
unauthorized access detection
due to generating an
unknown CM.

â For applying in hidden
transmission, the generated CM
raises suspicions for attackers.

â Due to generating a CM based
on the SM, these approaches
could only be applied to secure
an SM with exclusive language.

4. Efficiency Analysis of Recent Structural Techniques

During the last decade, many structural based text hiding algorithms have been introduced, and
a few methods proposed in the linguistic-based and random and statistics-based categories. There are
some reasons for that: some limitations such as low EC, altering the meaning of the CM, generating
an unknown CM, etc. which make them inefficient for some applications might be the main reason.
The second reason is that they both work based on the features of the language of the CM/SM to
hide the SM that require some additional needs such as a predefined dictionary, dataset, etc. In what
follows, we summarized the recent structural-based techniques that can be applied in multilingual
texts and various applications.

Por et al. [7] proposed a text-based data hiding technique called UniSpaCh, which generates a
binary string of the SM and isolates it by 2-bit classification (i.e., “10, 01, 00, and 11”). Moreover, it
substitutes each 2-bit with a special space (e.g., Thin, Hair, Six-Per-Em, and Punctuation). Finally, it
embeds the additional spaces into predefined locations such as inter-words, inter-sentences, end-of-line,
and inter-paragraphs into the MS Word file. However, this technique gives high invisibility, high

Entropy 2019, 21, 355 17 of 31

robustness against structural and visual attacks, but it has low EC rate (two bits per spaces) and is not
applicable to embed a long SMbits into a short CM.

Odeh et al. [33] suggested a novel text steganography algorithm called ZW_4B using the ZWCs
characters that hides SMbits inside an MS Word file. As depicted in Table 5, this algorithm employs
four ZWCs to mark four bits of the SMbits between letters in the CM file. For instance, the algorithm
inserts all the four ZWCs after a letter through the CM, then it represents the hidden code is “0001”,
if it embeds three ZWCs, then it marks “0001”, and so on. In practice, this technique provides high
invisibility, higher embedding capacity, and can be applied in multilingual texts. However, it suffers
from low robustness since only the embeddable location is between letters. Moreover, this method can
preserve the embedded bits against structural attacks.

Table 5. Sample of Hidden Bits by using Word Symbols in [33].

Right to Left Mark Left to Right Mark ZWJ ZWNJ SMbits

× × × × 0000
× × × - 0001
× × - × 0010
× × - - 0011
.

Naqvi et al. [29] presented a multi-layer text steganography scheme called MHST using
homomorphic encryption, which replaces the characters of the SM with the letters of the CM to
hide it. In the experimental results, the authors claimed that this algorithm provides high embedding
capacity, imperceptible transparency, and high robustness against structural attacks, but it suffers from
visual or MBR attacks. i.e., if an attacker manipulates a portion of the CMHM, the extraction process of
the SM might fail due to possibility of removing some characters of the SM through the CM.

Odeh and Elleithy [90] introduced a text steganography method called ZWBSP that embeds the
SMbits by adding a ZWC (U+200B) beside of the normal space (U+0020) between words through the
MS Word file. This algorithm considers the embeddable location before/after the standard space
between words based on a predefined pattern as outlined in Table 6. In practice, this method gives
high invisibility, low EC, and medium robustness. Moreover, it is applicable in different languages,
and protects the embedded SMbits against structural, and visual attacks.

Table 6. Predefined pattern of embedding location in [90].

2-Bit Embeddable Location

‘00′ No ‘ZWC’ + ”U+0020”
‘01′ “U+0020” + No ‘ZWC’
‘10′ “U+200B” + ”U+0020”
‘11′ “U+0020” + “U+200B”

Rizzo et al. [5] provided a text watermarking approach called TWSM which can embed a password
based watermark in a Latin-based CM. This approach utilizes the homoglyph Unicode characters
and special spaces for marking the watermark/SMbits in the CM. The researchers claimed that this
approach could conceal a watermark (64 bit) into a short CM with only 46 letters and, also, it provides
high invisibility and high capacity. However, it is vulnerable to structural attacks (e.g., modifying the
font type of the CMHM causes the SMbits to be lost), and visual attacks. Due to its use of homoglyph
characters, this method could only be applied in Latin-based cover texts. Later on, Rizzo et al. [6] used
the same algorithm [5] to mark/embed a watermark in social media platforms.

In [58], Alotaibi and Elrefaei proposed two watermarking techniques based on modifying the
cover text using ZWCs and Unicode spaces. In the first algorithm, the dotting attribute of the Arabic
language applied in [15] is utilized to enhance the capacity of the previous work. Moreover, the

Entropy 2019, 21, 355 18 of 31

ZWNJ is employed to mark/embed before and after the normal space depending on the letter which
is pointed or unpointed. In the second algorithm, four Unicode characters are utilized to add next
to normal space (e.g., ZWNJ, Thin, Hair, and ZW), herein is called 4-SpaCh. Every four bits from
the SMbits are marked/embedded by corresponding the Unicode characters and order: the 1st bit is
denoted by the ZWNJ, the 2nd bit by Thin space, the 3rd bit by Hair space, and the 4th bit by ZW space.
Hence, if the algorithm embeds all four spaces, then it represents a ‘1′, otherwise a ‘0′. In practice, the
second algorithm can be utilized for embedding in multilingual texts due to employing the Unicode
characters to mark the SMbits into the CMHM. This technique has higher EC, high imperceptibility, and
low DR against visual attacks, i.e., if an attacker manipulates a portion of the CMHM (consisting of
some spaces), then it causes extraction by the corresponding Ext() to fail for the whole of the SM.

Shu et al. [11] presented a text steganography algorithm by employing a combination of white-
space and extended-line called WS_EL which provides secure communication on social media [23].
This approach generates a binary SM string, and embeds an additional white space between words,
at the end of a line, and at the end of the paragraph to mark the SMbits. In the experimental results,
they claimed that this approach gives optimum EC, high invisibility, but, it also has low DR against
visual attacks.

Taleby Ahvanooey et al. [1] proposed an innovative text steganography algorithm called AITSteg
which can hide a long SM through a short CM for sending via social media. This method generates an
SM binary string by the “Gödel” function and encodes the SMbits by a dynamic random key generation
algorithm. Also, it converts the encoded SMbits to ZWCs based on a predefined pattern as outlined
in Table 7, and embeds them in front of the CM. In this work, the authors evaluated the AITSteg on
fifteen social media (or messenger apps), and pointed out that only two social media including Twitter
and Telegram do not support the employed ZWCs. From the experimental results, it can be concluded
that the AITSteg provides high invisibility, high EC, and high DR against visual and structural attacks.

Table 7. Unicode ZWCs 2-bit classification pattern in [1].

2-Bit Classification Hex Code

00 U+200C
01 U+202C
10 U+202D
11 U+200E

Kumar et al. [34] suggested a text steganography scheme called 4&3SpaCh which extended the
UniSpaCh [7] by efficiently employing the Unicode characters. This scheme conceals the SMbits into
the MS Word file by considering the embeddable locations, including, inter-sentence, inter-word,
end-of-line, and inter-paragraph spaces. As listed in Tables 8 and 9, the authors utilized two different
patterns to mark the SMbits through the CM. However, this scheme provides high imperceptibility, and
higher EC compared to the UniSpaCh, and high DR against structural attacks. However, it generates
some unconventional gaps between words through the CMHM, which causes increased visual attacks.

Entropy 2019, 21, 355 19 of 31

Table 8. Mapping Pattern of SMbits for marking the inter-word and inter-sentence locations in [34].

Spaces Pattern 4-bit Classification

Normal Space 0000
Normal Space + Three-Per-Em 0001
Three-Per-Em + Normal Space 0010
Normal Space + Four-Per-Em 0011
Four-Per-Em + Normal Space 0100
Normal Space + Six-Per-Em 0101
Six-Per-Em + Normal Space 0110

Normal Space + Figure 0111
Figure + Normal Space 1000
Normal Space + Thin 1001
Thin + Normal Space 1010
Normal Space + Hair 1011
Hair + Normal Space 1100

Normal Space + Punctuation 1101
Punctuation + Normal Space 1110

Normal Space + Narrow No-Break 1111
Narrow No-Break + Normal Space 1111

Table 9. Mapping Pattern of SMbits for marking the inter-paragraph and end of line locations in [34].

Spaces Pattern 3-bit Classification

Three-Per-Em Space 000
Four-Per-Em Space 001
Six-Per-Em Space 010

Figure Space 011
Punctuation Space 100

Thin Space 101
Hair Space 110

Narrow No-Break Space 111

Patiburn et al. in [13] developed an emoticons-based text steganography scheme called EM_ST
which generates a random text consisting of some words as a CM. Moreover, it converts all the SM
characters into emoticons based on a particular pattern (e.g., A=“

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, B=“

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, C=“

Entropy 2018, 20, x FOR PEER REVIEW 13 of 30

programming analysis of the CMHM. These approaches can be utilized in multilingual texts and
various text processing platforms such as social media, email, SMS, etc. For example, a zero-width
steganography technique called AITSteg was proposed in [1], which utilizes the ZWCs to embed a
long SMbits in front of a short CM. Since the ZWCs have invisible text traces through the CM, they can
be embedded using the max number of letters in the channel (e.g., SMS, Facebook, etc.). In practice,
the zero-width-based approaches provide high invisibility, high embedding capacity and higher
robustness against structural attacks [1,4,25–28,33,55,56,91,115].

3.1.4. Feature or Format

The feature/format-based methods involve modifying some features of the cover text such as
font size, style, color, etc. that could be altered to conceal secret bites [18,21,24]. For instance, the
dotting feature of the Arabic texts can be used for marking the SMbits by displacing letter points and
diacritics [116–119]. Since the structure of the Arabic language is similar to the Persian and Urdu
languages, these languages use the same point letters. Several techniques have utilized point letters
to mark/embed secret bits by displacing the position of a point a little bit vertically high concerning
the standard point position through the CM [15,88,90,92]. In practice, these techniques provide high
invisibility (except for color-based ones), higher embedding capacity, and low distortion robustness
against structural attacks. Color-based algorithms are also vulnerable to visual attacks [111].

3.1.5. Emoticons or Emoji

Emoticon or emoji-based approaches utilize the emoji symbols to embed the SMbits through the
CM. These days, end users employ emoticons or emoji symbols in daily conversations instead of
typing their feelings. Recently, several algorithms have been introduced using the cover of emoticons
to mark secret bits through the CM. For instance, the techniques presented in [8,120–122] generate a
random text consisting some words as a CM, and also, they convert the letters of the SM into
emoticons based on a predefined pattern (e.g., A = “😣”, B = “😢”, C = “😃”, and so on.). Moreover,
they embed the produced emoticons between words through the CM. Although these approaches
have high embedding capacity, they suffer from visible transparency (low invisibility), and low
distortion robustness against visual attacks.

3.2. LinguisticTechniques

Llinguistic or natural language processing-based algorithms alter the syntax and semantics
characteristics of the text content. The text typically consists of several words, sentences, verbs, nouns,
adverbs, adjectives, and so on. Several linguistic-based approaches have used characteristics such as
synonyms, abbreviations, the similarity of words, and so on, to embed secret bits into a CM
[17,62,70,71,80–85,106,109]. In general, we can classify the linguistic based approaches into two types:
syntactic and semantic.

3.2.1. Semantic

Semantic methods work based on the specific language characteristics by modifying the
semantic attributes of the CM to mark/embed the SMbits. These attributes include the spelling of
words, abbreviations, synonyms, acronyms, and so on [62,70,71,75,82,84]. The advantage of the
semantic-based methods is that they protect the HM against retyping attacks or the use of OCR
software [111]. Moreover, these methods provide low embedding capacity, high invisibility and high
robustness against structural attacks, but they modify the original meaning of the CM.

3.2.2. Syntactic

Syntactic approaches involve modifying the CM without significantly changing the meaning or
tone of the text content. In different languages, there are some syntactical compositions in their text
structures, which are specified by the language and its specific conventions [3,20,81–83]. For instance,
a method presented in [123], which utilizes the similarity of La word in the Arabic/Persian text. In

”, and so on.)
and, thus embeds the emoticons between words through the CM. Practically, this scheme presents
high EC, and visible transparency (low invisibility), and it suffers from low DR against visual attacks.

To demonstrate the embedding trace and invisibility of the explained algorithms, we implemented
them on some cover text examples. Herein, the implementation means the evaluation of selected
algorithms based on their corresponding Emb()/Ext() approaches.

To ensure a fair comparison between existing structural algorithms, we considered those which
could be applied in multilingual cover texts. Let us suppose that we wish to hide as SMbits = Ab =
”01000010 + 01100010”, then after implementing the aforementioned approaches on highlight cover
text examples, the embedding trace of each method highlighted as depicted in Table 10. To show
the trace of spaces (width or length) in CMHM, we have highlighted them, but they are transparent
in practice.

To evaluate the efficiency of the selected techniques, we implemented them on a simulated dataset.
This dataset is generated by copying randomly some proverbs from referenced websites as outlined in
Tables 11 and 12.

Entropy 2019, 21, 355 20 of 31

Table 10. Implementation of selected structural approaches on the highlight examples.

Algorithm CM CMHM Embedded SMbits

AITSteg [1] The only source of knowledge is experience.

Entropy 2018, 20, x FOR PEER REVIEW 19 of 29

Table 9. Mapping Pattern of SMbits for marking the inter-paragraph and end of line locations in [34].

Spaces Pattern 3-bit Classification

Three-Per-Em Space 000

Four-Per-Em Space 001

Six-Per-Em Space 010

Figure Space 011

Punctuation Space 100

Thin Space 101

Hair Space 110

Narrow No-Break Space 111

Patiburn et al. in [13] developed an emoticons-based text steganography scheme called EM_ST

which generates a random text consisting of some words as a CM. Moreover, it converts all the SM

characters into emoticons based on a particular pattern (e.g., A=“😣”, B=“😢”, C=“😃”, and so on.)

and, thus embeds the emoticons between words through the CM. Practically, this scheme presents

high EC, and visible transparency (low invisibility), and it suffers from low DR against visual attacks.

To demonstrate the embedding trace and invisibility of the explained algorithms, we

implemented them on some cover text examples. Herein, the implementation means the evaluation

of selected algorithms based on their corresponding Emb()/Ext() approaches.

Table 10. Implementation of selected structural approaches on the highlight examples.

Algorithm CM CMHM
Embedded

SMbits
AITSteg [1] The only source of knowledge is experience. The only source of knowledge is experience. 12

ZW_4B [33] The only source of knowledge is experience. The only source of knowledge is experience. 16

MHST [29] The only source of knowledge is experience. The only source of knowledge is experience. 0

ZWBSP [90] The only source of knowledge is experience. The only source of knowledge is experience. 12

TWSM [5,6] The only source of knowledge is experience. The only source of knowledge is experience. 16

4-SpaCh [58] The only source of knowledge is experience. The  only  source  of  knowledge is experience. 16

WS_EL [11] The only source of knowledge is experience. The only source of knowledge is experience. 6

4&3SpaCh [34] The only source of knowledge is experience. knowledge is experience.  of  source  only The 16

UniSpaCh [7] The only source of knowledge is experience. The  only source of  knowledge  is  experience. 16

EM_ST [13] The only source of knowledge is experience. The😣only😢source of knowledge is experience. 16

Table 11. Dataset: cover message examples.

Name Text Content Reference

CM.1

Science without religion is lame, religion without science is

blind.

https://www.brainyquote.com

CM.2

君子之行，静以修身，俭以养德，非澹泊无以明志，非宁静无

以致远。《诫子书》

https://www.fluentu.com/

CM.3

Die größte Gefahr für die meisten von uns ist nicht, dass wir

hohe Ziele anstreben und sie verfehlen, sondern dass wir uns

zu niedrige setzen und sie erreichen.

https://www.germanpod101.com

CM.4

 خراب اش خانه کند، آباد را مملکتش بخواهد کس هر که است ییجا سوم جهان

 .بکوشد مملکتش یرانیو در دیبا کند آباد را اش خانه بخواهد کس هر و شود یم

http://www.bartarinha.ir/

CM.5

Chi vuol andar salvo per lo mondo, bisogna aver occhio di

falcone, orecchio d’asino, viso di scimia, bocca di porcello, spalle

di camello, è gambe di cervo.

http://oaks.nvg.org/

12
ZW_4B [33] The only source of knowledge is experience. 16
MHST [29] The only source of knowledge is experience. 0
ZWBSP [90] The only source of knowledge is experience. 12
TWSM [5,6] The only source of knowledge is experience. 16
4-SpaCh [58] The only source of knowledge is experience. 16
WS_EL [11] The only source of knowledge is experience. 6

4&3SpaCh [34] The only source of knowledge is experience. 16
UniSpaCh [7] The only source of knowledge is experience. 16
EM_ST [13] The only source of knowledge is experience. 16

Table 11. Dataset: cover message examples.

Name Text Content Reference

CM.1

Entropy 2018, 20, x FOR PEER REVIEW 19 of 30

 Table 9. Mapping Pattern of SMbits for marking the inter-paragraph and end of line locations in [34].

Spaces Pattern 3-bit Classification

Three-Per-Em Space 000

Four-Per-Em Space 001

Six-Per-Em Space 010

Figure Space 011

Punctuation Space 100

Thin Space 101

Hair Space 110

Narrow No-Break Space 111

Patiburn et al. in [13] developed an emoticons-based text steganography scheme called EM_ST

which generates a random text consisting of some words as a CM. Moreover, it converts all the SM

characters into emoticons based on a particular pattern (e.g., A=“😣”, B=“😢”, C=“😃”, and so on.)

and, thus embeds the emoticons between words through the CM. Practically, this scheme presents

high EC, and visible transparency (low invisibility), and it suffers from low DR against visual attacks.

To demonstrate the embedding trace and invisibility of the explained algorithms, we

implemented them on some cover text examples. Herein, the implementation means the evaluation

of selected algorithms based on their corresponding Emb()/Ext() approaches.

Table 10. Implementation of selected structural approaches on the highlight examples.

Algorithm CM CMHM
Embedded

SMbits
AITSteg [1] The only source of knowledge is experience. The only source of knowledge is experience. 12

ZW_4B [33] The only source of knowledge is experience. The only source of knowledge is experience. 16

MHST [29] The only source of knowledge is experience. The only source of knowledge is experience. 0

ZWBSP [90] The only source of knowledge is experience. The only source of knowledge is experience. 12

TWSM [5,6] The only source of knowledge is experience. The only source of knowledge is experience. 16

4-SpaCh [58] The only source of knowledge is experience. The  only  source  of  knowledge is experience. 16

WS_EL [11] The only source of knowledge is experience. The only source of knowledge is experience. 6

4&3SpaCh [34] The only source of knowledge is experience. knowledge is experience.  of  source  only The 16

UniSpaCh [7] The only source of knowledge is experience. The  only source of  knowledge  is  experience. 16

EM_ST [13] The only source of knowledge is experience. The😣only😢source of knowledge is experience. 16

Table 11. Dataset: cover message examples.

Name Text Content Reference

CM.1

Science without religion is lame, religion without science

is blind.

https://www.brainyquote.com

CM.2

君子之行，静以修身，俭以养德，非澹泊无以明志，非宁

静无以致远。《诫子书》

https://www.fluentu.com/

CM.3

Die größte Gefahr für die meisten von uns ist nicht, dass

wir hohe Ziele anstreben und sie verfehlen, sondern dass

wir uns zu niedrige setzen und sie erreichen.

https://www.germanpod101.com

CM.4

 اش خانه کند، آباد را مملکتش بخواهد کس هر که است ییجا سوم جهان

 یرانیو در دیبا کند آباد را اش خانه بخواهد کس هر و شود یم خراب

 .بکوشد مملکتش

http://www.bartarinha.ir/

CM.5

Chi vuol andar salvo per lo mondo, bisogna aver occhio di

falcone, orecchio d’asino, viso di scimia, bocca di porcello,

spalle di camello, è gambe di cervo.

http://oaks.nvg.org/

https://www.brainyquote.com

CM.2

https://www.fluentu.com/

CM.3
https://www.germanpod101.com

CM.4

http://www.bartarinha.ir/

CM.5
http://oaks.nvg.org/

https://www.brainyquote.com
https://www.fluentu.com/
https://www.germanpod101.com
http://www.bartarinha.ir/
http://oaks.nvg.org/

Entropy 2019, 21, 355 21 of 31

Table 12. The detailed structures of sample cover texts.

Cover Name Characters Spaces Words Sentences Lines Language

CM.1 68 9 10 1 2 English
CM.2 36 0 36 1 2 Chinese
CM.3 160 27 28 1 4 German
CM.4 137 30 31 1 3 Persian
CM.5 156 26 27 1 4 Italian

Let us assume that we wish to hide a SM = “original” or (64-bit) through the sample cover
messages as depicted in Table 11. To evaluate the invisibility rate of selected algorithms, we analyzed
them using equation (2) considering the differences between CM and CMHM for each method that the
obtained results listed in Table 13.

Table 13. Invisibility (%) Analysis of evaluated methods using Jaro Distance based on the examples.

Algorithm CM.1 CM.2 CM.3 CM.4 CM.5 Average Invisibility (%)

AITSteg [1] 89.3 84.3 94.4 89.3 95.1 ∼=90
UniSpaCh [7] 83.8 0 80.8 79.9 80.4 ∼=81
ZW_4B [33] 62.5 47.2 94.0 0 93.4 ∼=74
MHST [29] 100 0 100 100 100 ∼=100
ZWBSP [90] 96.1 0 95.1 80.1 95 ∼=92
TWSM [5,6] 85.7 0 81.8 79.3 80.7 ∼=82
4-SpaCh [58] 82.9 0 84 84.1 96.5 ∼=87
WS_EL [11] 83.4 0 81.1 80.3 80.6 ∼=81

4&3SpaCh [34] 84.9 0 87 87.5 84.6 ∼=86
EM_ST [13] 83.2 0 81.1 80.1 80.1 ∼=81

Since the majority of selected approaches embed the SMbits into the CM based on the bit-level
marking (except MHST [29] & EM_ST [13]), we normalize the EC of each approach by considering 8-bit
binary for each character of the SM. Moreover, we evaluate the embedding capacity of the selected
algorithms based on the number of embeddable locations required to embed the SM in the CM.

Table 14 summarizes the EC rates offered by the evaluated approaches after analyzing them on
the highlight samples (e.g., SM and CM). Assuming that a malicious user tampers with a word or a
letter of the CMHM, then can the SMbits be extracted from the CM’HM by the extraction algorithm? To
answer this question, we evaluated the approximate DR rate of each approach based on the embedding
locations and the cover messages in Table 12 using equation (4) separately. The DR results listed in
Table 15, and Figure 6 illustrates the average invisibility, EC and DR of evaluated techniques.

Table 14. EC (Bit & %) results of structural approaches on the highlight samples.

Algorithm Type of
Embedding CM.1 CM.2 CM.3 CM.4 CM.5 Average

EC/64 (%)

AITSteg [1] Bit-level 64 64 64 64 64 ∼= 64 => 100
UniSpaCh [7] Bit-level 22 4 62 64 60 ∼= 42 => 65
ZW_4B [33] Bit-level 64 64 64 0 64 ∼= 51 => 80
MHST [29] Character-Level 8*8 = 64 0 8*8 = 64 0 8*8 = 64 ∼= 64 => 100
ZWBSP [90] Bit-level 18 0 56 60 52 ∼= 46 => 72
TWSM [5,6] Bit-level 47 0 64 64 64 ∼= 60 => 93
4-SpaCh [58] Bit-level 36 0 64 64 64 ∼= 57 => 89
WS_EL [11] Bit-level 11 2 31 33 31 ∼= 22 => 33
4&3SpaCh

[34] Bit-level 45 9 64 64 64 ∼= 59 => 92

EM_ST [13] Character-Level 8*8 = 64 0 8*8 = 64 8*8 = 64 8*8 = 64 ∼= 64 => 100

Entropy 2019, 21, 355 22 of 31

Table 15. Approximate DR (%) results of evaluated approaches on the highlight samples.

Algorithm CM.1 CM.2 CM.3 CM.4 CM.5 Average DR (%)

AITSteg [1] 98.5 97.2 99.3 99.2 99.3 ∼=99
UniSpaCh [7] 83.8 88.8 80.6 75.9 80.7 ∼=82
ZW_4B [33] 76.4 55.5 90 88.3 89.7 ∼=80
MHST [29] 88.2 0 95 0 94.8 ∼=93
ZWBSP [90] 86.7 0 83.1 78.1 83.3 ∼=83
TWSM [5,6] 57.3 0 66.8 78.1 51.9 ∼=64
4-SpaCh [58] 86.7 0 83.1 78.1 83.3 ∼=83
WS_EL [11] 83.8 95 80.6 75.9 80.1 ∼=83

4&3SpaCh [34] 82.3 91.6 80 75.1 80.1 ∼=82
EM_ST [13] 86.7 0 83.1 78.1 83.3 ∼=83

Entropy 2018, 20, x FOR PEER REVIEW 21 of 29

letter of the CMHM, then can the SMbits be extracted from the CM’HM by the extraction algorithm? To
answer this question, we evaluated the approximate DR rate of each approach based on the
embedding locations and the cover messages in Table 12 using equation (4) separately. The DR results
listed in Table 15, and Figure 6 illustrates the average invisibility, EC and DR of evaluated techniques.

Table 15. Approximate DR (%) results of evaluated approaches on the highlight samples.

Algorithm CM.1 CM.2 CM.3 CM.4 CM.5 Average DR (%)
AITSteg [1] 98.5 97.2 99.3 99.2 99.3 ≅99

UniSpaCh [7] 83.8 88.8 80.6 75.9 80.7 ≅82
ZW_4B [33] 76.4 55.5 90 88.3 89.7 ≅80
MHST [29] 88.2 0 95 0 94.8 ≅93
ZWBSP [90] 86.7 0 83.1 78.1 83.3 ≅83
TWSM [5,6] 57.3 0 66.8 78.1 51.9 ≅64
4-SpaCh [58] 86.7 0 83.1 78.1 83.3 ≅83
WS_EL [11] 83.8 95 80.6 75.9 80.1 ≅83

4&3SpaCh [34] 82.3 91.6 80 75.1 80.1 ≅82
EM_ST [13] 86.7 0 83.1 78.1 83.3 ≅83

Figure 6. The overlap between the average Invisibility, EC and DR results (%).

Table 16 depicts a comparative analysis of selected structural approaches in terms of criteria and
language coverage along with their limitations. To demonstrate the efficiency of evaluated
algorithms, we rated them according to the results concerning to invisibility, EC, and DR: for
example, invisible, and visible for the invisibility; low, medium, and high scale for the EC; low,
modest, and high for the DR.

In practice, all the approaches that work based on modifying the spaces between words, cannot
be applied in Chinese texts because in this language there are no spaces between words.

To demonstrate the pros and cons, we considered four types of effective attacks for assessing
their limitations such as visual (tampering), structural (formatting), statistical (decoding), and
retyping attacks. Let us suppose that a malicious user copies a portion (or all) of the CMHM which
included the SMbits into a new host text message/file and randomly modifies it in terms of mentioned
attacks. In this case, if even one bit or character of the SM is altered, then it leads to the extraction of
the SM by the corresponding Ext() to fail. Table 17 depicts the evaluated results conducted on the
CMHM examples.

Figure 6. The overlap between the average Invisibility, EC and DR results (%).

Table 16 depicts a comparative analysis of selected structural approaches in terms of criteria and
language coverage along with their limitations. To demonstrate the efficiency of evaluated algorithms,
we rated them according to the results concerning to invisibility, EC, and DR: for example, invisible,
and visible for the invisibility; low, medium, and high scale for the EC; low, modest, and high for
the DR.

Entropy 2019, 21, 355 23 of 31

Table 16. Comparative analysis of structural approaches in terms of criteria and language coverage.

Algorithm EC DR Invisibility Limitations Language
Coverage

AITSteg [1] High High Imperceptible Embeds additional ZWCs in
front of the CM Multilingual

UniSpaCh [7] Low Medium Imperceptible Depends on the spaces
between words Multilingual

ZW_4B [33] Modest Medium Imperceptible Embeds four ZWCs after each
letter Exclusive (Latin)

MHST [29] High High Imperceptible Depends on using an
exclusive language in the SM Exclusive (Latin)

ZWBSP [90] Low Medium Imperceptible Depends on the spaces
between words Multilingual

TWSM [5,6] High Low Imperceptible Depends on the spaces and
font style of the CM Exclusive (Latin)

4-SpaCh [58] Modest Medium Imperceptible Depends on the spaces
between words Multilingual

WS_EL [11] Low Medium Imperceptible Embeds two spaces between
words Multilingual

4&3SpaCh [34] High Medium Imperceptible Depends on the spaces
between words Multilingual

EM_ST [13] High Medium Visible Embeds additional emoticons
between words Multilingual

In practice, all the approaches that work based on modifying the spaces between words, cannot
be applied in Chinese texts because in this language there are no spaces between words.

To demonstrate the pros and cons, we considered four types of effective attacks for assessing
their limitations such as visual (tampering), structural (formatting), statistical (decoding), and retyping
attacks. Let us suppose that a malicious user copies a portion (or all) of the CMHM which included the
SMbits into a new host text message/file and randomly modifies it in terms of mentioned attacks. In this
case, if even one bit or character of the SM is altered, then it leads to the extraction of the SM by the
corresponding Ext() to fail. Table 17 depicts the evaluated results conducted on the CMHM examples.

Table 17. A comparison analysis of evaluated techniques against the stated attacks.

Algorithm
Having Robustness Against Attack: Yes (3) and No (×)

Security Limitations
Visual Structural Statistical Retyping

AITSteg [1] 3 3 3 × Optimum safety (3)
UniSpaCh [7] 3 3 3 × Optimum safety (3)
ZW_4B [33] × 3 3 × Medium safety (2)
MHST [29] × 3 3 × Medium safety (2)
ZWBSP [90] 3 3 3 × Optimum safety (3)
TWSM [5,6] × × 3 × Easy to lose (1)
4-SpaCh [58] 3 3 3 × Optimum safety (3)
WS_EL [11] 3 3 3 × Optimum safety (3)

4&3SpaCh [34] 3 3 3 × Optimum safety (3)
EM_ST [13] × 3 3 × Medium safety (2)

As shown in Table 17, almost all the evaluated algorithms have some limitations; however, some
of them provide better safety than others. In practice, the programmers must take into account the
priority of criteria in case of fragile or robust and, so, they choose a proper approach based on the
security limitations which could give more safety in the particular application.

5. Suggestions for Future Works

Text hiding is a flexible and potent technique that could be employed in different ways to
keep safe sensitive information in various areas such as covert communication, copyright protection,

Entropy 2019, 21, 355 24 of 31

authentication, etc. Although the efficiency of text hiding algorithms has drawn much attention from
cybersecurity researchers, it still lacks a precise analysis modeling which could take the fundamental
criteria into account during the efficiency analysis.

As we already explained, there are four evaluation criteria for efficiency analysis, which rely on
the way of embedding. In other words, the embedding methods generally specify how to evaluate
the efficiency of the particular algorithm. Therefore, to assess the effectiveness of a specific algorithm,
it is necessary to compare it with previous works within the same category (e.g., linguistic, structural,
and random and statistics). We have also summarized the various limitations of three major types
of text hiding techniques in Table 3, which provides a better understanding of the state-of-the-art
and hopefully can guide in developing future works. Since many types of research concerning the
structural-based techniques (only a few algorithms proposed in other categories) and affording better
efficacy have been carried out, we have tried to highlight the recently proposed algorithms in this paper.

As we have pointed out in Section 3, the linguistic and random and statistics-based approaches
have more limitations compared to structural-based methods. Due to the use of extra dictionaries and
high computational complexity, a few researchers focused on linguistic and random and statistics-based
approaches in recent years as well. Over the last decade, many structural-based algorithms have been
introduced to improve the efficiency of text hiding by considering the optimum trade-off between
criteria, as depicted in Tables 16 and 17. However, the embedding capacity and robustness of them
require to be more improved against various attacks regarding security requirements. In what follows,
we recommend some guidelines aimed at instructing cybersecurity researchers on the best options to
apply the structural based algorithms relying on the characteristics of the applications. Nevertheless,
we have to declare that these recommendations are general and empirically derived rules of thumb;
these directions should not be considered rigidly or dogmatically.

• Since most of the authentication systems utilize SMS to verify the authenticity of users, the
structural-based technique can be employed as the best option to provide covert communication
against unpredictable network attacks such as MITM, brute-force, and guessing attacks.

• Where the primary concern is the invisible transmission of secret information over
public networks, the structural-based steganography algorithms could be utilized for providing
that requirement.

• In the case of unauthorized access tracking, a combination of machine learning algorithms
and the ZWC-based methods can be employed to mark sensitive documents over private networks.
For instance, confidential documents in a governmental organization could be marked with identifiers
such as an invisible signature which is difficult to detect.

• Due to the fact social media have become a significant part of the end users’ daily
communications, a combination of unsupervised learning algorithms and structural-based text hiding
can be used to intelligent information analysis during the resharing/reproduction of data to protect
valuable information against malicious attacks.

• The lossless compression algorithms such as Huffman coding, LZW, arithmetic, and so on,
could be utilized during the encoding section of structural-based methods to improve the embedding
capacity criteria. An efficient text hiding algorithm should provide optimum trade-off among the three
fundamental criteria to gain a certain level of security.

• To sum up, which type of text hiding algorithms provides better efficiency? We cannot give an
accurate and unique answer to this question. Cybersecurity researchers must take into account many
things like various pros and cons of text hiding algorithms, together with the recommendations that
we have outlined. Also, they should ponder whether the text hiding techniques would be relevant
or not for the particular application. When the researcher comprehends that some of the merits of a
specific algorithm could provide a proper benefit to the exact needs of the application at issue; hence it
should probably be given a try.

Entropy 2019, 21, 355 25 of 31

6. Conclusions

This case study presents a comparative analysis of existing text hiding techniques, especially on
those focused on modifying the structural characteristics of digital text message/file. We overviewed a
range of fundamental criteria, applications, and attacks covering the text hiding area to explain the
current security challenges in the cybersecurity industry. Also, we summarized three major categories
of text hiding techniques based on how to process cover text messages/files to embed the secret
bits, namely, structural, linguistic, and random and statistics. We then outlined the limitations and
characteristics of each category to show their efficiency in various applications. Moreover, we evaluated
the recently proposed approaches concerning the fundamental criteria to highlight their pros and
cons. Finally, we have recommended some of guidelines and directions that merit further attention in
future works.

Author Contributions: Conceptualization, writing—original draft, software, validation, and methodology, M.T.A.;
Ph.D. dissertation supervision, project administration, funding acquisition, Q.L.; formal analysis, J.H.; review,
A.R.; investigation, C.Y.

Funding: This research was funded in part by the Nanjing Municipal Government Scholarship (NMG), Jiangsu
province of China, [grant number 2016050328], in part by the Project of ZTE Cooperation Research [2016ZTE04-11],
Jiangsu province key research and development program: Social development project [BE2017739], Jiangsu
province key research and development program: Industry outlook and common key technology projects
[BE2017100], 2018 Jiangsu Province Major Technical Research Project “Information Security Simulation System”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahvanooey, M.T.; Li, Q.; Hou, J.; Mazraeh, H.D.; Zhang, J. AITSteg: An Innovative Text Steganography
Technique for Hidden Transmission of Text Message via Social Media. IEEE Access 2018, 6, 65981–65995.
[CrossRef]

2. Kamaruddin, N.S.; Kamsin, A.; Por, L.Y.; Rahman, H. A Review of Text Watermarking: Theory, Methods,
and Applications. IEEE Access 2018, 6, 8011–8028. [CrossRef]

3. TAhvanooey, M.T.; Li, Q.; Shim, H.J.; Huang, Y. A Comparative Analysis of Information Hiding Techniques
for Copyright Protection of Text Documents. Secur. Commun. Netw. 2018, 2018, 5325040.

4. Ahvanooey, M.T.; Mazraeh, H.D.; Tabasi, S.H. An innovative technique for web text watermarking (AITW).
Inf. Secur. J. Glob. Perspect. 2016, 25, 191–196. [CrossRef]

5. Rizzo, S.G.; Bertini, F.; Montesi, D. Content-preserving Text Watermarking through Unicode Homoglyph
Substitution. In Proceedings of the 20th International Database Engineering & Applications Symposium
(IDEAS ’16), Montreal, QC, Canada, 11–13 July 2016; pp. 97–104.

6. Rizzo, S.G.; Bertini, F.; Montesi, D.; Stomeo, C. Text Watermarking in Social Media. In Proceedings of the
2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Sydney,
Australia, 31 July–3 August 2017.

7. Por, L.Y.; Wong, K.; Chee, K.O. UniSpaCh: A text-based data hiding method using Unicode space characters.
J. Syst. Softw. 2012, 85, 1075–1082. [CrossRef]

8. Patiburn, S.A.; Iranmanesh, V.; Teh, P.L. Text Steganography using Daily Emotions Monitoring. Int. J. Educ.
Manag. Eng. 2017, 7, 1–14. [CrossRef]

9. Zhou, X.; Wang, Z.; Zhao, W.; Yu, J. Attack Model of Text Watermarking Based on Communications.
In Proceedings of the 2009 International Conference on Information Management, Innovation Management
and Industrial Engineering, Xi’an, China, 26–27 December 2009.

10. Cachin, C. An information-theoretic model for steganography. Inf. Comput. 2004, 192, 41–56. [CrossRef]
11. Shiu, H.J.; Lin, B.S.; Lin, B.S.; Huang, P.Y.; Huang, C.H.; Lei, C.L. Data Hiding on Social Media

Communications Using Text Steganography. In Proceedings of the International Conference on Risks
and Security of Internet and Systems, Dinard, France, 19–21 September 2017; pp. 217–224.

12. Wang, Y.; Moulin, P. Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions.
IEEE Trans. Inf. 2008, 54, 2706–2722. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2866063
http://dx.doi.org/10.1109/ACCESS.2018.2796585
http://dx.doi.org/10.1080/19393555.2016.1202356
http://dx.doi.org/10.1016/j.jss.2011.12.023
http://dx.doi.org/10.5815/ijeme.2017.03.01
http://dx.doi.org/10.1016/j.ic.2004.02.003
http://dx.doi.org/10.1109/TIT.2008.921684

Entropy 2019, 21, 355 26 of 31

13. Wendzel, S.; Caviglione, L.; Mazurczyk, W.; Lalande, J.-F. Network Information Hiding and Science 2.0: Can
it be a Match? Int. J. Electron. Telecommun. 2017, 63, 217–222. [CrossRef]

14. Zseby, T.; Vazquez, F.I.; Bernhardt, V.; Frkat, D.; Annessi, R. A Network Steganography Lab on Detecting
TCP/IP Covert Channels. IEEE Trans. Educ. 2016, 59, 224–232. [CrossRef]

15. Alotaibi, R.A.; Elrefaei, L.A. Utilizing Word Space with Pointed and Un-pointed Letters for Arabic Text
Watermarking. In Proceedings of the 2016 UKSim-AMSS 18th International Conference on Computer
Modelling and Simulation (UKSim), Cambridge, UK, 6–8 April 2016; pp. 111–116.

16. Yu, Y.; Min, L.; JianFeng, W.; Bohuai, L.; Yang, Y.; Lei, M.; Wang, J.; Liu, B. A SVM based text steganalysis
algorithm for spacing coding. China Commun. 2014, 11, 108–113.

17. Banik, B.G.; Bandyopadhyay, S.K. Novel Text Steganography Using Natural Language Processing and
Part-of-Speech Tagging. IETE J. Res. 2018, 1–12. [CrossRef]

18. Ramakrishnan, B.K.; Thandra, P.K.; Srinivasula, A.V.S.M. Text steganography: A novel character-level
embedding algorithm using font attribute. Secur. Commun. Netw. 2016, 9, 6066–6079. [CrossRef]

19. Petitcolas, F.; Anderson, R.; Kuhn, M. Information hiding-a survey. Proc. IEEE 1999, 87, 1062–1078. [CrossRef]
20. Fateh, M.; Rezvani, M. An email-based high capacity text steganography using repeating characters. Int. J.

Comput. Appl. 2018, 1–7. [CrossRef]
21. Malik, A.; Sikka, G.; Verma, H.K. A high capacity text steganography scheme based on LZW compression

and color coding. Eng. Sci. Technol. Int. J. 2017, 20, 72–79. [CrossRef]
22. Mahato, S.; Khan, D.A.; Yadav, D.K. A modified approach to data hiding in Microsoft Word documents by

change-tracking technique. J. King Saud Univ. Comput. Inf. Sci. 2017. [CrossRef]
23. Jalil, Z.; Mirza, A.M. A robust zero-watermarking algorithm for copyright protection of text documents.

J. Chin. Inst. Eng. 2013, 36, 180–189. [CrossRef]
24. Malik, A.; Sikka, G.; Verma, H.K. A high capacity text steganography scheme based on huffman compression

and color coding. J. Inf. Optim. Sci. 2017, 38, 647–664. [CrossRef]
25. Rahman, M.S.; Khalil, I.; Yi, X.; Dong, H. Highly imperceptible and reversible text steganography using

invisible character based codeword. In Proceedings of the PACIS 2017: Twenty First Pacific Asia Conference
on Information Systems, Langkawi, Malaysia, 19 July 2017; pp. 1–13.

26. Rahma, A.M.S.; Bhaya, W.S.; Al-Nasrawi, D.A. Text steganography based on Unicode of characters in
multilingual. Int. J. Eng. Res. Appl. (IJERA) 2013, 3, 1153–1165.

27. Aman, M.; Khan, A.; Ahmad, B.; Kouser, S. A hybrid text steganography approach utilizing Unicode space
characters and zero-width character. Int. J. Inf. Technol. Secur. 2017, 9, 85–100.

28. Odeh, A.; Elleithy, K.; Faezipour, M.; Abdelfattah, E. Highly efficient novel text steganography algorithms.
In Proceedings of the 2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May
2015; pp. 1–7.

29. Naqvi, N.; Abbasi, A.T.; Hussain, R.; Khan, M.A.; Ahmad, B. Multilayer Partially Homomorphic Encryption
Text Steganography (MLPHE-TS): A Zero Steganography Approach. Wirel. Pers. Commun. 2018, 103,
1563–1585. [CrossRef]

30. Maram, B.; Gnanasekar, J.M.; Manogaran, G.; BalaAnand, M. Intelligent security algorithm for UNICODE
data privacy and security in IOT. Serv. Comput. Appl. 2018, 13, 1–13. [CrossRef]

31. Rahman, M.S.; Khalil, I.; Yi, X. A lossless DNA data hiding approach for data authenticity in mobile cloud
based healthcare systems. Int. J. Inf. Manag. 2019, 45, 276–288. [CrossRef]

32. Liu, Y.; Zhu, Y.; Xin, G. A zero-watermarking algorithm based on merging features of sentences for Chinese
text. J. Chin. Inst. Eng. 2014, 38, 391–398. [CrossRef]

33. Odeh, A.; Elleithy, K.; Faezipour, M. Steganography in text by using MS word symbols. In Proceedings of the
Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport,
CT, USA, 3–5 April 2014; pp. 1–5.

34. Kumar, R.; Chand, S.; Singh, S. An efficient text steganography sheme using Unicode Space Characters. Int. J.
Comput. Sci. 2015, 10, 8–14. [CrossRef]

35. Satir, E.; Işık, H. A Huffman compression based text steganography method. Multimed. Tools Appl. 2012, 70,
2085–2110. [CrossRef]

36. Kumar, R.; Malik, A.; Singh, S.; Chand, S. A high capacity email based text steganography scheme using
Huffman compression. In Proceedings of the 2016 3rd International Conference on Signal Processing and
Integrated Networks (SPIN), Noida, India, 11–12 February 2016; pp. 53–56.

http://dx.doi.org/10.1515/eletel-2017-0029
http://dx.doi.org/10.1109/TE.2016.2520400
http://dx.doi.org/10.1080/03772063.2018.1491807
http://dx.doi.org/10.1002/sec.1757
http://dx.doi.org/10.1109/5.771065
http://dx.doi.org/10.1080/1206212X.2018.1517713
http://dx.doi.org/10.1016/j.jestch.2016.06.005
http://dx.doi.org/10.1016/j.jksuci.2017.08.004
http://dx.doi.org/10.1080/02533839.2012.734470
http://dx.doi.org/10.1080/02522667.2016.1197572
http://dx.doi.org/10.1007/s11277-018-5868-1
http://dx.doi.org/10.1007/s11761-018-0249-x
http://dx.doi.org/10.1016/j.ijinfomgt.2018.08.011
http://dx.doi.org/10.1080/02533839.2014.981210
http://dx.doi.org/10.5769/J201501001
http://dx.doi.org/10.1007/s11042-012-1223-9

Entropy 2019, 21, 355 27 of 31

37. Tutuncu, K.; Hassan, A.A. New Approach in E-mail Based Text Steganography. Int. J. Intell. Syst. Appl. Eng.
2015, 3, 54. [CrossRef]

38. Abdullah, A.H. Data Security Algorithm Using Two-Way Encryption and Hiding in Multimedia Files. Int. J.
Sci. Eng. Res. 2014, 5, 471–475.

39. Satir, E.; Isik, H.; Işık, H. A compression-based text steganography method. J. Syst. Softw. 2012, 85, 2385–2394.
[CrossRef]

40. Stojanov, I.; Mileva, A.; Stojanovic, I. A new property coding in text steganography of Microsoft Word
documents. In Proceedings of the Eighth International Conference on Emerging Security Information,
Systems and Technologies, Lisbon, Portugal, 16–20 November 2014; pp. 25–30.

41. Rafat, K.F.; Sher, M. Secure Digital Steganography for ASCII Text Documents. Arab. J. Sci. Eng. 2013, 38,
2079–2094. [CrossRef]

42. Baawi, S.S.; Mokhtar, M.R.; Sulaiman, R. Enhancement of Text Steganography Technique Using
Lempel-Ziv-Welch Algorithm and Two-Letter Word Technique. In Proceedings of the International
Conference of Reliable Information and Communication Technology, Kuala Lumpur, Malaysia, 23–24
July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 525–537.

43. Balajee, K.; Gnanasekar, J. Unicode Text Security Using Dynamic and Key-Dependent 16x16 S-Box (January
4, 2016). Aust. J. Basic Appl. Sci. 2016, 10, 26–36.

44. Qadir, M.; Ahmad, I. Digital Text Watermarking: Secure Content Delivery and Data Hiding in Digital
Documents. IEEE Aerosp. Electron. Syst. Mag. 2006, 21, 18–21. [CrossRef]

45. Al-Maweri, N.A.A.S.; Ali, R.; Adnan, W.A.W.; Ramli, A.R.; Rahman, S.M.S.A.A. State-of-the-Art in
Techniques of Text Digital Watermarking: Challenges and Limitations. J. Comput. Sci. 2016, 12, 62–80.
[CrossRef]

46. Singh, P.; Chadha, R.S. A Survey of Digital Watermarking Techniques, Applications and Attacks. Int. J. Eng.
Innov. Technol. 2013, 2, 165–175.

47. Agarwal, M. Text Steganographic Approaches: a comparison. Int. J. Netw. Secur. Its Appl. 2013, 5, 9–25.
[CrossRef]

48. Guru, J.; Damecha, H. Digital Watermarking Classification: A Survey. Int. J. Comput. Sci. Trends Technol. 2014,
2, 122–124.

49. Alkawaz, M.H.; Sulong, G.; Saba, T.; Almazyad, A.S.; Rehman, A. Concise analysis of current text automation
and watermarking approaches. Secur. Commun. Netw. 2016, 9, 6365–6378. [CrossRef]

50. Alhusban, A.M.; Alnihoud, J.Q.O. A Meliorated Kashida Based Approach for Arabic Text Steganography.
Int. J. Comput. Sci. Inf. Technol. 2017, 9, 99–109.

51. Hamdan, A.M.; Hamarsheh, A. AH4S: An algorithm of text in text steganography using the structure of
omega network. Secur. Commun. Netw. 2016, 9, 6004–6016. [CrossRef]

52. Sumathi, C.P.; Santanam, T.; Umamaheswari, G. A Study of Various Steganographic Techniques Used for
Information Hiding. Int. J. Comput. Sci. Eng. Surv. 2013, 4, 9–25.

53. Mir, N. Copyright for web content using invisible text watermarking. Comput. Hum. Behav. 2014, 30, 648–653.
[CrossRef]

54. Sruthi, E.; Scaria, A.; Ambikadevi, A.T. Lossless Data Hiding Method Using Multiplication Property for
HTML File. Int. J. Innov. Res. Sci. Technol. 2015, 1, 420–425.

55. Ahvanooey, M.T.; Tabasi, S.H. A new method for copyright protection in digital text documents by adding
hidden Unicode characters in Persian/English texts. Int. J. Curr. Life Sci. 2014, 8, 4895–4900.

56. Ahvanooey, M.T.; Tabasi, S.H.; Rahmany, S. A Novel Approach for text watermarking in digital documents
by Zero-Width Inter-Word Distance Changes. DAV Int. J. Sci. 2015, 4, 550–558.

57. Bashardoost, M.; Rahim, M.S.M.; Hadipour, N. A novel zero-watermarking scheme for text document
authentication. J. Teknol. 2015, 75, 49–56. [CrossRef]

58. Alotaibi, R.A.; Elrefaei, L.A. Improved capacity Arabic text watermarking methods based on open word
space. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 236–248. [CrossRef]

59. Alginahi, Y.M.; Kabir, M.; Tayan, O. An enhanced Kashida-based watermarking approach for Arabic
text-documents. In Proceedings of the 2013 International Conference on Electronics, Computer and
Computation (ICECCO), Ankara, Turkey, 7–9 November 2013; pp. 301–304.

http://dx.doi.org/10.18201/ijisae.05687
http://dx.doi.org/10.1016/j.jss.2012.05.027
http://dx.doi.org/10.1007/s13369-013-0574-5
http://dx.doi.org/10.1109/MAES.2006.284353
http://dx.doi.org/10.3844/jcssp.2016.62.80
http://dx.doi.org/10.5121/ijnsa.2013.5107
http://dx.doi.org/10.1002/sec.1738
http://dx.doi.org/10.1002/sec.1752
http://dx.doi.org/10.1016/j.chb.2013.07.040
http://dx.doi.org/10.11113/jt.v75.5066
http://dx.doi.org/10.1016/j.jksuci.2016.12.007

Entropy 2019, 21, 355 28 of 31

60. Alginahi, Y.M.; Kabir, M.N.; Tayan, O. An Enhanced Kashida-Based Watermarking Approach for Increased
Protection in Arabic Text-Documents Based on Frequency Recurrence of Characters. Int. J. Comput. Electr.
Eng. 2014, 6, 381–392. [CrossRef]

61. Preda, M.D.; Pasqua, M. Software Watermarking: A Semantics-based Approach. Electron. Notes Theor.
Comput. Sci. 2017, 331, 71–85. [CrossRef]

62. Gu, J.; Cheng, Y. A watermarking scheme for natural language documents. In Proceedings of the 2010
2nd IEEE International Conference on Information Management and Engineering (ICICES 2010), Chengdu,
China, 16–18 April 2010.

63. Jaiswal, R.; Patil, N.N. Implementation of a new technique for web document protection using unicode.
In Proceedings of the 2013 International Conference on Information Communication and Embedded Systems
(ICICES 2013), Chennai, India, 21–22 February 2013; pp. 69–72.

64. Liu, T.-Y.; Tsai, W.-H. A New Steganographic Method for Data Hiding in Microsoft Word Documents by a
Change Tracking Technique. IEEE Trans. Inf. Forensics Secur. 2007, 2, 24–30. [CrossRef]

65. Mohamed, A. An improved algorithm for information hiding based on features of Arabic text: A Unicode
approach. Egypt. Inform. J. 2014, 15, 79–87. [CrossRef]

66. Al-maweri, N.S.; Adnan, W.W.; Ramli, A.R.; Samsudin, K.; Rahman, S.M.S.A.A. Robust Digital Text
Watermarking Algorithm based on Unicode Extended Characters. Indian J. Sci. Technol. 2016, 9, 1–14.
[CrossRef]

67. Zhang, Y.; Qin, H.; Kong, T. A novel robust text watermarking for word document. In Proceedings of the 3rd
International Congress on Image and Signal Processing (CISP2010), Yantai, China, 16–18 October 2010.

68. Kaur, M.; Mahajan, K. An Existential Review on Text Watermarking Techniques. Int. J. Comput. Appl. 2015,
120, 29–32. [CrossRef]

69. Kim, M.Y. Text watermarking by syntactic analysis. In Proceedings of the 12th WSEAS International
Conference on Computers (ICC’ 08), World Scientific and Engineering Academy and Society, Heraklion,
Greece, 24–26 August 2008; pp. 904–909.

70. Topkara, M.; Topkara, U.; Atallah, M.J. Words are not enough: Sentence level natural language watermarking.
In Proceedings of the 4th ACM International Workshop on Contents Protection and Security, Xi’an, China,
30 May 2006.

71. Topkara, U.; Topkara, M.; Atallah, M.J. The Hiding Virtues of Ambiguity: Quantifiably Resilient
Watermarking of Natural Language Text through Synonym Substitutions. In Proceedings of the 8th
Workshop on Multimedia and Security (MM&Sec ’06), Geneva, Switzerland, 26–27 September 2006;
pp. 167–174.

72. Bender, W.; Gruhl, D.; Morimoto, N.; Lu, A. Techniques for data hiding. IBM Syst. J. 1996, 35, 313–336.
[CrossRef]

73. Brassil, J.; Low, S.; Maxemchuk, N. Copyright protection for the electronic distribution of text documents.
Proc. IEEE 1999, 87, 1181–1196. [CrossRef]

74. Petrovic, R.; Tehranchi, B.; Winograd, J.M. Security of Copy-Control Watermarks. In Proceedings of
the 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting
Services—TELSIKS 2007, Nis, Serbia, 26–28 September 2007; pp. 117–126.

75. Vybornova, O.; Macq, B. Natural Language Watermarking and Robust Hashing Based on Presuppositional
Analysis. In Proceedings of the IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, USA, 13–15 August 2007; pp. 177–182.

76. Jalil, Z.; Mirza, A.M.; Iqbal, T. A zero-watermarking algorithm for text documents based on structural
components. In Proceedings of the IEEE International Conference on Information and Emerging
Technologies, Karachi, Pakistan, 14–16 June 2010; pp. 1–5.

77. Bashardoost, M.; Rahim, M.S.M.; Saba, T.; Rehman, A. Replacement Attack: A New Zero Text Watermarking
Attack. 3D Res. 2017, 8, 2–9. [CrossRef]

78. Ba-Alwi, F.M.; Ghilan, M.M.; Al-Wesabi, F.N. Content Authentication of English Text via Internet using Zero
Watermarking Technique and Markov Model. Int. J. Appl. Inf. Syst. 2014, 7, 25–36.

79. Tanha, M.; Torshizi, S.D.S.; Abdullah, M.T.; Hashim, F. An overview of attacks against digital watermarking
and their respective countermeasures. In Proceedings of the IEEE International Conference on Cyber Security,
Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 26–28 June 2012; pp. 265–270.

http://dx.doi.org/10.17706/IJCEE.2014.V6.857
http://dx.doi.org/10.1016/j.entcs.2017.02.005
http://dx.doi.org/10.1109/TIFS.2006.890310
http://dx.doi.org/10.1016/j.eij.2014.04.002
http://dx.doi.org/10.17485/ijst/2016/v9i48/87787
http://dx.doi.org/10.5120/21330-4300
http://dx.doi.org/10.1147/sj.353.0313
http://dx.doi.org/10.1109/5.771071
http://dx.doi.org/10.1007/s13319-017-0118-y

Entropy 2019, 21, 355 29 of 31

80. Meral, H.M.; Sevinç, E.; Unkar, E.; Sankur, B.; Özsoy, A.S.; Güngör, T. Natural language watermarking via
morphosyntactic alterations. In Proceedings of the SPIE 6505, Security, Steganography, and Watermarking of
Multimedia Contents, San Jose, CA, USA, 28 January 2007. [CrossRef]

81. Meral, H.M.; Sankur, B.; Özsoy, A.S.; Güngör, T.; Sevinç, E. Natural language watermarking via
morphosyntactic alterations. Comput. Lang. 2009, 23, 107–125. [CrossRef]

82. Kim, M.-Y.; Zaiane, O.R.; Goebel, R. Natural Language Watermarking Based on Syntactic Displacement and
Morphological Division. In Proceedings of the Computer Software and Applications Conference Workshops
(IEEE COMPSACW), Seoul, South Korea, 19–23 July 2010.

83. Halvani, O.; Steinebach, M.; Wolf, P.; Zimmermann, R. Natural language watermarking for german texts.
In Proceedings of the 1st ACM Workshop on Information Hiding and Multimedia Security, Montpellier,
France, 17–19 June 2013; pp. 193–202.

84. Mali, M.L.; Patil, N.N.; Patil, J.B. Implementation of Text Watermarking Technique Using Natural Language
Watermarks. In Proceedings of the IEEE International Conference on Communication Systems and Network
Technologies, Gwalior, India, 6–8 April 2013; pp. 482–486.

85. Lu, H.; Guangping, M.; Dingyi, F.; Xiaolin, G. Resilient natural language watermarking based on pragmatics.
In Proceedings of the IEEE Youth Conference on Information, Computing and Telecommunication (YC-ICT
’09), Beijing, China, 20–21 September 2009.

86. Lee, I.S.; Tsai, W.H. Secret communication through web pages using special space codes in HTML files. Int. J.
Appl. Sci. Eng. 2008, 6, 141–149.

87. Cheng, W.; Feng, H.; Yang, C. A robust text digital watermarking algorithm based on fragments regrouping
strategy. In Proceedings of the IEEE International Conference on Information Theory and Information
Security (ICITIS), Beijing, China, 17–19 December 2010; pp. 600–603.

88. Gutub, A.A.A.; Ghouti, L.; Amin, A.A.; Alkharobi, T.M.; Ibrahim, M. Utilizing extension character ‘Kashida’
with pointed letters 469 for Arabic text digital watermarking. In Proceedings of the SECRYPT 2007, Barcelona,
Spain, 28–31 July 2007; pp. 329–332.

89. Chou, Y.-C.; Huang, C.-Y.; Liao, H.-C. A Reversible Data Hiding Scheme Using Cartesian Product for HTML
File. In Proceedings of the Sixth International Conference on Genetic and Evolutionary Computing (ICGEC),
Kitakushu, Japan, 25–28 August 2012; pp. 153–156.

90. Odeh, A.; Elleithy, K. Steganography in Text by Merge ZWC and Space Character. In Proceedings of the
28th International Conference on Computers and Their Applications (CATA-2013), Honolulu, HI, USA,
4–6 March 2013; pp. 1–7.

91. Shirali-Shahreza, M. Pseudo-space Persian/Arabic text steganography. In Proceedings of the IEEE
Symposium on Computers and Communications ISCC, Marrakech, Morocco, 6–9 July 2008; pp. 864–868.

92. Gutub, A.A.A.; Fattani, M.M. A Novel Arabic Text Steganography Method Using Letter Points and
Extensions. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2007, 1, 502–505.

93. Gutub, A.A.A.; Al-Nazer, A.A. High Capacity Steganography Tool for Arabic Text Using ‘Kashida’. ISC Int.
J. Inf. Secur. 2010, 2, 107–118.

94. Gutub, A.A.A.; Al-Alwani, W.; Mahfoodh, A.B. Improved Method of Arabic Text Steganography Using the
Extension ‘Kashida’ Character. Bahria Univ. J. Inf. Commun. Technol. 2010, 3, 68–72.

95. Al-Nazer, A.; Gutub, A. Exploit Kashida Adding to Arabic e-Text for High Capacity Steganography.
In Proceedings of the 2009 Third International Conference on Network and System Security, Gold Coast,
QLD, Australia, 19–21 October 2009; pp. 447–451.

96. Al-Nofaie, S.M.; Fattani, M.M.; Gutub, A.A.A. Capacity Improved Arabic Text Steganography Technique
Utilizing ‘Kashida’ with Whitespaces. In Proceedings of the 3rd International Conference on Mathematical
Sciences and Computer Engineering (ICMSCE 2016), Lankawi, Malaysia, 4–5 February 2016; pp. 38–44.

97. Al-Nofaie, S.M.; Fattani, M.M.; Gutub, A.A.-A. Merging Two Steganography Techniques Adjusted to Improve
Arabic Text Data Security. J. Comput. Sci. Comput. Math. 2016, 6, 59–65. [CrossRef]

98. Keidel, R.; Wendzel, S.; Zillien, S.; Conner, E.S.; Haas, G. WoDiCoF-A Testbed for the Evaluation of (Parallel)
Covert Channel Detection Algorithms. J. Univers. Comput. Sci. 2018, 24, 556–576.

99. Gu, Y.X.; Wyseur, B.; Preneel, B. Software-Based Protection Is Moving to the Mainstream. IEEE Comput. Soc.
2011, 28, 56–59.

100. Por, L.Y.; Ang, T.F.; Delina, B. Whitesteg: A new scheme in information hiding using text steganography.
Wseas Trans. Comput. 2008, 7, 735–745.

http://dx.doi.org/10.1016/j.csl.2008.04.001
http://dx.doi.org/10.1016/j.csl.2008.04.001
http://dx.doi.org/10.20967/jcscm.2016.03.004

Entropy 2019, 21, 355 30 of 31

101. The Unicode Standard. December 2018. Available online: http://www.unicode.org/standard/standard.
html (accessed on 30 March 2019).

102. Unicode. Wikipedia (the Free Encyclopedia), December 2018. Available online: https://en.wikipedia.org/
wiki/Unicode (accessed on 30 March 2019).

103. Unicode Control Characters. March 2019. Available online: http://www.fileformat.info/info/unicode/
char/search.htm (accessed on 30 March 2019).

104. Kerckhoffs, A. La cryptographie militaire. J. Sci. Mil. 1883, IX, 161–191.
105. Din, R.; Tuan Muda, T.Z.; Lertkrai, P.; Omar, M.N.; Amphawan, A.; Aziz, F.A. Text steganalysis using

evolution algorithm approach. In Proceedings of the 11th WSEAS International Conference on Information
Security and Privacy (ISP’12), Prague, Czech Republic, 24–26 September 2012.

106. Din, R.; Samsudin, A.; Lertkrai, P. A Framework Components for Natural Language Steganalysis. Int. J.
Comput. Eng. 2012, 641–645. [CrossRef]

107. Mazurczyk, W.; Wendzel, S.; Cabaj, K. Towards Deriving Insights into Data Hiding Methods Using
Pattern-based Approach. In Proceedings of the 13th International Conference on Availability, Reliability and
Security, Hamburg, Germany, 27–30 August 2018; p. 10.

108. Simmons, G.J. The prisoner’s problem and the subliminal channel. In Advances in Cryptology; Plenum Press:
New York, NY, USA, 1984; pp. 51–67.

109. Khosravi, B.; Khosravi, B.; Khosravi, B.; Nazarkardeh, K. A new method for pdf steganography in justified
texts. JISA. 2019, 145, 61–70.

110. Ahvanooey, M.T.; Li, Q.; Rabbani, M.; Rajput, A.R. A Survey on Smartphones Security: Software
Vulnerabilities, Malware, and Attacks. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 30–45.

111. Khairullah, M. A novel steganography method using transliteration of Bengali text. J. King Saud Univ.
Comput. Inf. Sci. 2018. [CrossRef]

112. Kim, Y.-W.; Moon, K.-A.; Oh, I.-S. A text watermarking algorithm based on word classification and inter-word
space statistics. In Proceedings of the Seventh International Conference on Document Analysis and
Recognition (ICDAR ’03), Washington, DC, USA, 27 June–2 July 2003; Volume 2, p. 775.

113. Alattar, A.M.; Alattar, O.M. Watermarking electronic text documents containing justified paragraphs and
irregular line spacing. Electron. Imaging 2004, 5306, 685–695.

114. Low, S.; Maxemchuk, N.; Brassil, J.; O’Gorman, L. Document marking and identification using both line
and word shifting. In Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Bringing Information to People (INFOCOM ’95), Boston, MA, USA, 2–6 April
1995; Volume 2, pp. 853–860.

115. Memon, M.Q.; Yu, H.; Rana, K.G.; Azeem, M.; Yongquan, C.; Ditta, A. Information hiding: Arabic text
steganography by using Unicode characters to hide secret data. Int. J. Electron. Secur. Digit. Forensics 2018,
10, 61–78. [CrossRef]

116. Shirali-Shahreza, M. A New Approach to Persian/Arabic Text Steganography. In Proceedings of the 5th
IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS International
Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06),
Honolulu, HI, USA, 10–12 July 2006; pp. 310–315.

117. Aabed, M.A.; Awaideh, S.M.; Elshafei, A.-R.M.; Gutub, A.A. Arabic Diacritics based Steganography.
In Proceedings of the 2007 IEEE International Conference on Signal Processing and Communications,
United Arab Emirates, 24–27 November 2007; pp. 756–759.

118. Gutub, A.; Elarian, Y.; Awaideh, S.; Alvi, A. Arabic text steganography using multiple diacritics. In
Proceedings of the 5th IEEE International Workshop on Signal Processing and its Applications (WoSPA08),
University of Sharjah, Sharjah, UAE, 18–20 March 2008.

119. Memon, J.A.; Khowaja, K.; Kazi, H. Evaluation of steganography for urdu/arabic text. J. Theor. Appl. Inf.
Technol. 2005, 4, 232–237.

120. Nagarhalli, T.P. A new approach to SMS text steganography using emoticons. In Proceedings of the
International Journal of Computer Applications (0975–8887) National Conference on Role of Engineers in
Nation Building (NCRENB-14), VIVA Institute of Technology, Maharashtra, India, 6–7 March 2014; pp. 1–3.

121. Ahmad, T.; Sukanto, G.; Studiawan, H.; Wibisono, W.; Ijtihadie, R.M. Emoticon-based steganography for
securing sensitive data. In Proceedings of the 2014 6th International Conference on Information Technology
and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 7–8 October2014; pp. 1–6.

http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
http://www.fileformat.info/info/unicode/char/search.htm
http://www.fileformat.info/info/unicode/char/search.htm
http://dx.doi.org/10.7763/IJCTE.2012.V4.548
http://dx.doi.org/10.1016/j.jksuci.2018.01.008
http://dx.doi.org/10.1504/IJESDF.2018.10009832

Entropy 2019, 21, 355 31 of 31

122. Iranmanesh, V.; Wei, H.J.; Dao-Ming, S.L.; Arigbabu, O.A. On using emoticons and lingoes for hiding data
in SMS. In Proceedings of the 2015 International Symposium on Technology Management and Emerging
Technologies (ISTMET), Melaka, Malaysia, 25–27 August 2015; pp. 103–107.

123. Shirali-Shahreza, M. A New Persian/Arabic Text Steganography Using “La” Word. In Advances in Computer
and Information Sciences and Engineering; Springer: Berlin/Heidelberg, Germany, 2008; pp. 339–342.

124. Bhattacharyya, S.; Indu, P.; Sanyal, G. Hiding Data in Text using ASCII Mapping Technology (AMT). Int. J.
Comput. Appl. 2013, 70, 29–37. [CrossRef]

125. Kingslin, S.; Kavitha, N. Evaluative Approach towards Text Steganographic Techniques. J. Sci. Technol. 2015,
8. [CrossRef]

126. Thamaraiselvan, R.; Saradha, A. A Novel approach of Hybrid Method of Hiding the Text Information Using
Stegnography. Int. J. Comput. Eng. Res. 2012, 1405–1409.

127. Ryabko, B.; Ryabko, D. Information-theoretic approach to steganographic systems. In Proceedings of the
2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 2461–2464.

128. Chen, R.X. A Brief Introduction on Shannon’s Information Theory. arXiv, 2016; arXiv:1612.09316.
129. Verdü, S. Fifty years of Shannon theory. IEEE Trans. Inf. Theory 1998, 44, 2057–2078. [CrossRef]
130. Yamano, T. A possible extension of Shannon’s information theory. Entropy 2001, 3, 280–292. [CrossRef]
131. Rico-Larmer, S.M. Cover Text Steganography: N-gram and Entropybased Approach. In Proceedings of

the 2016 KSU Conference on Cybersecurity Education, Research and Practice, Kennesaw State University,
Kennesaw, GA, USA, 4 October 2016. Available online: https://digitalcommons.kennesaw.edu/ccerp/2016/
Student/16 (accessed on 30 March 2019).

132. Menzes, A.; van Oorschot, P.; Vanstone, S. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL,
USA, 1996.

133. Ryabko, B.; Fionov, A. Basics of Contemporary Cryptography for IT Practitioners; World Scientific Pub. Co.
Pte Lt.: Hackensack, NJ, USA, 2005.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5120/12169-8282
http://dx.doi.org/10.17485/ijst/2015/v8i1/84415
http://dx.doi.org/10.1109/18.720531
http://dx.doi.org/10.3390/e3040280
https://digitalcommons.kennesaw.edu/ccerp/2016/Student/16
https://digitalcommons.kennesaw.edu/ccerp/2016/Student/16
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Text Hiding Schema
	Information Theoretic and Modern Text Hiding
	The Unicode Standard
	Text Hiding Applications
	Hidden Communication
	Network Covert Channels
	Unauthorized Access Detection

	Text Hiding Criteria
	Invisibility
	Embedding Capacity (EC)
	Distortion Robustness (DR)
	Security
	Computational Complexity

	Modern Text Hiding & Kerckhoffs’s Principle
	Text Steganalysis and Attacks
	Visual Attacks
	Structural Attacks
	Statistical Attacks

	Various Types of Text Hiding Techniques
	Structural Techniques
	Open Space
	Line/Word Shift
	Zero-Width
	Feature or Format
	Emoticons or Emoji

	LinguisticTechniques
	Semantic
	Syntactic

	Random and Statistics Techniques
	Compression
	Random Cover

	An Empirical Comparison

	Efficiency Analysis of Recent Structural Techniques
	Suggestions for Future Works
	Conclusions
	References

