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As the COVID-19 pandemic devastates globally, the use of chest X-ray (CXR) imaging as

a complimentary screening strategy to RT-PCR testing continues to grow given its routine

clinical use for respiratory complaint. As part of the COVID-Net open source initiative, we

introduce COVID-Net CXR-2, an enhanced deep convolutional neural network design

for COVID-19 detection from CXR images built using a greater quantity and diversity

of patients than the original COVID-Net. We also introduce a new benchmark dataset

composed of 19,203 CXR images from a multinational cohort of 16,656 patients from at

least 51 countries, making it the largest, most diverse COVID-19 CXR dataset in open

access form. The COVID-Net CXR-2 network achieves sensitivity and positive predictive

value of 95.5 and 97.0%, respectively, and was audited in a transparent and responsible

manner. Explainability-driven performance validation was used during auditing to gain

deeper insights in its decision-making behavior and to ensure clinically relevant factors

are leveraged for improving trust in its usage. Radiologist validation was also conducted,

where select cases were reviewed and reported on by two board-certified radiologists

with over 10 and 19 years of experience, respectively, and showed that the critical factors

leveraged by COVID-Net CXR-2 are consistent with radiologist interpretations.
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1. INTRODUCTION

As the global devastation of the coronavirus disease 2019 (COVID-19) pandemic continues, the
need for effective screening methods has grown. A crucial step in the containment of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causing the COVID-19 pandemic
is effective screening of patients in order to provide immediate treatment, care, and isolation
precautions. While the main screening method is reverse transcription polymerase chain reaction
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(RT-PCR) testing (1), recent studies have shown that the
sensitivity of such tests can be relatively low and highly variable
depending on how or when the specimen was collected (2–5).

Chest X-ray (CXR) radiography screenings are a
complimentary screening method to RT-PCR that has seen
growing interest and increased usage in clinical institutes
around the world. Studies have shown characteristic pulmonary
abnormalities in SARS-CoV-2 positive cases such as ground-
glass opacities, bilateral abnormalities, and interstitial
abnormalities (6–10). Compared to other imaging modalities,
CXR equipment is readily available in many healthcare facilities,
is relatively easy to decontaminate, and can be used in isolation
rooms to reduce transmission risk (11) due to the availability
of portable CXR imaging systems (12). More importantly,
CXR imaging is a routine clinical procedure for respiratory
complaint (13), and thus is frequently conducted in parallel with
viral testing to reduce patient volume.

Despite the growing interest and usage of CXR radiography
screenings in the COVID-19 clinical workflow, a challenge
faced by clinicians and radiologists during CXR screenings
is differentiating between SARS-CoV-2 positive and negative
infections. More specifically, it has been found that potential
indicators for SARS-CoV-2 infections may also be present
in non-SARS-CoV-2 infections, and the differences in how
they present can also be quite subtle. As such, computer-
aided screening systems are highly desired for assisting front-
line healthcare workers to streamline the COVID-19 clinical
workflow by more rapidly and accurately interpreting CXR
images to screen for COVID-19 cases.

Motivated by this, we launched the COVID-Net open source
initiative at http://www.covid-net.ml (14–21) for accelerating the
advancement and adoption of deep learning for tackling this
pandemic. While the initiative has been successful and leveraged
globally, the continuously evolving nature of the pandemic and
the increasing quantity of available CXR data from multinational
cohorts has led to a growing demand for ever-improving
computer-aided diagnostic solutions as part of the initiative.
Since the launch of the COVID-Net open source initiative,
there have been many studies in the area of COVID-19 case
detection using CXR images (22–29) emphasizing appropriate
data curation and training regimes (30–32), withmany leveraging
the open access datasets and open source deep neural networks
made publicly available through this initiative (33–49).

In this work, we introduce COVID-Net CXR-2, an enhanced
deep convolutional neural network design for COVID-19 chest
X-ray detection built on a greater quantity and diversity of
patients than the original COVID-Net network design (14). To
facilitate this, we introduce a benchmark dataset that is, to
the best of the authors’ knowledge, the largest, most diverse
open access COVID-19 CXR cohort, with patients from at least
51 countries. We leverage explainability-driven performance
validation to audit COVID-Net CXR-2 in a transparent and
responsible manner to ensure the decision-making behavior is
based on relevant visual indicators for improving trust in its
usage. Furthermore, radiologist validation was conducted where
select cases were reviewed and reported on by two board-certified
radiologists with over 10 and 19 years of experience, respectively.

While not a production-ready solution, we hope the open-source,
open-access release of COVID-Net CXR-2 and the respective
CXR benchmark dataset will help encourage researchers, clinical
scientists, and citizen scientists to accelerate advancements and
innovations in the fight against the pandemic.

The paper is organized as follows. Section 2 describes
the underlying methodology behind the construction of the
proposed COVID-Net CXR-2 as well as the preparation of the
benchmark dataset. Section 3 presents and discusses the efficacy
and decision-making behavior of COVID-Net CXR-2 from both
a quantitative perspective as well as a qualitative perspective.
Finally, conclusions are drawn in Section 4.

2. METHODOLOGY

In this study, we introduce COVID-Net CXR-2, an enhanced
deep convolutional neural network design for detection of
COVID-19 from chest X-ray images. To train and test
the network, we further introduce a new CXR benchmark
dataset which represents the largest, most diverse open access
COVID-19 CXR dataset available, spanning a multinational
patient cohort from at least 51 countries. All methods and
experimental protocols in this study were carried out in
accordance with the Tri-Council Policy Statement (TCPS2)
and the University of Waterloo Research Integrity guidelines.
The study has received ethics clearance from the University
of Waterloo (42235). Data used in this study was curated by
several organizations and initiatives from around the world
with their own respective ethics clearance and informed
consent. The details regarding data preparation, network
design, and explainability-driven performance validation are
described below.

2.1. Benchmark Dataset Preparation
To train and evaluate COVID-Net CXR-2, we first created a
new CXR benchmark dataset with example images shown in
Figure 1, unifying patient cohorts from several organizations
and initiatives from around the world (50–56). The new
CXR benchmark dataset comprises 19,203 CXR images from
a multinational cohort of 16,656 patients from at least 51
countries, making it the largest, most diverse COVID-19 CXR
dataset available in open access form to the best of the authors’
knowledge. In terms of data and patient distribution, there are a
total of 5,210 images from 2,815 SARS-CoV-2 positive patients
and 13,993 images from 13,851 SARS-CoV-2 negative patients.
The negative patient cases comprise of both no pneumonia
and non-SARS-CoV-2 pneumonia patient cases, with 8,418 no
pneumonia images from 8,300 patients and 5,575 non-SARS-
CoV-2 pneumonia images from 5,551 patients. The distribution
of CXR images in the benchmark dataset for SARS-CoV-2
negative and positive cases is shown in Figure 2, with respective
patient distribution shown in Figure 3. Select patient cases from
the benchmark dataset were reviewed and reported on by two
board-certified radiologists with 10 and 19 years of experience,
respectively.

The COVID-Net CXR-2 network is evaluated on a balanced
test set of 200 SARS-CoV-2 positive images from 178 patients
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FIGURE 1 | Example chest X-ray images from the benchmark dataset: (1) SARS-CoV-2 negative patient cases and (2) SARS-CoV-2 positive patient cases.

FIGURE 2 | Image-level distribution of benchmark dataset for SARS-CoV-2

negative and positive cases. (Left) Number of training images, (Right) number

of test images.

and 200 SARS-CoV-2 negative images from 100 no pneumonia
and 100 non-SARS-CoV-2 pneumonia patient cases. The test
images were randomly selected from international patient
cohorts curated by the Radiological Society of North America
(RSNA) (50, 51), with the cohorts collected and expertly
annotated by an international group of scientists and radiologists
from different institutes around the world. The test set was
selected in such a way to ensure no patient overlap between
training and test sets.

Table 1 summarizes the demographic variables and imaging
protocol variables of the CXR data in the benchmark dataset. It

FIGURE 3 | Patient distribution of benchmark dataset for SARS-CoV-2

negative and positive cases. (Left) Number of training patients, (Right)

number of test patients.

can be observed that the patient cases in the cohort used in the
benchmark dataset are distributed across the different age groups,
with themean age being 46.89 and the highest number of patients
in the cohort being between the ages of 50–59.

The benchmark dataset, along with all data generation and
preparation scripts, are available in an open source manner at
http://www.covid-net.ml.

2.2. Network Design and Learning
Leveraging the aforementioned benchmark dataset, we built
COVID-Net CXR-2 to be tailored for COVID-19 case detection
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TABLE 1 | Summary of demographic variables and imaging protocol variables of

CXR data in the benchmark dataset. Age and sex statistics are expressed on a

patient level, while imaging view statistics are expressed on an image level.

Age

Mean ± Std 46.89± 17.65

<20 1,026 (6.2%)

20–29 1,821 (10.9%)

30–39 2,268 (13.6%)

40–49 2,908 (17.5%)

50–59 3,486 (20.9%)

60–69 2,358 (14.2%)

70–79 1,010 (6.1%)

80–89 300 (1.8%)

90+ 86 (0.5%)

Unknown 1,393 (8.4%)

Sex

Male 8,774 (52.7%)

Female 6,768 (40.6%)

Unknown 1,114 (6.7%)

Imaging view

PA 9,321 (48.5%)

AP 7,307 (38.1%)

Unknown 2,575 (13.4%)

from CXR images using machine-driven design. The machine-
driven design exploration strategy automatically discovers highly
customized and uniquemacroarchitecture andmicroarchitecture
designs to optimize the trade-off between accuracy and efficiency.
More specifically, the concept of generative synthesis (57) was
leveraged, where the macroarchitecture and microarchitecture
designs of a tailored deep neural network architecture are
determined by an optimal generator G whose generated deep
neural network architectures {Ns|s ∈ S} maximize a universal
performance function U [e.g., (58)], with constraints imposed
on a set of operational requirements as defined by an indicator
function 1r(·),

G = max
G

U(G(s)) subject to 1r(G(s)) = 1, ∀s ∈ S. (1)

where S denotes a set of seeds to the generator. For the purpose
of building COVID-Net CXR-2, the set of constraints imposed
via indicator function 1r(·) were: (1) sensitivity ≥ 95%, and (2)
positive predictive value (PPV) ≥ 95%.

A number of observations can be made about the proposed
COVID-Net CXR-2 deep convolutional neural network
architecture design shown in Figure 4. It can be observed that
the proposed COVID-Net CXR-2 deep convolutional neural
network possesses a light-weight network architecture design
that exhibits notable diversity from both a macroarchitecture
and microarchitecture design perspective. More specifically,
the COVID-Net CXR-2 architecture design possesses a diverse
mix of point-wise and depth-wise convolutions, and a very
sparing use of conventional convolutions at the input stage of

the architecture. In particular, the network design leverages
light-weight design patterns in the form of project-replication-
projection-expansion (PRPE) patterns to provide enhanced
representational capabilities while maintaining low architectural
and computational complexities. More specifically, the PRPE
design pattern replicates the input feature representations
and disentangles these learned features through the use of
depthwise convolutions before mixing them via a series
of pointwise convolutions. This allows for more efficient
representational learning for high efficiency while maintaining
high representational performance. The key difference between
PRPE and PRPE-S blocks is that PRPE-S blocks further reduces
spatial dimensionality through the introduction of a strided
depthwise convolution to further improve computational
efficiency at appropriate positions in the network architecture.
Furthermore, sparse use of long-range connections can also be
observed in the network architecture design to strike a good
balance between architectural and computational efficiency and
representational capacity. The strong balance between efficiency
and accuracy achieved by the proposed network highlights
the utility of machine-driven design exploration for tailored
architectures beyond the capabilities of manual, human designs.
It is important to note that compared to the COVID-Net network
architecture (14), the COVID-Net CXR-2 architecture design has
very different macroarchitecture designs and microarchitecture
designs, ranging from the use of replicators within a PRPE
design pattern to greatly reduce computational complexity,
leveraging two different forms of design patterns (PRPE and
PRPE-S) as opposed to the more limited design patterns in
COVID-Net, and much fewer parameters at each stage of the
network architecture for greater computational and architectural
efficiency. Finally, it is important to note that the network design
leverages a more complex flatten layer as opposed to a less
complex global average pooling layer, which illustrates how the
machine-driven design exploration strategy takes into account
different factors when optimizing for overall trade-offs between
accuracy and efficiency.

Training was conducted using a binary cross-entropy loss
and Adam optimization with learning rate of 1e-5 on a
batch size of 8 for 40 epochs. The final model was selected
by tracking the validation accuracy throughout training and
employing early stopping. All construction, training, and
evaluation are conducted in the TensorFlow deep learning
framework. As a pre-processing step, the CXR images were
cropped (top 8% of the image) prior to training and testing to
better mitigate commonly-found embedded textual information.
The CXR images were then resampled to 480 × 480 and
normalized to the range [0, 1] via division by 255. Furthermore,
data augmentation was leveraged during training with the
following augmentation types: translation (±10% in x and y
directions), rotation (±10◦), horizontal flip, zoom (±15%),
and intensity shift (±10%). A batch re-balancing strategy
was introduced to promote better distribution of SARS-
CoV-2 positive cases and SARS-CoV-2 negative cases at a
batch level.

The COVID-Net CXR-2 network and associated scripts are
available in an open source manner at http://www.covid-net.ml.
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FIGURE 4 | The proposed COVID-Net CXR-2 architecture design. The COVID-Net design exhibits high architectural diversity and sparse long-range connectivity, with

macro and microarchitecture designs tailored specifically for the detection of COVID-19 from chest X-ray images. The network design leverages light-weight design

patterns in the form of projection-replication-projection-expansion (PRPE) patterns to provide enhanced representational capabilities while maintaining low

architectural and computational complexities.

2.3. Explainability-Driven Performance
Validation
The trained COVID-Net CXR-2 network was audited to
gain deeper insights into its decision-making behavior and
ensure that it is driven by clinically relevant indicators
rather than erroneous cues such as imaging artifacts and
embedded metadata. We leveraged GSInquire (59) to conduct
explainability-driven performance validation as it was shown to
provide state-of-the-art explanations compared to other methods
in literature, including gradient-based explainability methods
such as Expected Gradients which has been shown to be
superior for explainability than methods like Grad-CAM (60).
In this work, we define explainability as the ability to obtain an
explanation on the key factors from the input data that the model
relied on to produce an output prediction and decision, presented
in a way that a human can understand and interpret the results.
More specifically, GSInquire takes advantage of the generative
synthesis (57) strategy leveraged during machine-driven design
exploration to identify and visualize the critical factors that
COVID-Net CXR-2 uses to make predictions. Insights are gained
through an inquisitor I within a generator-inquisitor pair {G, I},
where the generator G is the optimal generator used to generate
COVID-Net CXR-2 as shown in Equation (1). More specifically,
the inquisitor function is defined as I(G; θI), parameterized
by θI that given the generator G, produces a set of parameter
changes denoted by 1θG = I(G). The insights gained by the
inquisitor I are not only used to improve the generated deep

neural networks but can also be leveraged to interpret decisions
made by the generated network.

Compared to other explainability methods in literature such
as Grad-CAM (60) that produce relative heat maps that visualize
variations in potential importance within an image, GSInquire
has a unique capability of surfacing specific critical factors
within an image that quantitatively impact the decisions made
by the deep neural network. This makes the explanations easier
to interpret objectively and better reflects the decision-making
process of the deep neural network for validation purposes.

Explainability-driven performance validation is crucial for
improved transparency and trust, particularly in healthcare
applications such as clinical decision support. It can also help
clinicians to uncover new insights into key visual indicators
associated with COVID-19 to improve screening accuracy. To
further audit the results for COVID-Net CXR-2, select patient
cases from the explainability-driven performance validation
were further reviewed and reported on by two board-certified
radiologists (A.S. and A.A.). The first radiologist (A.S.) has over
10 years of experience, while the second radiologist (A.A.) has
over 19 years of radiology experience.

3. RESULTS AND DISCUSSION

To explore and evaluate the efficacy of the proposed COVID-
Net CXR-2 deep convolutional neural network design for
detecting COVID-19 cases from CXR images, we conducted a
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TABLE 2 | Architectural and computational complexity of COVID-Net CXR-2

network in comparison to COVID-Net (14) and other state-of-the-art computer

vision architectures. Best results highlighted in bold.

Architecture Parameters (M) MACs (G)

InceptionResNetV2 (61) 54.34 35.4

ResNet-50 (62) 24.97 17.75

InceptionV3 (63) 21.81 15.32

DenseNet201 (64) 18.33 19.82

COVID-Net (14) 11.8 7.5

COVID-Net CXR-2 8.8 5.6

TABLE 3 | Quantitative analysis. Sensitivity, positive predictive value (PPV), area

under receiver operator curve (AUC), and accuracy of COVID-Net CXR-2 on the

test data from the CXR benchmark dataset in comparison to COVID-Net (14) and

other state-of-the-art computer vision architectures. Best results highlighted in

bold.

Architecture Sensitivity (%) PPV (%) AUC Accuracy (%)

InceptionResNetV2 (61) 90.5 86.2 94.3 88.0

ResNet-50 (62) 85.3 95.4 96.0 89.8

InceptionV3 (63) 89.5 94.2 96.2 92.0

DenseNet201 (64) 92.0 88.9 94.7 90.3

COVID-Net (14) 93.5 100 99.2 94.0

COVID-Net CXR-2 95.5 97.0 99.4 96.3

TABLE 4 | Confusion matrix of COVID-Net CXR-2 network.

SARS-CoV-2 Negative Positive

Negative 194 6

Positive 9 191

quantitative performance analysis to assess its architectural and
computational complexity as well as its detection performance on
the benchmark dataset. We further explored its decision-making
behavior using an explainability-driven performance validation
approach to audit COVID-Net CXR-2 in a transparent and
responsible manner. The quantitative and qualitative results are
presented and discussed in detail below.

3.1. Quantitative Analysis
Let us first explore the quantitative performance and underlying
complexity of the proposed COVID-Net CXR-2 deep neural
network architecture tailored for the detection of COVID-19
cases from CXR images. For comparison purposes, we also
provide quantitative results on the test data for COVID-
Net (14), which was shown to provide state-of-the-art
performance for COVID-19 detection when compared to
other methods in research literature, and other state-of-the-art
architectures commonly leveraged in computer vision including
InceptionResNetV2 (61), ResNet-50 (62), InceptionV3 (63), and
DenseNet201 (64). The COVID-Net CXR-2 network builds upon
the originally proposed COVID-Net architecture by offering a
tailored network for SARS-CoV-2 detection of lower complexity

FIGURE 5 | Quantitative analysis. Receiver operating characteristic (ROC)

curve for COVID-Net CXR-2 SARS-CoV-2 positive and negative CXR

classification, with a computed area under curve (AUC) of 99.41%.

and higher detection performance as a result of training on a
larger, more diversified dataset. In addition, the COVID-Net
CXR-2 network is leveraged for binary SARS-CoV-2 positive and
negative detection in regard to physician priorities, while the
original COVID-Net network is utilized for normal, pneumonia,
and SARS-CoV-2 multi-class classification. The state-of-the-art
deep neural networks referenced in this study were trained using
the same proposed CXR benchmark dataset, with the same
hyperparameters including binary cross-entropy loss and Adam
optimizer tuned to a learning rate of 1e-5 and batch size of 8
for 40 epochs for optimal performance. The architectural and
computational complexity of COVID-Net CXR-2 in comparison
is shown in Table 2, with quantitative performance results
shown in Table 3. It can be observed from the results that the
COVID-Net CXR-2 network achieves overall the highest SARS-
CoV-2 sensitivity, area under ROC curve (AUC), and accuracy
in comparison to other state-of-the-art architectures while
maintaining significantly lower network complexity. Specifically,
the COVID-Net CXR-2 network achieved an architectural
complexity of 8.8M parameters and computational complexity
of 5.6G MACs that is ∼25 and ∼84% lower than the least and
most complex comparison architectures of the COVID-Net
and InceptionResNetV2. In addition, the proposed COVID-Net
CXR-2 architecture achieved the highest test accuracy of 96.3%,
highest area under ROC curve (AUC) of 99.4%, and highest
SARS-CoV-2 sensitivity of 95.5%. In comparison to the other
networks, the COVID-Net CXR-2 achieved 2% higher sensitivity
than the next performing COVI

D-Net architecture, and 10.2% higher than the ResNet-50
deep network. In respect to positive predictive value (PPV),
the COVID-Net CXR-2 network achieved a lower performance
than the COVID-Net network at 97.0% test PPV, but was still
able to outperform the other comparison architectures by a
1.6% minimum. This trade-off of higher sensitivity gained by
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FIGURE 6 | Examples of patient cases and the associated critical factors (highlighted in red) as identified by GSInquire (59) during explainability-driven performance

validation as what drove the decision-making behavior of COVID-Net CXR-2. Radiologist analysis was conducted on (top-left) Case 1 and (top-right) Case 2.

Radiologist validation showed that several of the critical factors identified are consistent with radiologist interpretation.

COVID-Net CXR-2 compared to COVID-Net in exchange for a
decrease in PPV (which is still quite high for COVID-Net CXR-
2 at 97.0%) is a reasonable one given that a higher sensitivity
results in fewer missed SARS-CoV-2 positive patient cases during
the screening process. This is very important from a clinical
perspective in controlling the spread of the SARS-CoV-2 virus
during the on-going COVID-19 pandemic in light of the new
highly infectious variants. Finally, Table 4 and Figure 5 provides
a more detailed picture of the performance of COVID-Net CXR-
2 via the confusion matrix and receiver operator characteristic
(ROC) curve.

3.2. Qualitative Analysis
Examples of patient cases and the associated critical factors
identified by GSInquire as the driving factors behind the
decision-making behavior of COVID-Net CXR-2 are shown
in Figure 6. It can be observed that the network primarily
leverages areas in the lungs of the CXR images and is not
relying on incorrect factors such as artifacts outside of the
body, motion artifacts, and embedded markup symbols. From
further investigation into the correctly detected COVID-19 cases,
the critical factors typically identified correspond to clinically
relevant visual cues such as ground-glass opacities, bilateral
abnormalities, and interstitial abnormalities. These observations

indicate that the network’s decision-making process is generally
consistent with clinical interpretation.

This explainability-driven performance validation process
is important for a number of important reasons from the
perspectives of transparency, dependability, and trust. First of
all, this process enabled us to audit and validate that COVID-
Net CXR-2 exhibits dependable decision-making behavior since
it is not only guided by clinically relevant visual indicators,
but more importantly it is not dependent on erroneous visual
indicators such as imaging artifacts, embedded markup symbols,
and embedded text in the CXR images. This ensures the
network does not make the right decisions for the wrong
reasons. Second, this validation process allows for the discovery
and identification of potential new insights into what types of
clinically relevant visual indicators are particularly useful for
differentiating between SARS-CoV-2 infections and non-SARS-
CoV-2 infections. Such discoveries could be useful information
for aiding clinicians and radiologists in better detecting SARS-
CoV-2 infection cases during the clinical decision process.
Finally, by validating the behavior of COVID-Net CXR-2
in a transparent and responsible manner, one can provide
greater transparency and garner greater trust for clinicians and
radiologists during usage in their screening process tomake faster
yet accurate assessments.
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These quantitative and qualitative results show that COVID-
Net CXR-2 not only provides strong COVID-19 detection
performance, but also exhibits clinically relevant decision-
making behavior.

3.3. Radiologist Analysis
The expert radiologist findings and observations with regards
to the critical factors identified by GSInquire for select patient
cases shown in Figure 6 are as follows. In both cases, COVID-Net
CXR-2 detected them to be patients with SARS-CoV-2 infection,
which were clinically confirmed.

Case 1. According to radiologist findings, it was observed
by both radiologists that there is an opacity at the right lung
base, which is consistent with one of the identified critical factors
leveraged by COVID-Net CXR-2. Additional imaging would be
recommended by both radiologists.

Case 2. According to radiologist findings, it was observed by
both radiologists that there are opacities in the right midlung
and left paratracheal region that coincide with the identified
critical factors leveraged by COVID-Net CXR-2 in that region.
Additional imaging would be recommended by one of the
radiologists.

As such, based on the radiologist findings and observations
on the two patient cases, it was demonstrated that several of the
identified critical factors leveraged by COVID-Net CXR-2 are
consistent with radiologist interpretation.

4. CONCLUSION

In this study, we introduced COVID-Net CXR-2, an enhanced
deep convolutional neural network design tailored for COVID-
19 detection from CXR images that is built based on a greater
quantity and diversity of patient cases than the original COVID-
Net. A new benchmark dataset of CXR images representing
a multinational cohort of 16,656 patients from at least 51
countries was also introduced, which is the largest, most diverse
COVID-19 CXR dataset in open access form to the best of
the authors’ knowledge. Experimental results demonstrate that
COVID-Net CXR-2 can not only achieve strong COVID-19
detection performance in terms of accuracy, sensitivity, and PPV,
but also exhibit behavior consistent with clinical interpretation
during an explainability-driven performance validation process,
which was further validated based on radiologist interpretation.
The hope is that the release of COVID-Net CXR-2 and its
respective benchmark dataset in an open source manner will help
encourage researchers, clinical scientists, and citizen scientists
to accelerate advancements and innovations in the fight against
the pandemic. Several potential limitations with the proposed

work include demographic imbalances that can affect how the
network may make decisions for particularly patient groups,
and limited data quantity in the current benchmark dataset that
may lead to potential biases in the network’s decision-making
process. Further work involves the continued improvement of
the benchmark dataset as well as architecture design, as well
as exploration into other clinical workflow tasks (e.g., severity
assessment, treatment planning, resource allocation, etc.) as well
as other imaging modalities (e.g., computed tomography, point-
of-care ultrasound, etc.). Furthermore, we aim to conduct more
comprehensive auditing of both the benchmark dataset as well
as the deep neural network to identify potential decision-making
biases and potential gaps in the trustworthiness in the decision-
making process, as well as conduct cross-validation experiments
on a larger benchmark dataset as it becomes available.
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