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Abstract
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until
effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective
therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs
of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance
between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of
inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we
discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which
NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the
treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential
approaches that may benefit patients with severe COVID-19.

Facts

● Patients with COVID-19 show signs of dysregulated
innate and adaptive immune responses.

● SARS-CoV-2-induces the formation of NETs through
ACE2 and requires active TMPRSS2 and virus
replication.

● Immunothrombosis triggered by NETs mediates damage
of distant organs.

Open questions

● Would inhibition of neutrophil proteases ameliorate
tissue injury in patients with COVID-19?

● How are neutrophils and NETs influenced by a network
of antibodies, complement proteins, clotting factors,
CRP, nucleases, proteases, and anti-proteases?

● Does the modulation of NET formation and its clearance
complement current therapies?

● Can the synergism of DNases and heparin in NET
degradation be exploited as co-adjuvant therapy?

Basic aspects of neutrophil biology and their
relevance for COVID-19

Neutrophils normally differentiate in the bone marrow and
throughout this process start to express effector molecules
that are stored in granules allowing them to mount
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inflammation and kill microbes [1, 2]. A distinctive feature
of mature neutrophils is that they cannot proliferate and,
thus stay for only short periods in the circulation [3]. Mature
neutrophils transit from the bone marrow into the circula-
tion and from the circulation into the tissues even under
steady-state conditions. The trafficking and reactivity of
neutrophils to pathogens follow circadian patterns [4–6].
The influx of neutrophils from the circulation into tissues
happens in most organs, but in particular in highly vascu-
larized ones such as lungs and kidneys, representing the
prime targets in coronavirus disease 19 (COVID-19) [7].
Notably, although neutrophils homing into tissues have
partially lost their prestored molecules [5], they remain
active and can damage vessels and parenchyma. The neu-
trophil to lymphocyte ratio has been identified as the most
important independent risk factor for severe COVID-19 [8].

Mechanisms underlying neutrophil development have
received increasing attention [9–13]. There is still no unified
nomenclature for neutrophil developmental stages, which
would be particularly useful to understand emerging obser-
vations in the context of COVID-19 and other disorders. For
simplicity, we adopt here a naming system recently proposed
[14], in which neutrophil development transits from proNeu1
via proNeu2, preNeu, and immature to mature neutrophils in
the bone marrow. Immunophenotyping of COVID-19 blood
samples revealed that the emergence of immature subsets of
neutrophils (preNeu and immature) in the blood correlates
with severe COVID-19, suggesting that precise delineation of
neutrophil subsets could be used as a predictive marker for
COVID-19 severity [15–17].

Mechanisms of neutrophil extracellular trap
formation

Neutrophils are prompted to release neutrophil extracellular
traps (NETs) upon encounter of danger signals (Supple-
mentary Fig. 1), which in essence are structures composed
of DNA decorated with histones and granule proteins such
as lactoferrin, cathepsins, neutrophil elastase (NE), and
myeloperoxidase (MPO) (Supplementary Fig. 2), as well as
cytoplasmic and cytoskeletal proteins [18, 19]. Mitochon-
drial DNA is also found in NETs [20, 21]. NETs immobi-
lize pathogens, limit their dissemination, and enable their
killing by antimicrobial proteins. Beyond antimicrobial
defense, there is growing evidence that NETs contribute to
the pathogenesis of numerous diseases due to either
excessive formation and/or impaired removal, which turns
out to be toxic for the host [22].

Activation of neutrophils through Toll-like receptors, G
protein-coupled receptors, Fc-, chemokine- and cytokine-
receptors can stimulate NET formation (Fig. 1). Neutrophil
activation by engagement of these receptors induces NET

formation by various mechanisms, many of which are linked
to the activation of the NADPH oxidase (NOX) complex.
However, NOX-independent processes have also been
described to lead to the NET formation [23]. Reactive oxygen
species (ROS) produced in the context of NOX activation and
mitochondrial dysfunction [21] are important in the rearran-
gement of the cytoskeleton [24] and glycolytic ATP pro-
duction [25], which are required for NET formation. Early
during NET formation, granular NE and MPO translocate to
the nucleus and drive nuclear and chromatin decondensation
[26]. Peptidylarginine deiminase 4 (PADI4) contributes to
chromatin decondensation by histone hypercitrullination [27].
Citrullination licenses calpain to further decondensed nuclei
before extracellular trap release [28]. However, like for NOX,
PADI4- and NE-independent pathways have also been
reported [29, 30]. In addition, necroptotic and pyroptotic
pathways can be activated [31]. Cathepsin C (CatC) also
plays an important role since it is required for the activation of
NE and other serine proteases [32].

During NET formation, NE also cleaves gasdermin D
(GSDMD), a molecule centrally involved in pyroptosis, and
constituting a feed-forward loop to facilitate granule and
plasma membrane permeabilization (Fig. 2) [33]. Con-
versely, NET formation is facilitated after cytosolic LPS
sensing and caspase-11-dependent activation of GSDMD
[34]. Disulfiram interferes with the papain-like proteases of
the SARS-COVID-19 infection cycle [35] and was shown
to modify Cys191–Cys192 in GSDMD to reduce pore [36]
and possibly NET release.

Pro- and anti-inflammatory functions of NET

In general, NETs can exert both pro- and anti-inflammatory
effects, which are context-dependent [37]. Proinflammatory

Fig. 1 Potential mediators for the induction of NET-formation in
the infected and inflamed tissues. Viruses (SARS-CoV-2), ROS,
calcium oxalate, co-infecting microorganisms, cytokines and chemo-
kines, cationic antimicrobial peptides, nanodiamonds, monosodium
urate (MSU), and platelets reportedly induce NET formation. See main
text for references. Original illustration from the authors.
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effects include the induction of type I Interferons (IFNs)
[38] and proinflammatory cytokines [21], induction of the
NLRP3 inflammasome [39], promotion of adaptive immune
responses [40], damage to the endothelium [41], and
immunothrombosis [42]. In addition, NET aggregation can
occlude ducts in various organs and promote organ damage
[43, 44]. Indeed, pre-clinical strategies to interfere with the
release of NETs or to promote the clearance of formed
NETs can prevent organ injury in numerous models of
inflammatory diseases [45, 46]. On the flip side of the coin,
aggregation of NETs can promote the trapping and cleavage
of proinflammatory mediators by NET-bound proteases
(Fig. 3) [47–49], eventually leading to downregulation of
inflammatory responses and resolution of inflammation.

NETs activation

Viral infections induce the formation of NET

A wide array of pathogens triggers NET formation [18].
These include viruses such as a respiratory syncytial virus
(RSV) [50] and influenza [51]. Initial studies showed that
sera from COVID-19 patients triggered NET release by
healthy control neutrophils in vitro [52] and more recent
evidence suggests that viable SARS-CoV-2 can directly
stimulate human neutrophils to release NETs in a

dose-dependent manner (Fig. 4) [53]. SARS-CoV-2-
mediated NET-induction requires the angiotensin convert-
ing enzyme 2 receptor (ACE2), expressed by neutrophils,
the activity of the serine protease TMPRSS2, and virus
replication. Similar to what was observed for RSV, the pan-
PAD inhibitor Cl-Amidine abrogated SARS-CoV-2 induced
NET formation, implying that inhibition of NET formation
may represent a potential therapeutic option for COVID-19.

The role of citrullination in NETs

The physiological NET formation is typically associated with
PADI4 activation (Fig. 2) [54]. PADI4 converts positively
charged arginines to neutral citrullines in protein substrates,
including core histones [55]. Citrullination unleashes the
energy of coiled DNA, leading to the catapult-like ejection of
NETs [56]. PADI4 retains enzymatic activity in the extra-
cellular environment and modifies proteins, including those of
the extracellular matrix [57] and coagulation factors [58].
Accumulation of citrullinated histones was found in COVID-
19 and in influenza-infected mice [52, 59, 60]. Since pan-
PADI and PADI4 inhibitors such as Cl-amidine, BB-CL-
amidine, YW-56, or GSK484 have shown efficacy in the
treatment of NET-mediated pathologies, such as lethal lung
endotoxemia [61] and cellular damage due to hypoxia [62],
the administration of such inhibitors may prove beneficial for
the treatment of COVID-19.

The relation of platelet activation with NETs

Platelets are activated during COVID-19, forming aggre-
gates with leukocytes, in particular in patients with severe

Fig. 2 Mechanisms of NET formation. Pathways that regulate NET
formation (see body text for references). Pattern recognizing receptors
(PRR) initiate NADPH oxidase activation and a spike of cytosolic cal-
cium activating neutrophil peptidylarginine deiminase 4 (PADI4) causing
histone citrullination (yellow circle) and DNA decondensation. Chromatin
and/or mitochondrial DNA is expelled and form NETs. Several necrotic
cell death pathways may contribute to NETosis. Necroptosis involves
RIPK1/RIPK3-mediated activation of MLKL and plasma membrane
permeabilization contributing to the release of NETs. Pyroptosis involves
canonical or non-canonical inflammasome activation by the caspases-1 or
4, respectively. Caspase-1 and 4 as well as NE cleave GSDMD and
generates the N-GSDMD fragment with a pore-forming activity that
enables the release of NETs. In addition, autophagic processes contribute
to the release of NETs. Original illustration from the authors.

Fig. 3 The role of aggregation and degradation of NETs in vas-
cular occlusions. Increased numbers of patrolling neutrophils in
inflamed tissues form aggregated neutrophil extracellular traps (agg-
NETs). These are prone to occlude the ducts and glands of the pancreas,
gall bladder, and ocular surface. The occlusions precipitate organ
pathogeneses like pancreatitis and cholelithiasis. AggNETs also occlude
blood vessels in particular the microvasculature of lungs, liver, kidney,
heart, and thus cause pathogenesis. Original illustration from the authors.
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disease [59, 63–67]. Platelets are well known to adhere to
injured blood vessels, become activated, and express
adhesion molecules, including P-selectin and ICAM-1,
leading to neutrophil recruitment. Platelets—due to their
number and privileged position in the blood—may repre-
sent major instigators of neutrophil activation [68] through
direct contact [69]. The physiological importance of this
interaction may be to trigger neutrophil-mediated repair
[70, 71]. Circulating platelets do not spontaneously bind
neutrophils, but do so in the context of bacterial [72] or viral
infection [73]. This interaction relies on integrins [74] and
may result in NET formation. Indeed, platelets can trigger
NET formation (Fig. 2), but the platelet-derived molecules
that induce NET release remain poorly characterized. While
a consensus is lacking, HMGB1 [75] and inorganic poly-
phosphate (polyP) [76] are candidates to underlie this
phenomenon. However, this mechanism is debated [77].
Thus, platelet activation may trigger the formation of
intravascular NET aggregates in the pulmonary and renal
microcirculation [59, 65], thereby contributing to the man-
ifestations of COVID-19 [78].

Complement activation as a trigger for NETs

Complement activation fosters the cytokine storm and
coagulopathy, both critical events in COVID-19 [79]. A
history of macula degeneration, associated with comple-
ment-activation, predisposes to poor outcomes during
COVID-19, while complement deficiencies appear to be
protective [79]. SARS-CoV-2 activates compliment and
complement regulators [79] and consistently C5a and C5b-9
accumulate in the blood of COVID-19 patients, indicating
complement activation [80, 81]. Complement deposition is
detected in the microvasculature, occasionally in proximity
to SARS-CoV-2 glycoproteins [82]. Complement activation

may thus represent an additional trigger for NETs also in
COVID-19 [81].

NETs’ impact at the cellular level

The role of NET-bound enzymes

Neutrophil granules contain various serine proteases
including NE, cathepsin G, and proteinase-3, lactoferrin,
MPO, and lysozyme that can promote tissue damage [45].
These enzymes, which also appear in NETs, can modulate
viral immune responses through modification of autoanti-
gens and immune complexes [83]. NE can further cleave the
spike protein and thus activate the fusogenic peptide of
SARS-CoV-2 spike protein S2 [84]. These findings suggest
that the proteolytic activity of neutrophil-derived enzymes
may modulate membrane fusion of the virus [85]. The
effects of NE may be modulated by protease inhibitors such
as serum alpha-1-antitrypsin (serpinA1) to prevent tissue
injury and virus activation. Increased serum NE activity was
detected during severe COVID-19, despite the functional
inhibitory activity of serpinA1 against exogenous soluble
NE [59], thereby revealing a mechanism of resistance of
NET-derived NE to serpinA1 that may be relevant during
COVID-19 [86].

NET-induced thromboinflammation in COVID-19

Thrombotic complications contribute to morbidity and
mortality in severe COVID-19 [87, 88]. Thrombosis in
patients with COVID-19 affects both the arterial and venous
circulation, leading to acute coronary syndrome, stroke,
deep vein thrombosis, pulmonary embolism, and micro-
vascular thrombosis (Fig. 3) [89–92]. The NET-remnants,

Fig. 4 NETs induced by SARS-CoV-2. NET formation of
human blood-derived neutrophils after treatment with SARS-CoV-2.
Immunofluorescence staining of NETs was done using antibodies
against elastase (red) and DNA-histone1-complexes (green), with a

counterstain of DNA (blue). Yellow staining indicates colocalization
of NETs (histone-DNA fibers) with elastase. The Bars represent 25 µm
(left) and 50 µm (middle and right). Original illustration from the
authors.
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including circulating cell-free DNA, citrullinated H3, or
MPO-DNA complexes, are abundantly found in the circu-
lation of patients with severe COVID-19 [52, 93]. Fur-
thermore, neutrophil-platelet aggregates and neutrophil
activation markers are also increased in patients with severe
disease [65, 94]. Importantly, NETs from patients with
COVID-19 are loaded with tissue factor (TF). Complement
activation has been linked to the release of thrombogenic
NETs decorated with TF [81]. The excessive NET forma-
tion may also cause direct vascular injury [41, 95] and
indirectly support the formation of autoantibodies that
determine the appearance of various forms of autoimmune
vasculitis [96, 97]. Along this line, histopathology studies
have shown that NET-based immunothrombosis is linked to
organ damage in severe COVID-19 [98]. Lung autopsies
from patients with COVID-19-related acute respiratory
distress syndrome (ARDS) revealed widespread occlusion
of small pulmonary vessels by aggregated NETs [93].
Neutrophils also infiltrate alveolar and interstitial areas of
K18-hACE2 transgenic mice infected with SARS-CoV-2
leading to a comparable pulmonary pathology [32, 99].
NET-rich thrombi, platelets, and fibrin were also present in
the lung, heart, and kidney [59, 65]. This clogging of
microvessels by aggregated NETs (aggNETs) may con-
tribute to fatal outcomes in COVID-19. Notably, in steady-
state conditions, DNAses prevent vascular occlusions by
non-canonical NET-driven thrombosis [100]. This obser-
vation indicates that NET-dissolving mediators can also be
impaired or overwhelmed in the patients [101].

NET-induced endothelial activation and damage in
COVID-19

Endothelial injury is considered an essential pathogenic
process in COVID-19, leading to lung and kidney damage
[102–104]. Organ- and microenvironment-associated
endothelial heterogeneity likely contributes to different
COVID-19 outcomes [105]. Similar to other SARS viruses,
SARS-CoV-2 enters cells through ACE2, expressed on
renal and pulmonary endothelial cells [106, 107]. In
accordance, SARS-CoV-2 has been detected intracellularly
in renal and pulmonary endothelial cells [107, 108]. Para-
crine factors released from infected endothelial cells [109]
may impact disease outcome by altering functions of epi-
thelial or other neighboring cells, including neutrophils and
pneumocytes. Furthermore, endothelial damage fosters
perivascular T-cell recruitment and disrupts the alveolar-
capillary barrier in the lungs [91]. Acute endothelial damage
in COVID-19 is associated with structurally deformed
capillaries and signs of compensatory neovascularization
[91]. This compromised endothelial barrier triggers lung
edema and proteinuria, which are common observations in
severe lung and kidney diseases [91, 110, 111].

NETs directly activate endothelial cells, induce endothelial
to mesenchymal transition, and apoptotic endothelial cell death.
Thus, NETs compromise endothelial integrity and barrier
function and promote endothelial dysfunction (Supplementary
Fig. 3) [41, 112, 113]. Since NETs are abundant in the circu-
lation and in lung and kidney tissues of patients with COVID-
19 [65], their accumulation represents a key trigger to induce
pulmonary and renal microvascular thrombosis, which triggers
disease-related organ failure [59, 81, 93, 114]. The effect of
classical anti-thrombotic treatments may be hampered as NETs
have shown to be central components of vascular occlusion in
COVID-19 [100].

NETs’ impact at the organ level

NETs in COVID-19-associated acute lung disease

Histopathological studies revealed that respiratory symptoms
and shortness of breath in COVID-19 occur secondary to
alveolar-capillary damage, hemorrhage, immune cell infil-
tration, fibrin deposition, and fluid-filled alveoli [115–118].
Detailed analysis of lungs revealed abnormal extracellular
matrix remodeling, denuded alveolar epithelia, and pro-
liferation of epithelial cells and fibroblasts. Importantly,
neutrophilia directly correlates with disease severity in
COVID-19 [102]. Increased serum levels of neutrophil-
derived MPO-DNA and citrullinated histone H3, both NET
degradation products, closely parallel lung distress and pre-
dict COVID-19 severity [52]. Furthermore, circulating
nucleosomes were identified as potential markers to monitor
COVID-19 disease progression [119]. Immature and low-
density neutrophils predominate in severe COVID-19
[15, 16, 120]. Neutrophils that recently emigrate from the
bone marrow have higher granule contents and enhanced
NET release, which aggravates pulmonary injury in murine
models [5]. It is therefore conceivable that immature neu-
trophils in the circulation of COVID-19 patients actively
promote susceptibility to ARDS [5]. Likewise, hypogranular
neutrophils produced during emergency myelopoiesis have a
higher propensity to release NETs and may be causally
related to COVID-19 severity [93]. NETs released by SARS-
CoV-2–activated neutrophils promote lung epithelial cell
death in vitro [53, 121]. In this line, COVID-19 goes along
with massive infiltration of neutrophils into the lungs,
including the formation of NETs as potential drivers of
ARDS [122] and the associated immunothrombosis of
patients with COVID-19 (Fig. 5) [59, 93].

NETs in kidneys and liver

NET formation contributes to numerous forms of acute
and subacute kidney injury with proteinuria [123].

Patients with COVID-19: in the dark-NETs of neutrophils 3129



NOX-independent NETs directly induce kidney endothelial
dysfunction, thereby offering a potential explanation for the
proteinuria observed in most patients with COVID-19
[112]. NET-rich microvascular thrombi were also detected
in the autopsy material of the kidneys in severe COVID-19
with renal failure [65]. It is still elusive whether involve-
ment relates to the renal tropism of SARS-CoV-2 or to a
systemic tendency for immunothrombosis and cytokine
storm (Supplementary Fig. 4) [124, 125].

Liver injury emerges as a co-existing symptom in
COVID-19 [126] and it might result from direct viral
toxicity, but also from an overproduction of cytokines and/
or NETs [127]. In patients with COVID-19 injured liver
displays patchy necrosis alike in experimental models of the
net-damaged liver [128, 129].

Targeting NETs in COVID-19 treatment

Glucocorticoids, hydroxychloroquine, and heparin in
NET formation

COVID-19 patients frequently receive dexamethasone
[130], heparin [131], and until recently also hydroxy-
chloroquine, the latter emerged as highly controversial and
not beneficial for the course of the disease [132–134].
The anti-inflammatory action of hydroxychloroquine relies
on the inhibition of lysosomal activity and cytokine

production. In vitro, neutrophils are more prone to release
NETs when exposed to chloroquine [135]. The effect of
hydroxychloroquine administered in vivo regarding
NET formation has not been systematically studied yet
[136–138]. In contrast, glucocorticoids including dex-
amethasone have been reported to reduce NET formation
[139] most likely by suppressing the expression of inflam-
matory mediators that activate neutrophils. As mentioned
above, activated neutrophils and platelets play key roles in
thrombosis associated with severe COVID-19 [65]. Exces-
sive NET formation harbors the risk of vascular occlusion
[59], while heparin reduced NET formation in an experi-
mental in vivo model of lung injury [140]. Heparin and low
molecular weight heparins neutralize extracellular cytotoxic
histones [141, 142], accelerate DNaseI-mediated degrada-
tion of NET mediated clots [59], and prevent NET aggre-
gation by nano- and microparticles [143] in COVID-19. The
therapeutic value of heparin in COVID-19 has been
demonstrated recently [144], though some patients may
develop heparin resistance [145].

Cytokine inhibitors and NET formation

Given the reduced incidence of COVID-19 in individuals
treated with cytokine inhibitors [146] and the promising
results with IL-6 and IL-1-blockade and immunosuppressants
[130], inflammatory cytokines are likely important players in
mediating inflammatory tissue damage in response to SARS-
CoV-2. Stimulating results have been obtained with tocili-
zumab in a randomized clinical, double-blind, placebo-con-
trolled, phase III study (preprint) [147] dampening the late
IL-6-driven hyper-inflammatory phase [148] and reducing
the need for mechanical and non-invasive ventilation. How-
ever, mortality after 28 days was not affected in another
randomized fully peer-reviewed clinical trial [149]. The IL-1
receptor antagonist Anakinra is also currently under evalua-
tion in RCTs, following early encouraging results in obser-
vational studies [150, 151]. Clinical studies with JAK-STAT
inhibitors, also inhibiting IL-6, in addition, also IFNs, are still
ongoing (NCT04320277). JAK inhibitors and direct block-
ade of IL-6 inhibit NET formation [152]. Previous studies in
murine models have shown that the JAK inhibitor tofacitinib
impairs NET formation in vitro and in vivo [153].

Complement-based therapies

Thrombogenic NETs elicited by the activated complement
present in the blood of patients with COVID-19 [81] are
candidates to amplify inflammation and thrombosis
[154, 155]. Anti-complement strategies based on eculizu-
mab or AMY-101 have successfully been used in small
numbers of severe and critical/intubated patients [156–160].
Eculizumab is an anti-C5 humanized monoclonal antibody

Fig. 5 Occlusion of pulmonary vessels by aggNETs in COVID-19.
Occlusion of small and intermediate-sized pulmonary vessels in
COVID-19 published by Leppkes et al 2020 [59]. The former is
marked by asterisks and the latter by a white frame. Note, that large
fields of the (micro)-vasculature are occluded by NETs identified by
extracellular neutrophil elastase (green). The nuclei of the cells were
stained with propidium iodide (red). The bar represents 1000 µm.
Original illustration from the authors.
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clinically approved for selected rare complement-mediated
disorders. AMY-101 is clinically developed for various
complement-mediated disorders and belongs to compstatin,
a group of small-sized peptides that bind C3 and prevent its
activation [160]. Early clinical data indicates that both
inhibitors resulted in the resolution of SARS-CoV-2-
associated ARDS; however, AMY-101 was associated
with a more robust reduction in circulating neutrophils and
NETs, highlighting the role of C3 in NET-driven throm-
boinflammation [160]. Several compassionate use programs
or Phase II RCTs with complement inhibitors are in pro-
gress (NCT04346797, NCT04355494, NCT04288713,
NCT04395456, EudraCT2020-004408-32).

Together with the complement components C1q-C4, C-
reactive protein (CRP) functions in the disposal of bacteria
and apoptotic or necrotic host cells [161, 162]. As COVID-
19 is characterized by high CRP levels, it was proposed that
reduction of the CRP levels by therapeutic apheresis, might
reduce the pathological process in early disease [163].
Agarose bead-based CRP adsorption from the blood addi-
tionally depleted cell-free chromatin co-aggregates with C3
fragments [164]. The role of this approach in COVID-19
remains to be determined. In addition to CRP, calprotectin
was identified as another acute-phase protein in severe
pulmonary disease in COVID-19 [165].

Modulation of purinergic signaling

Injured cells release ATP that signals “danger” to neigh-
boring tissues [166]. As a counterpoint, ectonucleotidases
hydrolyze ATP to generate adenosine that supports local
homeostasis. Activation of specific surface adenosine
receptors suppresses NET formation via cyclic AMP-
dependent signaling [167, 168]. Dipyridamole is an inex-
pensive, FDA-approved drug with a favorable safety pro-
file. Dipyridamole potentiates adenosine receptor signaling
by (i) inhibition of ectonucleoside reuptake, and (ii) stabi-
lization of intracellular cyclic AMP. Dipyridamole tempers
NET release in vitro while preventing NET-dependent
thrombosis in mice [168]. In a small study, dipyridamole
suppressed D-dimer levels in patients with COVID-19
[169]. Larger studies are required to evaluate clinical out-
comes (NCT04391179) [170].

Treatment with DNases

Recombinant DNAse1 efficiently breaks down the chro-
matin of NETs that contributes to immunothrombosis and
luminal obstructions of airways and vessels [59, 171]. NET-
driven mucus accumulation, rigidity, and airway occlusion
in severe COVID-19 may benefit from the same treatment
[172, 173]. A small single-center case series (preprint)
suggested that nebulized endotracheal DNAse1 (Dornase)

reduced supplemental oxygen requirements in the patients
[174]. COVIDornase (NCT04355364) and COVASE
(NCT04359654) are two current initiatives that evaluated
nebulized dornase α in prospective randomized controlled
multicentre trials [175]. Since DNase1L3, which degrades
extracellular DNA, works in a tandem with DNase1 to
prevent immunothrombosis in an animal model of leuko-
philia [100], they are both candidates for the treatment of
vascular occlusions in COVID-19. However, it is important
to highlight that digestion of extracellular DNA with
DNase1 and/or DNase1L3, while potentially reducing the
occlusive capacity of aggregated NETs, may not success-
fully remove remnants that retain pro-inflammatory activ-
ities (Fig. 2) [176].

Other interventions to inhibit the NET formation

Treatment options targeting the pro-inflammatory action of
NETs such as PADI4 inhibitors, or antibodies that block
extrusion of NETs [46], or R406, a potent SYK inhibitor
and the metabolically active component of fostamatinib
[177], are potential new classes of drugs to tackle NET
formation and to alleviate NET toxicity and in patients with
severe COVID-19 [178]. In addition, the pharmacological
inhibition of CatC to counterbalance the unwanted effects of
neutrophil serine proteases in severe COVID-19 is con-
sidered a potential therapeutic target [179]. Some of these
mediators are already in the development pipelines of
pharmaceutical companies awaiting clinical trials. After the
successful implementation of glucocorticoids [130], and the
positive data on routine heparin use [180], future therapies
will have to show how they perform compared to this
standard of care. The studies of tocilizumab in severe
COVID had heterogeneous outcomes [181, 182]. The
patient cohort that had the most benefits from tocilizumab
was mostly cotreated with glucocorticoids. This points to
possible combination therapy as a future strategy. Combi-
nation therapy may also be useful for NET-targeted thera-
pies: blocking new NET formation and improving
degradation of preformed NETs. Given that NET degrada-
tion is negatively affected in severe COVID, the synergistic
effect of DNase1 and heparin in NET degradation [59] may
have identified these agents as suitable combination partners
to effectively improve NET degradation in severe COVID.
This needs to be proven by future clinical studies.

Conclusion

Here, we have highlighted the multifaceted functions that
NETs play in the pathogenesis of COVID-19. The role of
NETs in COVID-19 is increasingly supported by multiple
lines of evidence and in fact, explains the wide range of
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manifestations seen in the most severe and critical cases. In
the pathophysiology of COVID-19, there appears to be an
important role for neutrophil dysregulation, oxidative stress,
and aberrant NET formation as well as clearance. Neu-
trophils and NETs are at the crossroads of innate immune
responses like pathogen killing, thrombosis, and activation
of the adaptive immune system. This cardinal position helps
to understand why a dysregulated neutrophil response upon
SARS-COV-2 infection leads to such severe and uncon-
trolled disease manifestations. The pleiotropic complica-
tions caused by deposition of NETs in vessels and tissues in
fact match disease manifestations in patients with COVID-
19, and demand urgent actions to set trials with NET
inhibitors. Identifying subgroups of individuals at risk for
neutrophil dysregulation following SARS-CoV-2 exposure
may help further refine individualized therapies. This
strategy aims to prevent devastating complications includ-
ing lung injury, kidney damage, endotheliitis, and immu-
nothrombosis in severe COVID-19.

Search strategy and selection criteria

The data for this review were identified through searches of
MEDLINE, PubMed, and references from relevant articles
using the search terms “neutrophils” and “COVID-19” or
“immunothrombosis” and “neutrophils”. Abstracts and
reports from meetings were excluded. It uses 683 articles
published in English from 2014 to April 2020. The pub-
lication date of additional articles was unlimited.
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