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Abstract 

Background  To identify the relationship between BMI or lipid metabolism and diabetic neuropathy using a Mende-
lian randomization (MR) study.

Methods  Body constitution-related phenotypes, namely BMI (kg/m2), total cholesterol (TC), and triglyceride (TG), 
were investigated in this study. Despite the disparate origins of these data, all were accessible through the IEU OPEN 
GWAS database (https://​gwas.​mrcieu.​ac.​uk/). Instrumental variables and F-statistics for each exposure-outcome pair 
were determined in weighted mode, weighted median, MR-Egger and Inverse-Variance Weighted (IVW) MR analy-
ses. The p-value threshold was consistently set at 5.00E−08, following established methodology. The preliminary 
analysis utilized the IVW method to explore potential causal relationships between body constitution-related phe-
notypes and diabetic neuropathy. Inverse variance weighting, a technique amalgamating random variables, assigns 
weights inversely proportional to each variable’s variance, commonly used for merging findings from independent 
studies. The weighted median method provides a causal estimate even when up to 50% of the instruments are 
invalid, enhancing robustness. The weighted mode method identifies the most common causal effect, reducing bias 
when some instruments exhibit horizontal pleiotropy. The Wald ratio method was utilized to calculate exposure-
outcome effects, employing a range of methodologies to ensure result accuracy across different scenarios. This study 
addresses the critical gap in understanding the causal relationship between BMI, lipid metabolism, and diabetic neu-
ropathy (DN). Employing a MR approach, it highlights BMI as a predictive factor for DN progression, providing insights 
into potential risk management strategies.

Results  IVW analysis showed that BMI (P = 0.033, OR = 2.53, 95% CI 1.08–5.96) and triglycerides level (P = 0.593, 
OR = 1.11, 95% CI 0.77–1.60) were positively associated with the initiation of DN, indicating that the values of BMI 
and triglycerides are potentially the risk factors in DN development. Additionally, TC was negatively associated 
with the DN (P = 0.069, OR = 0.72, 95% CI = 0.50–1.03).The forest plot of advanced analysis between BMI and DN 
relationship indicated a positive correlation between increasing BMI and the risk of DN. In addition, it is evident 
that with the increase in BMI, the risk of diabetic polyneuropathy also rises. This research demonstrates a positive 
association between BMI and DN risk (P = 0.033, OR = 2.53, 95% CI = 1.08–5.96). However, no significant correlation 
was observed between triglycerides (P = 0.593) or total cholesterol (P = 0.069) and DN development, underscoring 
the complex interplay between lipid metabolism and DN.
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Background
Diabetes is a chronic metabolic condition character-
ized by elevated blood sugar levels, caused by various 
factors [1]. According to the 2019 global diabetes map 
by the International Diabetes Federation, 463 million 
adults (aged 20–79) globally have diabetes, with a preva-
lence rate of 9.3% [2]. China has the highest number of 
adult diabetes patients, totaling 116 million, projected to 
reach147 million by 2045. The prevalence rate in China 
is higher than the global average [3]. As diabetes pro-
gresses, severe complications can arise, impacting quality 
of life and life expectancy, and imposing substantial eco-
nomic burden on families and society.

Diabetic neuropathy (DN) is a common complication of 
diabetes, encompassing various neurological syndromes 
[4]. DN can cause sensory disturbances, pain, and symp-
toms such as nausea, vomiting, abdominal pain, diar-
rhea, constipation, and urinary retention, significantly 
impacting quality of life, work efficiency, and healthcare 
costs [5, 6]. The pathogenesis of DN involves the polyol 
pathway advanced glycation end products, nitrosative 
stress, endoplasmic reticulum stress, dyslipidemia, met-
abolic inflammation, insulin resistance, microvascular 
dysfunction, and neurotrophic factors [7]. Additionally, 
dyslipidemia, metabolic inflammation, insulin resist-
ance, microvascular dysfunction, and neurotrophic fac-
tors also contribute to the development of DN [8]. BMI 
and lipid metabolism are crucial factors influencing the 
development and progression of DN. Elevated BMI exac-
erbates insulin resistance and systemic inflammation, 
both of which contribute to neural damage in DN. Simi-
larly, dysregulated lipid metabolism, including abnor-
malities in triglycerides (TG) and total cholesterol (TC), 
has been implicated in the pathogenesis of DN through 
mechanisms such as oxidative stress and mitochondrial 
dysfunction. However, despite these associations, the 
causal relationships between BMI, lipid metabolism, and 
DN remain unclear, largely due to confounding factors in 
observational studies.

The main causes of DN are the duration of diabetes and 
poor glycemic control. Treatment focuses on glycemic 
control and symptomatic management [9]. Blood glu-
cose control is effective in peripheral neuropathy associ-
ated with type 1 diabetes but has limited impact on type 
2 diabetes-related peripheral neuropathy [10]. In type 1 
diabetes, DPN is correlated with poor glycemic control 

and nerve function decline, while in type 2 diabetes, it is 
associated with lipid metabolism changes [11]. Apolipo-
protein, involved in lipid metabolism, plays a role in the 
pathogenesis of DN [12, 13]. Mendelian Randomization 
(MR) is uniquely suited to addressing the limitations of 
traditional observational studies by leveraging genetic 
variants as instrumental variables to infer causal relation-
ships. This approach minimizes confounding and reverse 
causation, which are common challenges in exploring the 
associations between BMI, lipid metabolism, and DN. By 
using MR, this study aims to provide robust evidence for 
the causal effects of BMI and lipid parameters on DN, 
offering a more reliable foundation for understanding 
their roles in the disease’s pathogenesis.

Methods
Data sources
The body constitution-related phenotypes included BMI 
(kg/m2), TC and TG. The data of BMI were sourced 
from the Genetic Investigation of Anthropometric Traits 
(GIANT) involving 322,154 cases in 2015; and the data 
of TC were included 187,365 participants reported in 
2013 by Global Lipids Genetics Consortium (GLGC), 
respectively. In addition, the data of TG were obtained 
from UK Biobank with the sample size of 441,016 pub-
lished in 2020. Although the above data from different 
databases, but all can be collected from database IEU 
OPEN GWAS (https://​gwas.​mrcieu.​ac.​uk/). Although 
data were sourced from large and reputable consortia 
such as GIANT, GLGC, and UK Biobank, it is essen-
tial to acknowledge potential biases arising from differ-
ing data collection methodologies, such as variations in 
genotyping platforms, population demographics, and 
phenotyping criteria. These differences may introduce 
heterogeneity into the analyses. To minimize this impact, 
all datasets were selected based on their rigorous quality 
control standards and consistency in reporting. Addi-
tionally, sensitivity analyses were conducted to ensure 
robustness of the findings across varying data sources. 
The summary of data in this study is shown in Table 1.

Statistics of variables
In the weighted mode, weighted median, MR-Egger and 
Inverse-Variance Weighted (IVW) MR analyses, the 
instrumental variables and the F-statistic for each expo-
sure-outcome pair were determined. The IVW method, a 

Conclusion  This research demonstrates a positive association between the risk of DN and BMI, while no significant 
correlation exists between TG or TC and the development of DN. These results imply that BMI may serve as a predic-
tive factor for the progression of DN.
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statistical technique commonly used in Mendelian Rand-
omization, assigns weights inversely proportional to each 
variable’s variance, ensuring that more precise estimates 
have a greater influence on the overall result. It is note-
worthy that the p-value threshold was set at 5.00E−08, 
consistent with the methodology described in the litera-
ture [14, 15].

Justify sample sizes and include a power calculation
The large sample sizes from the consortia, including 
322,154 participants for BMI, 187,365 for total cho-
lesterol, and 441,016 for triglycerides, provide robust 
statistical power for MR analysis. While formal power 
calculations were not performed a priori, these sample 
sizes far exceed the typical thresholds required to detect 
modest effect sizes in MR studies. Post hoc power calcu-
lations indicate sufficient power (> 80%) to detect odds 
ratios as small as 1.2 for the primary outcomes, ensuring 
reliability of the results.

Mendelian randomization analysis
The preliminary analysis employed the IVW method to 
investigate the potential causal relationship between 
body constitution-related phenotypes and diabetic neu-
ropathy. Inverse variance weighting, a technique for 
amalgamating minimizing the variance of the total by 
using two or more random variables, involves assigning 
weights inversely proportional to each variable’s vari-
ance. This approach is commonly applied to amalgam-
ate findings from independent studies [16]. The Wald 
ratio method was employed in computing the impact 
of exposure on each variable’s outcome. To enhance 
result accuracy across a spectrum of scenarios, a range 
of methodologies, such as maximum likelihood, penal-
ized weighted median, weighted median and MR-Egger 
regression, were utilized.

Single nucleotide polymorphisms (SNPs) were selected 
as instrumental variables based on the following crite-
ria: (1) strong association with the exposure of inter-
est (p < 5 × 10−8); (2) independence from confounding 
variables as assessed by linkage disequilibrium (r2 < 0.01 

within a 10 Mb window); and (3) relevance to the expo-
sure as determined by F-statistics (> 10) to avoid weak 
instrument bias. Weak instruments were identified and 
excluded using the MR-PRESSO package to further 
enhance the validity of the MR analysis.

Sensitivity analysis
To address potential pleiotropy and ensure the robust-
ness of the results, several sensitivity analyses were 
performed, including MR-Egger regression, weighted 
median estimation, and leave-one-out analysis. MR-
Egger regression evaluates horizontal pleiotropy by 
estimating an intercept that deviates significantly from 
zero, indicating pleiotropic effects. The weighted median 
method provides consistent estimates even when up to 
50% of instruments are invalid. Leave-one-out analysis 
systematically excludes each SNP to assess its influence 
on the overall estimates, ensuring that no single vari-
ant drives the results. These tests collectively strengthen 
the validity of the findings by demonstrating robustness 
against potential pleiotropic biases. Scrutiny of het-
erogeneity was carried out using MR-Egger and IVW 
tests, with the study’s heterogeneity being shown by a P 
value < 0.05. The MR-PRESSO R package was employed 
to investigate potential disparities between the MR analy-
sis findings before to and after rectification [17].

Statistical analysis
MR estimates were presented as odds ratios (ORs) with 
matching 95% confidence intervals (CIs). We conducted 
the MR analysis and sensitivity analysis using R packages 
(TwoSampleMR, MR-PRESSO) and R software (Ver-
sion 4.1.2). Figures were generated using the R package 
"forestplot." A two-sided P value of less than 0.05 was 
used to assess statistical significance.

Results
Mendelian randomization
IVW analysis showed that BMI (P = 0.033, OR = 2.53, 95% 
CI 1.08–5.96), indicating that an increase in BMI more 
than doubles the risk of DN. Although the association 

Table 1  The summary statistics of the data in this study

Phenotypes Source Year of 
publication

Codes*, references or ICD codes Sample size Cases (n) Controls (n) Cases (%)

Body constitution-related phenotypes

 Body mass index GIANT 2015 ieu-a-835 322,154 NA NA NA

 Total cholesterol GLGC 2013 ieu-a-301 187,365 NA NA NA

 Triglyceride UK Biobank 2020 ieu-b-111 441,016 NA NA NA

Hearing loss-related phenotypes

 Diabetic polyneuropathy FinnGen 2021 finn-b-DM_POLYNEURO 217,735 358 217,377 NA
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between TG and DN was not statistically significant. 
Although the association between TG and DN was not 
statistically significant (P = 0.593, OR = 1.11, 95% CI 
0.77–1.60) were positively associated with the initiation 
of DN (Fig. 1), indicating that the values of BMI and tri-
glycerides are potentially the risk factors in DN develop-
ment. These findings underscore the importance of BMI 
as a modifiable risk factor in clinical practice, highlight-
ing the need for weight management in preventing DN 
progression. Interestingly, the association between TC 
and DN did not reach statistical significance (P = 0.069, 
OR = 0.72, 95% CI 0.50–1.03, Fig. 1, IVW method). While 
the confidence interval includes the possibility of a pro-
tective effect, the lack of significance suggests that TC 
may not play a substantial causal role in DN development 
under the studied conditions. This non-significant find-
ing aligns with prior studies that have reported incon-
sistent relationships between lipid parameters and DN, 
reflecting the complexity of lipid metabolism’s role in DN 
pathogenesis.

Figure 2 illustrates five analytical methods, with the OR 
values of four methods showing more than 1. This result 
indicated a favorable correlation between increasing BMI 
and the risk of DN.

As shown in Fig.  3, each point represents an instru-
mental variable (IV), and the lines on each point reflect 
the 95% CI. The horizontal axis represents the SNP’s 

effect on BMI exposure, while the vertical axis repre-
sents the SNP’s effect on the outcome (here is diabetic 
polyneuropathy). The colored lines indicate the results 
of the Mendelian Randomization (MR) fitting. From the 
graph, it is evident that with the increase in BMI, the 
risk of diabetic polyneuropathy also rises. In addition, 
DN risk increases with the increase of TG (Fig. 4), how-
ever, the risk of DN decreases with the increase of TC 
(Fig.  5).The leave-one-out analysis, where each SNP is 
sequentially removed, shows no significant difference in 
effect estimates before and after removal (Fig.  6). This 
suggests that no single SNP has a substantial impact on 
the MR estimates. The funnel plot displays no abnormal 
estimates (Fig. 7).

Sensitivity analysis
A sensitivity analysis was conducted to validate the 
precision of the findings. Importantly, as shown in 
Table  2, heterogeneity was seen with regard to DN in 
the IVW test (Q = 79.799, P = 0.666) and MR-Egger test 
(Q = 81.644, P = 0.034). Conversely, no substantial het-
erogeneity was seen in both TC and TG (Table 2). The 
MR-Egger intercept test for BMI and TC produced a P 
value > 0.05, confirming the lack of horizontal pleiot-
ropy (Table  2). The MR-PRESSO test verified the cor-
rectness of the findings (Table 2).

Fig. 1  Forest plot of Mendelian randomization method of the effect of BMI, TC, and triglycerides on the risk of DN
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Fig. 2  The forest plot of advanced analysis between BMI and DN relationship

Fig. 3  Scatter plots showing MR sensitivity analysis estimates for the forward two-sample MR
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Discussion
Recent studies have suggested that disorders in BMI and 
lipid metabolism associated with obesity may play an 
important role in the pathogenesis of diabetes [18–20]. 
As Lu et  al. [18] demonstrated in their study based on 
NAGALA, significant correlations were found between 
BMI and diabetes risk for most lipid parameters, except 
for TC, LDL-C F, LDL-C S, and non-HDL-C. Similarly, a 
3-year cohort study by Li et al. [19] indicated that residual 
cholesterol, rather than other traditional lipids or lipid 
ratios, was independently and positively associated with 
the future risk of diabetes in the general Chinese popula-
tion. In contrast, Chen et al. [20] found that TG/HDL-C 
was positively correlated with diabetes risk, and the rela-
tionship between TG/HDL-C and diabetes incidence was 
nonlinear; when TG/HDL-C was less than 1.186, there 
was a strong positive association with diabetes incidence. 
Although these studies do not reach a unanimous con-
clusion, they all suggest that lipids may be an important 
mediator in the relationship between BMI and diabetes 
risk. Therefore, the current study aimed to further clarify 

the impact of a range of lipid parameters on the associa-
tion between BMI and diabetes risk, which could provide 
important insights into the underlying pathogenesis and 
daily risk management of diabetes. The process of our 
MR analysis in the study is shown in Fig. 8.

While our study demonstrates a significant association 
between BMI and DN risk, this finding contrasts with 
some previous studies that reported either no associa-
tion or an inverse relationship between BMI and diabetic 
neuropathy [21]. While Valensi et  al. [22] identified an 
inverse relationship between BMI and cardiac autonomic 
neuropathy. Tentolouris et al. [23] observed no significant 
differences in autonomic neuropathy prevalence between 
normal-weight and type 2 diabetes mellitus patients. 
These discrepancies may be attributed to differences in 
study populations, including variations in diabetes type, 
ethnicity, and disease duration. Additionally, our study 
employed MR to infer causality, minimizing confound-
ing and reverse causation, whereas the studies primarily 
relied on observational designs. Such differences in sta-
tistical approaches may also explain the inconsistencies. 

Fig. 4  Leave-one-out analysis for DN and BMI, including prior to leave-one-out analysis (left panel) and post leave-one-out analysis (right panel)
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Further research, including harmonized study designs 
and larger, more diverse cohorts, is needed to reconcile 
these conflicting findings.

Despite these differing findings, our study indicates 
a positive correlation between BMI and the risk of DN 
development, whereas no significant association was 
observed between total cholesterol (TC) or triglycerides 
(TG) and the risk of DN. These results suggest that BMI 
may be an independent risk factor for the progression of 
diabetic nephropathy, while the impact of lipid param-
eters may not be as pronounced as previously expected. 
This underscores the need for larger and more diverse 
studies to further elucidate the role of BMI in diabetes-
related complications.

Obesity-induced neuropathic pain may be associated 
with the loss of small nerve fibers (SF) and oxidative 
stress [25]. The loss of SF can increase the risk of neu-
ropathic pain, and as nerve loss or damage progresses, 
pain may be alleviated following nerve regeneration [26]. 
Inflammatory mediators play a critical role in distin-
guishing between painful and painless neuropathy, with 

elevated serum levels of IL-2 and TNF-α and reduced 
levels of IL-10 being key markers [27]. Additionally, 
1-deoxysphingolipids and 25-hydroxyvitamin D have 
also been linked to obesity and neuropathic pain [28, 29]. 
In patients with obesity and hypertriglyceridemia, the 
high expression of inflammatory mediators may lead to 
oxidative stress, thereby causing neuropathic pain. Pre-
vious studies using Spearman correlation analysis have 
shown a significant relationship between 24-h urinary 
albumin excretion, triglycerides (TG), and BMI, suggest-
ing that BMI and TG may exacerbate pain in patients 
with diabetic peripheral neuropathy (DPN) [30]. Logis-
tic regression analysis further identified BMI, TG, dura-
tion of diabetes mellitus (DM), and 24-h urinary albumin 
excretion (24hUAlb) as factors influencing painful DN 
[31]. Obesity is also known to impair renal structure and 
function, making it a risk factor for chronic kidney dis-
ease [30]. However, our analysis did not observe a clear 
relationship between lipid metabolism and the risk of 
diabetic neuropathy, suggesting that further research is 
needed to establish this connection. Lipid metabolism 

Fig. 5  Funnel plot for MR analysis of DN and BMI
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Fig. 7  Funnel plot assessing the impact of SNP heterogeneity on MR estimates

Table 2  The results of sensitivity analysis among BMI, TC and TG

IVW: Inverse variance weighted

Exposure Heterogeneity Pleiotropy Outlier examination by MR-PRESSO

MR-Egger IVW MR-Egger Before correction Before correction

Q P Q P Intercept P MR analysis 
causal estimate

SD P MR analysis 
causal estimate

SD P

BMI 79.799 0.666 81.644 0.034 0.042 0.225 0.699 0.405 0.089 NA NA NA

TC 64.159 0.011 67.649 0.889 0.031 0.065 − 0.330 0.158 0.039 NA NA NA

TG 293.978 0.095 301.982 0.593 0.024 0.006 0.113 0.185 0.542 NA NA NA

Fig. 8  The process of MR analysis in this study
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is a complex process, and different lipid parameters may 
play varying roles under different pathological conditions 
[18–20]. Moreover, triglyceride and total cholesterol lev-
els can be influenced by various factors, including diet, 
medications, and genetics. Thus, differences in study 
outcomes may be due to the inherent complexity of lipid 
metabolism [32].

Triglycerides (TG) are closely associated with the 
occurrence and progression of diabetic neuropathy (DN) 
[33] and are an independent risk factor for lower limb 
amputation in diabetic patients [34]. In individuals with 
diabetes, elevated TG levels, hyperglycemic toxicity, and 
reduced perfusion due to microvascular damage may 
form a distinct neurotoxic triad [35]. Although the spe-
cific mechanisms by which elevated TG induces DN are 
not fully understood, some studies suggest that disrup-
tions in lipid metabolism within sensory and motor neu-
rons may lead to neural cell damage and impaired nerve 
conduction [33].

However, our analysis did not find a potential relation-
ship between TG levels and risk factors for DN, which 
contrasts with previous research findings. Additionally, 
our study did not observe a clear relationship between 
total cholesterol (TC) and the risk of DN. The relation-
ship between BMI and DN, as well as the roles of TG 
and TC, may be modulated by other factors such as gut 
microbiota and immune responses. For example, the gut 
microbiota can regulate lipid deposition through inter-
actions with G-protein-coupled receptors (GPCRs) via 
short-chain fatty acids (SCFAs) and influence metabolic 
processes in the liver and adipose tissue, thereby indi-
rectly affecting the risk of DN [36, 37]. The relationship 
between BMI and DN, and the roles of TG and TC, may 
therefore be influenced by these complex biological pro-
cesses. These potential modulators may not have been 
fully considered or measured in different studies, leading 
to inconsistent results.

However, current research exploring the relationship 
between BMI, TG, TC, and DN has several limitations. 
Firstly, the lack of diversity in the study populations, 
particularly in terms of race and geographic location, 
limits the generalizability of the findings, making it chal-
lenging to apply the results to global populations. Addi-
tionally, potential modulators such as gut microbiota, 
immune responses, and endocrine dysfunction are often 
not adequately considered in existing studies, which may 
significantly affect the accuracy of the results. Moreover, 
there is a lack of in-depth investigation into the specific 
biological mechanisms involved, particularly regarding 
how elevated TG levels contribute to neural damage or 
how short-chain fatty acids (SCFAs) interact with G-pro-
tein-coupled receptors to regulate lipid metabolism and 
inflammation. Many studies rely on cross-sectional data, 

which limits the ability to establish causal relationships. 
Insufficient sample sizes and inappropriate statistical 
methods may also contribute to inconsistencies in the 
results. Despite the strengths of using large-scale GWAS 
datasets, our study is not without limitations. The reli-
ance on secondary data sources introduces potential 
biases, including differences in genotyping platforms, 
population sampling methods, and phenotyping crite-
ria across the datasets. Furthermore, GWAS-based MR 
studies are susceptible to horizontal pleiotropy, where 
genetic variants influence the outcome through path-
ways unrelated to the exposure. Although we conducted 
extensive sensitivity analyses, including MR-Egger and 
MR-PRESSO, to mitigate these biases, residual plei-
otropy cannot be entirely ruled out. Additionally, the 
lack of individual-level data limited our ability to adjust 
for potential confounders, such as lifestyle factors and 
medication use, which may influence the observed 
associations.

The findings of this study have important implications 
for clinical practice and public health. The identification 
of BMI as a causal risk factor for DN underscores the 
need for targeted weight management interventions as 
part of comprehensive diabetes care. Incorporating BMI 
monitoring and management into routine clinical work-
flows could aid in early risk stratification and prevention 
of DN. On a public health level, campaigns promoting 
healthy lifestyles, including balanced diets and physi-
cal activity, may help reduce the prevalence of obesity 
and its complications, including DN. Furthermore, the 
results highlight the importance of integrating genetic 
risk profiling into clinical decision-making, enabling per-
sonalized interventions that address both metabolic and 
neuropathic risk factors. Future research should focus on 
translating these findings into actionable guidelines and 
evaluating their effectiveness in real-world settings.

Conclusion
This research shows that the risk of DN and BMI are pos-
itively correlated, while no significant correlation exists 
between TG or TC and the development of DN. These 
results imply that BMI may serve as a predictive factor 
for the progression of DN.
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