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Abstract: This study assessed the impact of increasing seawater surface temperature (SST) and toxic
algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic
shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate
A. catenella under four simulated environment conditions. The maximum PSTs concentration was
determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit.
The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates,
whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased
under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues,
with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden
shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs
was measured, and was associated with changes in each environmental factor. Hence, this study
primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing
environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.

Keywords: harmful algal blooms; paralytic shellfish toxins; pharmacokinetics; environmental
changes; A. catenella

Key Contribution: Mussels exposure to different environmental temperature and toxic algal abun-
dance. PSTs concentration investigated in mussels during uptake and elimination period.

1. Introduction

Harmful algal blooms (HABs) are growing into global environmental problems and
have negative impacts on marine resources and human health [1–4]. Paralytic shellfish
poisoning (PSP) is generated through the ingestion of toxic shellfish contaminated by
paralytic shellfish toxins (PSTs), resulting in people suffering from illness and death [5–8].
Currently, gastric lavage is regarded as the only therapy to treat the poisoning patients.
On a global scale, there are about 2000 PSP incidence each year, accounting for 15%
fatalities [9]. Moreover, besides the high ecological importance of bivalves, they are also
important protein sources for human consumption, playing a key role in life. Thus, PSTs
are detrimental to economies of the aquaculture industry and human health.

In the past, numerous investigations on the accumulation and elimination of PSTs
within mussels [10,11], scallops [12,13], clams [14–16], and oysters [17,18] have been re-
ported. The greatest variations were observed in various shellfish, with the toxin duration
time lasting from days to months [19–22]. Among them, mussels are known to accumulate
high levels of toxins faster than most other species, as well as having faster elimination
rates [23–26]. Additionally, the burden or amount of toxicity varies in different organs based
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on the toxin exposure time. Generally, the viscera of bivalves, including the hepatopancreas,
are the major repository of PSTs, showing the highest toxicity of about 80−98% [27–29]. As
for the depuration, the elimination rates are closely related to the different analogues of
PSTs to a large extent [30–32].

It is noteworthy that increasing seawater surface temperature (SST) caused by envi-
ronmental change is estimated to get worse by the end of this century, with it rising 5 ◦C
in some areas [33,34]. Meanwhile, changes of behavior, immune response, metabolic rate
and reduction of growth rates were observed in mussels [35,36]. On the other hand, high
temperature is beneficial for toxic algae growth [37], significantly affecting the accumula-
tion and elimination of PSTs in bivalves [38–40]. Along the Chinese coast, in Guangdong
and Fujian provinces, as well as the northern part of the Yellow Sea, shellfish were more
likely to be contaminated by PSTs [41–43]. It has been found that toxicity levels of shellfish
are mainly affected by the toxic algae species, abundance, and exposure time. Generally,
species belonging to the dinoflagellate Alexandrium, Gymnodinium and Pyrodinium genera
are reported to produce PSTs [44–49]. Among them, genus Alexandrium harbors the major-
ity of the producers. In this respect, Alexandrium tamarense (ATHK) is widely distributed
along the Chinese coasts from the Bohai Sea to the South China Sea, causing the blooms of
toxic Alexandrium spp. [50,51]. However, limited information is available on the impacts
for shellfish toxicity, and study of assessing effects under different abundances of toxic
algae has not been investigated, which are important for understanding the mechanisms of
shellfish toxicity accumulation and maintaining seafood safety.

This study aims to assess the effect of the increasing seawater surface temperature
and A. catenella (strain ATHK) abundance on the dynamics of PSTs accumulation and
elimination in Mytilus coruscus (Figure 1).
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Figure 1. Schematic diagram of the experiment set-ups.

2. Results
2.1. Toxin of A. catenella

The results from the LC-MS/MS for the PSTs analogues were found to be GTX1+4,
C1+2, GTX5, NEO, dcGTX2+3, GTX2+3, STX and dcSTX in different concentrations pro-
duced by A. catenella (Table 1). GTX1+4 (51.6%) was the most abundant toxin, followed
by C1+2 (38.9%), GTX5 (6.7%) and NEO (1.9%). Moreover, the strain also produced the
dcGTX2+3 (0.4%) and GTX2+3 (0.3%). Additionally, dcSTX and STX were detected with
the percentage accounting for only 0.1%.

2.2. Effect of Temperature Increase and Toxic Algal Abundance on Mussels

Obvious changes in PSTs accumulation were observed in mussels under four condi-
tions (Figure 2). The highest toxin level was detected under a high TAA condition (DT3: 25 ◦C
and 1.0 × 107 cells L−1 A. catenella, Figure 1), reaching levels of 3548 ± 299 µg STX eq. kg−1,
expressed as saxitoxin equivalents after multiplying the toxin concentration with the re-
spective toxicity factor (Table S2). After that, a level of 1864 ± 144 µg STX eq. kg−1 was
obtained under the basic condition (DT1: 25 ◦C and 5.6 × 106 cells L−1 A. catenella). PSTs
toxicity level under high SST condition (DT2: 30 ◦C and 5.6 × 106 cells L−1 A. catenella,
741 ± 51 µg STX eq. kg−1) showed a lower value compared to that of DT1. However, the
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combined effect of high SST and TAA (DT4: 30 ◦C and 1.0 × 107 cells L−1 A. catenella),
resulted in a much higher PSTs value (1363 ± 108 µg STX eq. kg−1) than that of DT2.

Table 1. Toxin data of A. catenella fed to mussels.

Toxins Toxin Concentration (pg/cell) % of Total Toxin

C1+2 6.69 38.9
GTX1+4 8.86 51.6
GTX2+3 0.053 0.3

GTX5 1.15 6.7
dcGTX2+3 0.055 0.4

STX 0.018 0.1
NEO 0.319 1.9

dcSTX 0.019 0.1
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Figure 2. PSTs (µg STX eq. kg−1, mean ± SD) detected in mussels during the experiment
under four environmental conditions (DT1: 25 ◦C and CA. catenella 5.6 × 106 cells L−1; DT2:
30 ◦C and CA. catenella 5.6 × 106 cells L−1; DT3: 25 ◦C and CA. catenella 1.0 × 107 cells L−1; DT4:
30 ◦C and CA. catenella 1.0 × 107 cells L−1).

On the other hand, the PSTs toxicities were determined in various tissues of mussels,
such as hepatopancreas, gill, mantle, muscle and gonad throughout the experiment. Similar
toxicity tendency under four conditions was observed for in all tissues (Figure S1). After
exposure to toxic algae for 3 days, the highest and lowest toxicity levels were observed
in DT3 and DT2 for all tissues, respectively. The toxicity levels rank in the order of
DT2 < DT4 < DT1 < DT3 in the hepatopancreas and mantle, which are in accordance with
the order of the total toxicity levels (Figure 2). However, some different observations
were obtained in gill, gonad and muscle, exhibiting nearly the same toxicity values in
DT1 and DT4, even higher levels in DT4 than that of DT1 in muscle. As expected, most
PSTs were concentrated in the hepatopancreas, followed by gill and mantle. The gonad
and muscle showed similar toxicity values, which are significantly lower than that of
hepatopancreas. When non-toxic species instead of the toxic algae were provided to
mussels, a decline of toxin concentration was immediately observed in all conditions. After
14 days of depuration, the total toxin levels were decreased to low values. It can be found
that the toxin mainly accumulated in the hepatopancreas on the 17th day with the PST
concentration decreased to 98.5, 0.43, 226 and 27.4 µg STX eq. kg−1 for DT1 to DT4, while
trace toxins were detected in other tissues, ranging from 0.43 to 17.5 µg STX eq. kg−1 under
four conditions.
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2.3. Toxin Compartmentalisation

The highest levels of PSTs were observed in DT3 condition. Hence, the toxin distribu-
tions under DT3 condition quantified within the shellfish tissues are further illustrated in
Figure 3a. During all 17 days, the hepatopancreas contained most of the burdens at 86–93%.
From the 1st day of the experiment to the 10th day, similar toxin burdens of 2–4% and
2–5% were observed for the gill and mantle, respectively, followed by the muscle (2–3%)
and gonad (1–2%). On the 17th day, most of the toxin burdens shifted towards the mantle
(7.8%), followed by little burden (0.2%) in gill and no toxin concentration in muscle or
gonad (Table 2). The profile of PSTs mainly found in mussels is consistent with the content
of toxic algae (>1% of total toxin, Table S1), namely GTX1+4, C1+2, GTX5 and NEO. During
days 1–6, the percentage of the PSTs profile was stable with GTX1+4 and C1+2, accounting
for 59–63% and 27–31% of total PSTs, respectively (Figure 3b). In comparison, C1+2 was
the dominant analogue on the 17th day, constituting approximately 62% of the toxin profile
observed. The GTX1+4 obviously decreased to 23%. NEO (2–7%) was a minor contributor
to the toxin profile of the contaminated feed mussels. Slightly higher proportions of GTX5
(8%) were also observed.
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Table 2. The distribution of analogues in different tissues and PST profiles (percent molar).

Days
% of Toxin Distribution % of the PSTs

Hepatopancreas Gill Mantle Muscle Gonad GTX1+4 NEO GTX5 C1+2

1 88 3 4 3 2 63 2 8 27
2 86 4 5 3 2 60 2 8 30
3 90 3 3 2 2 59 2 8 31
4 89 4 3 2 2 61 2 8 29
6 93 2 2 2 1 59 2 8 31

10 91 2 3 2 2 46 4 8 42
17 92 0.2 7.8 - - 23 7 8 62

2.4. PSTs Accumulation and Elimination under High Temperature and Abundance Conditions

Considering PSTs mainly accumulated in the hepatopancreas, the distribution of PSTs
in the hepatopancreas of mussels are determined (Figure 4). After a 3-day uptake period,
concentrations of PSTs congener under DT3 condition were significantly higher than any
other treatment. The concentrations of GTX1+4, GTX5 and C1+2 were determined in the
rank of DT3 > DT1 > DT4 > DT2. However, the content of NEO in DT4 showed slightly
higher levels than that of DT3, followed by the concentration values obtained in DT1 and
DT2. In addition, concentrations of all the PSTs reached the lowest values in DT2. All the
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above observations indicated that the concentration of PSTs were closely related to the SST
and TAA.
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Figure 4. PSTs analogues concentration (µg kg−1, mean ± SD, GTX1+4, NEO, GTX5 and C1+2)
determined in hepatopancreas at day 1 (pink bars), day 2 (blue bars) and day 3 (green bars) under four
environmental conditions. Asterisks denote significant differences (p < 0.05) from basic conditions
(vs. DT1).

After three days’ uptake period, the non-toxic diet for 14 days led to a significant
decline of toxin concentrations during the depuration period. Nevertheless, toxins were
not totally metabolized until the experiment finished. As shown in Figure 5, all PSTs
analogues were consistent with an exponential decay model, with the corresponding data
listed in Table 3. The highest total elimination rate was obtained in DT2, and the lowest one
was calculated in DT3. The combination of high SST and TAA afforded a moderate total
elimination rate, when compared to those of DT2 and DT3. In addition, the basic condition
showed a similar total elimination rate relative to that of DT4.

Moreover, GTX1+4 was the main PSTs detected in mussels under the four conditions,
as well as achieving the most rapid elimination rate except for that under the DT1 condition.
The slowest elimination rates of NEO were calculated to be 0.069 d−1 (day−1) and 0.060 d−1

under DT3 and DT4 conditions, while the elimination rate values of 0.351 d−1 and 0.322 d−1

were determined under DT1 and DT2 conditions, which were obviously higher than those
in DT3 and DT4. This result indicated that NEO was difficult to be removed under high
toxic algal abundance condition. The elimination rates of C1+2 were calculated to be
0.140 d−1, 0.141 d−1, 0.116 d−1 and 0.142 d−1 under DT1 to DT4 conditions, respectively.
It can be found that there were no significant differences between four treatments in
the elimination rates of C1+2, meaning that the SST and TAA had a slight effect on the
elimination for C1+2. Moreover, the elimination rates of GTX5 in DT2 and DT4 were
registered to be 0.393 d−1 and 0.432 d−1, which were much higher than those of DT1
(0.206 d−1) and DT3 (0.232 d−1). These results demonstrated that the elimination rates for
GTX5 were predominantly affected by the SST.
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Table 3. Elimination rates (kel, d−1) and coefficient of determination R2 under four conditions.

Treatment Toxin Elimination Rate R2

DT1
25 ◦C and Low abundance

GTX1+4 0.206 (±0.004) 0.9967
NEO 0.351 (±0.064) 0.8762
GTX5 0.163 (±0.007) 0.9865
C1+2 0.140 (±0.012) 0.9765

DT2
30 ◦C and Low abundance

GTX1+4 0.518 (±0.082) 0.8264
NEO 0.322 (±0.116) 0.6666
GTX5 0.393 (±0.099) 0.7592
C1+2 0.141 (±0.011) 0.9766

DT3
25 ◦C and High abundance

GTX1+4 0.232 (±0.014) 0.9791
NEO 0.069 (±0.011) 0.9377
GTX5 0.167 (±0.006) 0.9912
C1+2 0.116 (±0.004) 0.9948

DT4
30 ◦C and High abundance

GTX1+4 0.526 (±0.095) 0.7638
NEO 0.060 (±0.026) 0.6236
GTX5 0.432 (±0.098) 0.8189
C1+2 0.142 (±0.009) 0.9828

3. Discussion

Marine environmental change is a complicated phenomenon, resulting from temper-
ature, pH, salinity, oxygen levels, even frequency and intensity of HABs, which has a
great impact on marine organisms. Thus, it is important to investigate the coactions of
these variables, which may result in multifactorial responses [52–56]. While studies about
the effect of individual environmental change stressors on aquatic organisms have been
widely reported, such as temperature [39], acidification [57] and salinity [58], research
assessing their combined impacts have rarely been studied. Herein, the environmental
changes regarding seawater surface temperature (SST) and toxic algal abundance (TAA)
were investigated to better understand the separated or combined effect on mussels during
the uptake and elimination period.

In this study, mussels were fed on PSTs-producing dinoflagellate A. catenella, resulting
in a rapid and large accumulation of PSTs (Figure 2), which exceeded the EU regulatory
limit of 800 µg STX eq. kg−1 [59] when maintained under basic conditions (DT1), high TAA
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conditions (DT3,) and combined conditions (DT4). In contrast, mussels acclimated solely to
high SST conditions (DT2) showed the PSTs of 741 ± 51 µg STX eq. kg−1, which was below
but close to the safety limit. These results demonstrated that the increase of environmental
temperature can significantly reduce the accumulation of toxin. In the respect, the PSTs
levels in S. glomerata, diploid C. gigas [39], and M. galloprovincialis [38] were obviously
decreased under high temperature conditions during the uptake period.

In general, HABs expand geographically, thus producing various toxic algae abun-
dance in sea areas, which result in different biotoxin concentrations in marine organisms.
Therefore, the TAA was investigated to understand the role on PSTs accumulation, and
mussels were cultured in a high TAA scenario with (DT4) and without high SST (DT3).
As expected, significantly increased toxicity in mussels was observed under DT3 condi-
tion, with the highest 3548 ± 299 µg STX eq. kg−1 PSTs toxicity level (Figure 2). Xie [17]
investigated PSTs accumulation in the oyster Ostrea rivularis Gould (ORG), which was fed
with three abundances of toxic algae Alexandrium minutum. After the feeding experiment,
the toxic levels of ORG showed high levels of 28.86, 31.17 and 38.98 MU/g in 4.0 × 103,
8.0 × 103 and 1.2 × 104 cells/mL, respectively. These observations can be ascribed to
the higher intake of mussels, accompanied by the increased TAA in the environment.
With the contradictory trends of high SST and TAA, mussels showed a PSTs level of
1363 ± 108 µg STX eq. kg−1 under combined conditions (DT4), which was much lower
than that of DT1. This result indicated that the toxicity levels in mussels were mainly
dominated by the temperature under the combined condition, which can be rationalized
by the high depuration rates in the toxin accumulation period at high SST.

Due to the different function of depuration for each tissue, the toxins in the shellfish
are not equally distributed. In this study, the hepatopancreas contained the highest toxin
burden, followed by the mantle, gill, muscle and lastly by the gonad (Figures 1 and 3a).
Obvious changes of toxin profiles were observed on the last day, wherein the mantle
contained 7.8% toxin levels and the gill had little burden at 0.2%. Meanwhile, no toxin was
detected in the muscle or gonad (Figure 3a, Table 2). These observations are consistent
with those reported in the literature showing that PSTs have a tendency to accumulate in
the hepatopancreas for mussels with the highest burden [28,60,61]. Moreover, it is reported
that PSTs can quickly accumulate in the hepatopancreas of Jasus edwardsii if they are
exposed to high toxicity, exceeding the maximum levels for bivalve molluscs [27]. We may
interpret this to mean that the hepatopancreas is the main organ where toxins are exposed,
absorbed, ingested, and metabolized. Moreover, the gill, mantle, muscle and gonad were
contaminated by toxins in mussels but are found to have the lowest toxicity. The PSTs
profiles of contaminated mussels revealed that the principal components were GTX1+4 and
C1+2, which together made up almost 90% of the total. These profiles were comparable
with those reported for A. catenella strains [62], in which the presence of A. catenella in
mussels was determined and a similar PSTs profile was found. It is noteworthy that the
dominant analogue detected in the algal profiles was GTX1+4. Conversely, C1+2 was found
to be higher at the end of the experiments. This change in potency is advantageous to the
mussels, as it results in a reduced total toxicity relative to molar concentration of toxin
present. Different processes for toxin biotransformation include reduction, epimerization,
oxidation, and desulfation [63–65]. The biotransformation potentially observed in this
study resulted in the conversion to a less potent (C1+2) from a more potent (GTX1+4) form,
which may be due to the epimerization process [66], and/or with the help of enzymes [67].
However, our study was not designed to discuss biotransformations. Thus, we cannot
confirm the mechanism that drive the change in toxin proportions.

Considering the change of SST and TAA brought about by the various PSTs toxicity
levels, the concentrations of PSTs analogues were further determined during accumulation
and elimination period. The carbamate analogues (GTX1+4 and NEO) were the most
abundant toxin congeners detected in all conditions in mussels, which coincided with
the content of the administered algae (Table S1). The toxicity level of GTX1+4 was nearly
twice as high under DT3 condition than that of DT1 on day 3 (Figure 4). However, the



Toxins 2021, 13, 425 8 of 14

concentrations of GTX1+4 were obviously lower under DT2 conditions and the combined
condition in DT4, which indicated that high TAA tended to cause GTX1+4 accumulation
in the mussels while high SST brought a toxicity depression. A similar tendency was
observed in N-sulfocarbamoyl toxins C1+2 and GTX5. Additionally, GTX1+4 was the
most potent among the PST derivatives (Table S2), significantly impacting PSTs toxicity
in mussels. From our observation, the increase of environmental temperature was the
dominated element to decrease toxicity levels in mussels, which can be attributed to their
enhanced abilities in clearance, ingestion and metabolism [68–70]. On the other hand, the
trend of NEO toxicity levels was greatly different from GTX1+4 under four conditions. The
highest value was observed under the combined conditions of DT4, followed by that of
DT3 condition, which illustrated that high TAA-acclimated mussels were contaminated
with much more NEO toxin.

The effects of environmental change also strikingly differed between the PST ana-
logues during the depuration period. The concentrations of GTX1+4, C1+2, NEO and
GTX5 detected in mussels fit well with the dynamic model (Figure 5). The elimination rates
of GTX1+4 were much higher under DT2 and DT4 conditions, which demonstrated that
increasing SST may promote the elimination, further reducing the toxin level in mussels.
Similar trends were also observed for GTX5. Although the highest concentrations of C1+2
were obtained under four conditions followed by GTX1+4, low elimination rates in mussels
were calculated for C1+2 under all conditions, resulting in the mussels being contaminated
for longer periods. However, the variations of C1+2 concentrations showed less influence
on total PSTs toxicity due to the low potency. The reverse trend was described by Braga [38],
reporting a decrease in both accumulation and elimination of C1+2 warming-acclimated
mussels fed with toxic G. catenatum. The lowest elimination rate was obtained for NEO
in high TAA-acclimated mussels (DT3, 0.060 d−1) and under combined conditions (DT4,
0.069 d−1), which were dramatically lower than those under the low TAA conditions such
as DT1 and DT2 (0.351 d−1 and 0.322 d−1). Under the circumstances of high TAA condi-
tions, some digestive enzymes may have higher potencies, accompanied by a reduction in
glutathione consumption, which plays an important role in biotransformation and elimina-
tion of PSTs in vivo [71–74]. In the southern rock lobster Jasus edwardsii, the uptake and
depuration rates of PSTs changed among analogues, resulting in a reduction of the highly
potent analogues in lobster tissues [27]. Particularly, the elimination rate of GTX1+4 was
obviously more rapid than those of most other analogues.

The increase in environmental temperature caused a significant reduction in PSTs of
mussels, whereas high toxic algal abundance led to a dramatic enhancement in toxicity. As
a result, the combined factors illustrated the lower toxicity of these mussels compared to
those subjected to the basic condition, which demonstrated that the increasing temperature
within a reasonable range was a good way to reduce the PSTs of mussels.

4. Conclusions

The effects of environmental changes, high seawater surface temperature (SST), high
toxic algal abundance (TAA) and the combination of these conditions were investigated
using the PSTs accumulation and elimination in mussels. It was observed that high SST
and TAA caused the contradictory variation trends in mussels, Mytilus coruscus. The
enhancement of SST resulted in the reduction of toxicity levels and rapid elimination
rates, while high TAA tended to cause more biotoxin accumulation and prolonged PSTs
contamination. As a result, the combined effects of high SST and TAA promoted lower
PSTs than that under the basic condition, indicating that the toxicity was mainly dominated
by the high SST due to the rapid depuration rate. Considering the toxin distribution,
toxin burdens in the hepatopancreas were assessed to be the highest level after 3 days in
mussels. Moreover, it can be also found that the elimination rates of each PSTs analogue
strikingly differed under the variety of conditions. As a result, this study provided an
approach for shellfisheries affected by A. catenella blooms, confirming the importance of
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both environmental temperature and toxic algal abundance monitoring for managing the
risks from PSTs in mussels.

5. Materials and Methods
5.1. Reagents and Chemicals

Certified reference materials of STX, NEO, C1/2, GTX1/4, GTX2/3, GTX5, dcSTX,
dcNEO and dcGTX2/3 were ordered from the National Research Council Canada (Hal-
ifax, NS, Canada). All reagents and chemicals used in this study were analytical or
liquid chromatography grade. Methanol and acetonitrile were purchased from Merck
Ltd. (Whitehouse Station, NJ, USA); acetic acid, formic acid and ammonium formate from
Sigma-Aldrich. De-ionized water (18.2 MΩ cm quality or better) was obtained from a
Milli-Q water purification system (Millipore Ltd., Bedford, MA, USA).

5.2. Culture of A. catenella

The PSTs-producing strain of A. catenella GY-H31, purchased from the algae culture
collection at Shanghai Guangyu Biological Technology Co., Ltd. (Shanghai, China), was
isolated from a bloom in the estuary of the Changjiang River in September 2018. Cells
were cultured in sterile-filtered (0.45 µm membrane, Jinjing Ltd., China) seawater before
enrichment with f/2-Si medium [75]. Temperature and photon flux density (Asensetek,
ALP-01, Shanghai HESON Instrument Technology Co., LTD, Shanghai, China) were set
at 25 ◦C and 60–100 µmol photon m−2 s−1, respectively, with a 14 h light: 10 h dark cycle.
Seawater and nutrient solutions were filtered and autoclaved to minimize contamination.
Cells were harvested when cultures presented a density of approximately 2.5 × 106 cells
per liter, concentrated using 10 µm mesh sieve. Toxins were determined in the algae cell
culture as described below (Section 5.5). Cells of microalgae were collected at the stationary
growth phase and used to feed experimental mussels.

5.3. Mussel Collection and Acclimation

Two hundred uncontaminated mussels, Mytilus coruscus (80 ± 8 mm), were harvested
in Shengsi Archipelago, China, in May 2020. Mussels were cleaned from macro-algae,
barnacles or any other epibiont in four 250 L tanks of filtered seawater with continuous
aeration. The mussels were acclimatized for 14 days at 24 ± 2 ◦C and 30 ± 2 ◦C, half and
half, being fed a non-toxic Chlorella vulgaris diet (Huayi Biological Technology Co., Ltd.,
Suzhou, China). The temperature was automatically adjusted whenever needed. Water
temperature was cooled through an automatic seawater refrigeration system (±0.1 ◦C;
Frimar, Fernando Ribeiro Lda, Portugal) or heated by submerged digital heaters (200 W,
V2Therm, TMC Iberia, Lisbon, Portugal). Eight mussels were randomly selected to assess
background toxin profiles before the feeding experiment.

5.4. Mussels Exposure to Toxic Dinoflagellates

During acclimation, mussels were fed with 100,000 cells per day per animal of the non-
toxic Chlorella vulgaris diet. The mussels were then fed for 3 days with toxic dinoflagellate
from a A. catenella culture under the conditions indicated in a specific treatment: DT1–basic
condition (25 ◦C; 5.6 × 106 cells L−1 A. catenella), DT2–high SST (30 ◦C; 5.6 × 106 cells L−1

A. catenella), DT3–high toxic algal abundance (TAA) (25 ◦C; 1.0 × 107 cells L−1 A. catenella)
and DT4–high SST and TAA (30 ◦C; 1.0 × 107 cells L−1 A. catenella) (Figure 1). After 3 days,
mussels were fed again with 100,000 cells per day per animal of Chlorella vulgaris for 14 days
in order to evaluate the elimination of toxins accumulated during the exposure period. Six
mussels exposed to A. catenella were collected in triplicate for toxin analysis on days 1, 2
and 3, corresponding to the uptake period, and on days 4, 6, 10 and 17, corresponding to
the elimination period.
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5.5. Toxin Extraction

Extraction of toxins from A. catenellae cell cultures followed the methodology described
by Silva [76]. Briefly, an aliquot of A. catenella cell culture (500 mL) was filtered onto
47 mm Whatman GF/C with a nominal pore size of 1.2 µm under low vacuum. Toxins
were extracted in 5 mL of 1% acetic acid solution [77] and sonicated for 10 min using
a sonication probe (Branson, Emerson, Saint Louis, MO, USA). The extract was then
centrifuged (10,000× g) for 10 min at 4 ◦C, and 1 mL of the supernatant was decanted into
a vial for the determination of PSTs.

For experimental sampling, the mussel was dissected into five parts, collecting the
hepatopancreas, gill, gonad, mantle and muscle, all of which were homogenised (VELP
OV5) and frozen at −80 ◦C. Then, 5 g of shellfish tissues were extracted with 5 mL 1%
acetic acid solution. Then, the tissue samples were vortex mixed then placed in a boiling
water bath for ten minutes. After that, the sample was cooled down to room temperature,
centrifuged (10,000× g) for 10 min at 4 ◦C, and then 1 mL aliquot was transferred into a
1.5 mL polypropylene tube, followed by the addition of 5 µL of ammonium hydroxide
(NH4OH; 25% ammonia) before clean-up. The supernatant was cleaned by solid-phase
extraction (SPE) with an octadecyl bonded phase silica (Supelclean LC-18 SPE cartridge,
3 mL, Supelco, Bellefonte, PA, USA). Briefly, the SPE cartridge was conditioned with 3 mL
of acetonitrile and 3 mL of 1% acetic acid in 20% acetonitrile, followed by 3 mL of 0.1% aqua
ammonia. Afterwards, 0.5 mL of extracts were loaded onto the conditioned cartridges and
then washed with 700 µL of MilliQ water. PSTs were eluted with 1 mL of 0.25% formic acid
in 75% acetonitrile. All sub-samples were taken and filtered through 0.22 µm membrane
prior to analysis.

5.6. LC–MS/MS Analysis

For common analogues of PSTs, selective reaction monitoring (SRM) was used. A
Shimadzu DGU-20A5R HPLC was coupled with a Sciex Qtrap 5500 tandem quadrupole
mass spectrometer (Danaher Corporation, Washington, DC, USA) with an electrospray ion-
ization interface. The chromatographic separation was performed on a TSK-gel Amide-80®

HILIC column (150 × 2 mm i.d., 3 µm, Tosoh Bioscience LLC, Montgomeryville, PA, USA)
using a flow rate of 1.2 mL min−1 at 40 ◦C. A binary mobile phase of water (solvent A) and
95% acetonitrile (solvent B), each of them containing 2 mM ammonium formate and 50 mM
formic acid. The gradient ran from 90 to 80% B over 3.6 min, decreasing to 60% B over
an additional 2.4 min, held for 1.5 min at 60% B, increasing to 90% B over an additional
1 min, held for 1.5 min at 90% B before re-equilibration for the next run. High resolution
mass spectrometry conditions included a spray voltage of 5.0 kV and −4.5 KV for positive
and negative ions, respectively, a CUR pressure of 20 psi, GS1 and GS2 pressure of 30 psi,
ion source temperature of 550 ◦C, and CAD of medium [63,78]. Common analogues were
scanned using the SRM transitions shown in Table 4 and the total ion chromatogram and
mass spectrum are shown in the Supplementary Materials (Figures S2–S12). Relative toxin
STX equivalency factors (Table S2) are from FAO/IOC/WHO (2004) background document
on biotoxins in bivalve mollusks [79,80].

5.7. Statistical Analysis

Analysis of covariance (ANCOVA) was performed to examine toxin concentrations in
four conditions over time, with the weight of mussels as a covariate.

For the empirical kinetics of PSTs elimination, a one-compartment model was used to
describe elimination kinetics using a single component first-order kinetic model:

Cm = Cm0e−kel t (1)

where Cm is the toxin concentration in mussels and kel denotes the elimination rate. The
toxin concentration decreases according to an exponential decay, with the steepness of the
decay being determined by the elimination rate (k) and the size of the curve depending on
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the initial concentration of the toxin (Cm0) at the beginning of the elimination period, when
the mussels’ diet was changed from A. catenella to non-toxic algae. All statistical analyses
were performed using the software SPSS version 22.0 (SPSS Inc., Chicago, IL, USA). The
data were analyzed and compared using a Student’s t-test. Differences between means
were considered significant at the p < 0.05 level.

Table 4. Acquisition parameters of SRM mode scanning for paralytic shellfish toxins.

ESI Mode Toxin Precursor Ion (m/z) Product Ion (m/z) Fragmentor (v) Collision Energy (v)

ESI− GTX2,3 394.0
333.1

80
−22

351.1 −16

GTX1,4 410.1
367.1

80
−15

349.1 −22

dcGTX2,3 351.1
333.1

100
−17

164.0 −30

C1/2 474.1
351.1

90
−25

122.0 −30

GTX5 378.1
122.1

100
−22

360.1 −16

ESI+ STX 300.2
221.0

120
35

204.0 30

NEO 316.1
298.2

120
34

126.1 34

dcSTX 257.1
239.1

120
22

126.1 30

dcNEO 273.1
225.2

120
35

126.1 35

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13060425/s1: Table S1—Acquisition parameters of SRM mode scanning for paralytic
shellfish toxins; Figure S1—PSTs (µg STX eq. kg−1, mean ± SD) determined in different tissues of
mussels exposed to toxic A. catenella under four environmental conditions.
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