
First Evidence of Dinosaurian Secondary Cartilage in the
Post-Hatching Skull of Hypacrosaurus stebingeri
(Dinosauria, Ornithischia)
Alida M. Bailleul1,2*, Brian K. Hall3, John R. Horner1,2

1 Museum of the Rockies, Montana State University, Bozeman, Montana, United States of America, 2 Department of Earth Sciences, Montana State University, Bozeman,

Montana, United States of America, 3 Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

Bone and calcified cartilage can be fossilized and preserved for hundreds of millions of years. While primary cartilage is fairly
well studied in extant and fossilized organisms, nothing is known about secondary cartilage in fossils. In extant birds,
secondary cartilage arises after bone formation during embryonic life at articulations, sutures and muscular attachments in
order to accommodate mechanical stress. Considering the phylogenetic inclusion of birds within the Dinosauria, we
hypothesized a dinosaurian origin for this ‘‘avian’’ tissue. Therefore, histological thin sectioning was used to investigate
secondary chondrogenesis in disarticulated craniofacial elements of several post-hatching specimens of the non-avian
dinosaur Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae). Secondary cartilage was found on three membrane
bones directly involved with masticatory function: (1) as nodules on the dorso-caudal face of a surangular; and (2) on the
bucco-caudal face of a maxilla; and (3) between teeth as islets in the alveolar processes of a dentary. Secondary
chondrogenesis at these sites is consistent with the locations of secondary cartilage in extant birds and with the induction
of the cartilage by different mechanical factors - stress generated by the articulation of the quadrate, stress of a ligamentous
or muscular insertion, and stress of tooth formation. Thus, our study reveals the first evidence of ‘‘avian’’ secondary cartilage
in a non-avian dinosaur. It pushes the origin of this ‘‘avian’’ tissue deep into dinosaurian ancestry, suggesting the creation of
the more appropriate term ‘‘dinosaurian’’ secondary cartilage.
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Introduction

Like bone microstructure, calcified cartilage can be fossilized

and preserved for hundreds of millions of years [1–3]. Indeed,

primary cartilage has been widely found and documented in fossils

(see review [4]). However, another type of calcified cartilage, less

studied than primary cartilage and known as secondary cartilage

(because it arises after bone formation), has only been described in

extant species and never been reported in a fossil so far. In extant

birds, ‘‘avian’’ secondary cartilage is found on skull and jawbones

and plays an important role in resisting mechanical stress from

embryonic development up to adulthood (Figure 1A,C). Consid-

ering the phylogenetic inclusion of birds within the Dinosauria [5],

we hypothesized a dinosaurian origin for this ‘‘avian’’ tissue.

Therefore, we investigated secondary chondrogenesis by means of

histological thin sectioning in disarticulated craniofacial elements

of several post-hatching specimens of the non-avian dinosaur

Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae), from the

Upper Cretaceous (Campanian) Two Medicine Formation of

Montana [6].

Early ontogenetic stages are the most suitable to study

chondrogenesis, therefore these elements are appropriate to our

investigation. They represent the youngest non-avian dinosaur

skulls ever studied from a histological perspective. A comparison

with primary chondrogenesis could be and was undertaken as well.

The main aim of the study was to investigate the proposed

dinosaurian origin of ‘‘avian’’ secondary cartilage. The presence of

this ‘‘avian’’ tissue in a non-avian dinosaur would push its origin

deep into the dinosaurian ancestry, and further cement the

dinosaurian origin of birds.

1. Modes of skeletal formation in vertebrates
Endochondral bones start out with primary cartilage. They

are located in the postcranium (e.g., limb bones, vertebrae and

ribs) and the neurocranium (i.e., the cartilaginous skull). The latter

is composed of the cranial base [7] and the sensory capsules (otic,

optic and nasal capsules; see [8] for a complete list of

endochondral bones in chick skulls). Bone arises (from osteogenic

cells brought in by blood vessels) at the center (diaphysis) of the

primary cartilaginous models of long bones from which it spreads.

In many groups, secondary centers of ossification arise at the ends

(epiphyses) of the cartilage models. Cartilage is replaced by bone at

growth plates. More precisely, chondrocytes undergo hypertrophy

and cellular apoptosis, and vascular invasion brings in osteogenic

cells that lay down new bone matrix. This leaves cartilage only at
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the extremities as the articular cartilage of the joints. The shape of

the final bone is laid down in the cartilage model.

Membrane bones, however, ossify directly through the process

of intramembranous ossification [7,9], without a primary carti-

laginous model [10,11]. Membrane bones form the cranial vault

(that protects the brain), the face, and the bone(s) of the jaws [12].

The only membrane bones found in the post-cranium are the

paired clavicles. Although membrane bones ossify directly without

a primary cartilage model, in some species cartilage can arise

secondarily, on pre-existing membrane bones, and is therefore

called secondary cartilage [7,13,14].

2. ‘‘Avian’’ secondary cartilage
Secondary cartilage arises because of the ability of periosteal

cells to respond to mechanical influences by switching their

differentiation from osteogenesis to chondrogenesis [15]. The

molecular basis of secondary cartilage formation is well known

[16]. The organic phase of secondary cartilage presents simulta-

neously type I and type II collagens, while primary cartilage only

secretes type II collagen [7]. In histological sections, secondary

cartilage presents a smaller amount of extracellular matrix than

primary cartilage [7], but the identification of the former is based

essentially and more accurately on its location (i.e., on the articular

surface of a pre-existing membrane bone). In addition to this, the

organization of the chondrocytes can also give a clue: while

primary cartilage is usually organized into long straight tubes at

epiphyseal growth plates [17], secondary cartilage lacks this linear

organization, with its chondrocytes organized randomly in nodules

([12]; and see the Results section). Being induced and maintained

by mechanical influences, secondary cartilages provide important

regional adaptive growth [12] and accommodate stress and strain

during normal development [15,18–22], but also during fracture

repair [22].

In birds, secondary cartilage is present in the growing

craniofacial skeleton ([18,20–25] and Figure 1A,C) and the

growing clavicle [26]. ‘‘Avian’’ secondary cartilages are initiated

(and maintained) as nodules at sites subject to intermittent

pressure, such as articulations, sutures and points of insertions of

ligaments or masticatory muscles [15]. Secondary cartilages arise

during embryonic life and persist after hatching. In adults almost

all of the secondary cartilages are resorbed and their place taken

by newly formed endochondral bone. The remaining chondro-

cytes (in the superficial layers) become the chondrocytes of an

articular fibrocartilage [20,21]. This makes embryos and the newly

hatched the most suitable stages to study secondary chondrogen-

esis in birds.

However, secondary cartilage is not unique to birds. It has been

widely sought among extant vertebrates and has also been found

in two other groups [15]: teleosts and mammals (Text S1). It has

not been reported in lissamphibians or in non-avian sauropsids,

despite extensive examination of embryos and attempts to induce

such cartilage experimentally [27–29]. Instead, these animals

accommodate stress by forming syndesmoses (i.e., a dense fibrous

connective tissue; e.g., see [7,29]) at the junction of their

membrane bones. The most parsimonious interpretation is that

the secondary cartilages displayed by the Teleostei, Mammalia,

and Aves are not homologous and arose independently [15].

Therefore, within the Archosauria, secondary cartilage (or the

Figure 1. Head skeleton and distribution of secondary cartilage in a newly-hatched chick and a post-hatching Hypacrosaurus. (A)
Skull diagram of a 2 day-old chick Gallus. (B) Skull diagram of a post-hatching Hypacrosaurus. (C, D) Detail in the red box in (A) and (B) respectively.
Locations of secondary cartilage are indicated in blue (at articulations) and purple (at muscle or ligament insertions). Diagonal lines indicate that
secondary cartilage is not located in the first plane of the figure, but more internally (on the lingual faces). In (C), secondary cartilage is found at the
following articulations: pterygoid-quadrate, quadratojugal-quadrate, squamosal-quadrate, surangular-angular, surangular-Meckel’s cartilage, and
angular-Meckel’s cartilage (based on [13]). It is also found on the distal tip of the angular at the insertion site of M. depressor mandibulae [13]. Note
that these sites change during ontogeny, i.e., more and different sites are present in the embryonic chick [18]. In (D), secondary cartilage is found at
the surangular-quadrate articulation; on the bucco-caudal face of the maxilla (in contact with the coronoid process of the dentary), and in the alveolar
processes of the dentary between teeth. ang, angular; art fac, articular facet of Meckel’s cartilage; co, coronoid process; de, dentary; ju, jugal; ma,
maxilla; pt, pterygoid; qj, quadratojugal; qu, quadrate; sq, squamosal; sur, surangular.
doi:10.1371/journal.pone.0036112.g001

Dinosaurian Secondary Cartilage in a Skull
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dual ability of periosteal cells to form chondro- and osteoblasts) is

unique to birds and seems to carry a phylogenetic signal.

Results

Secondary cartilage was found in three locations: on the dorso-

caudal face of a surangular at its articulation with the quadrate

(Figure 1D, Figure 2A,B,D); on the bucco-caudal face of a maxilla

(Figure 1D, Figure 2E,F); and in the alveolar processes of a dentary

between teeth (Figure 1D, Figure 2G,H). The surangular and the

maxilla each display a nodule of secondary cartilage (Figure 2A,E)

while the dentary displays smaller cartilaginous islets (Figure 2G).

These cartilages are composed of ovoid lacunae (Figure 2B,D,F,H),

interpreted as remnants of hypertrophied cartilage cells separated

by a bright mineralized extracellular matrix, the latter appearing

darker in the section (Figure 2D). These two nodules and little

islets are undergoing endochondral ossification. This is most visible

on the surangular where chondroclastic resorption is evidenced by

large erosion bays (Figure 2B,D). Subsequent bone apposition is

evidenced by bone struts on the walls of some of these erosion bays

(Figure 2D). These bone struts are also seen in the nodule of the

maxilla (indicated by the white arrows in Figure 2F) and in the islet

(indicated by the black arrows in Figure 2H). Secondary cartilages

of birds also undergo resorption and endochondral ossification

(Figure 2C). We identify unambiguously these cartilages on

Hypacrosaurus as secondary and not primary for two reasons: (1)

they display the typical cellular organization of avian secondary

cartilages as described below, an arrangement completely different

from the one displayed by primary cartilage; (2) they are located

on pre-existing membrane bones and therefore can only have

arisen secondarily, after bone formation.

As expected, the endochondral bones that were sectioned

displayed remnants of primary cartilage on their edges: the

basisphenoid, the basioccipital, the supraoccipital and the

exoccipital (i.e., chondrocranial bones forming the basicranium),

the quadrate, the prootic and the sclerotic (i.e., endochondral

bones forming the sensory capsules). No cartilage was found on the

laterosphenoid, the orbitosphenoid or the presphenoid; we suggest

that this is more a preservation bias rather than an unambiguous

absence. The primary cartilage of these specimens is organized

into long straight tubes of hypertrophic chondrocytes, separated by

bone trabeculae (Figure 3). This tubular arrangement, oriented in

one direction is observed in growth cartilages that provide linear

growth (i.e., epiphyseal plates of long bones and synchondroses of

the cranial base). These cartilaginous tubes give an undulating

shape to the junction between bone and calcified cartilage (i.e., the

chondro-osseous junction, otherwise straight in mammals and

non-avian sauropsids [17,30]), which is characteristic of the

epiphyseal growth plates of birds and non-avian dinosaurs

([17,30], see also the tibial epiphyseal growth plate of Hypacrosaurus

in Figure 3C). Secondary cartilage distinctively lacks this linear

organization and therefore, primary and secondary cartilage

cannot be misidentified. One could argue that the islets in the

dentary are nothing more than remnants of Meckel’s cartilage, a

primary cartilage rod that progressively becomes enveloped by the

dentary during development [7]. However, these islets have no

topographical relationship with Meckel’s cartilage, they are

located in the dorsal region of the dentary, while Meckel’s

cartilage would be located ventrally, as it is in extant amniotes, and

they differ histologically from the primary cartilage of Meckel’s,

that usually stays hyaline in most taxa (i.e., uncalcified, with few

and small chondrocytes encased in a very large amount of

extracellular matrix) [7]. Moreover, no remnants of Meckel’s

cartilage were found in the dentary of MOR 548. We suggest that

the hyaline nature of Meckel’s cartilage did not allow its

fossilization.

Discussion

From a histological perspective, little is known about dinosaur

skull development, especially during early ontogenetic phases.

Indeed, only four studies on juvenile and adult non-avian

dinosaurs describe the histology of cranial bones: the frontopar-

ietals of pachycephalosaurs [31,32]; the parietals of Centrosaurus

[33] and Triceratops [34,35]. There are, to our knowledge, no

studies on the bone microstructure of earlier ontogenetic stages

(e.g., embryos, post- and circum-hatching stages) of dinosaur

skulls. This study investigating dinosaurian secondary chondro-

genesis presents the youngest non-avian dinosaur skulls ever shown

from a histological perspective.

In extant birds, secondary cartilages resist and absorb mechan-

ical stress. Secondary cartilages arise in sites experiencing

mechanical stresses (e. g. Figure 1C) such as sutures, articular

surfaces (in order to prevent abrasion [20]) and points of insertion

of ligaments or masticatory muscles [15]. Likewise, Hypacrosaurus

displays secondary cartilages at three sites where mechanical

factors can be inferred (Figure 1D):

1. On the surangular, the location of the nodule is consistent with

preventing abrasion, because it is where it articulates with the

quadrate. Moreover, since the section is located in the vicinity

of the insertion sites of masticatory muscles (such as M. depressor

mandibulae and M. Pterygoideus ventralis [36]), a muscular

induction could also be considered. Similarly, the surangular

of birds displays secondary cartilages (Figure 1C, Figure 2C;

[18,20,21]).

2. The location of the nodule on the maxilla could be puzzling at

first; it is not a suture, nor an articular surface, nor has it

previously been described as being a muscle insertion site.

However, as the nodule directly faces the coronoid process of

the dentary we hypothesize that this nodule might have arisen

in response to the ‘‘pressure’’ of the coronoid process; or in

response to the mechanical stress of a ligamentous or muscular

insertion, possibly linking the coronoid process and the maxilla.

Further investigation of the histology of a coronoid process in

this particular area could shed light on this possibility and be of

interest for hadrosaur jaw mechanics.

3. Finally, we hypothesize that the development of secondary

cartilaginous islets in the dentary was induced by the

mechanical stress of tooth formation and growth. The growth

of the dentary is different in non-avian dinosaurs and extant

birds because the latter do not possess teeth. Therefore, no

direct comparison with extant birds is possible. However,

similar secondary cartilage islands are found in mammalian

alveolar processes, and their formation allows rapid growth in

the mandible [37,38]. Therefore, we hypothesize that this

represents a convergent evolution allowing fast growth in the

mandible of Hypacrosaurus. This is also supported by the bone

microstructure (not only of the dentary, but in the vast majority

of the investigated areas, data not shown), showing a highly

cellular and fibrous primary bone, with numerous and large

vascular spaces (e.g., Figure 2A,E); altogether suggesting an

extremely high velocity of growth (if not an embryonic

potential of growth).

In extant birds, secondary cartilages are found in the cranial

vault, in the face, and mostly in the skeleton involved with the

masticatory function (Figure 1C and see review [7]). The

Dinosaurian Secondary Cartilage in a Skull
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formation of this skeletal tissue is species-specific and is dictated by

the mechanical forces of the mode of feeding [7,13]. Similarly, in

Hypacrosaurus we identified secondary cartilage on bones directly

involved with the chewing function, the dentary and the

surangular in the lower jaw, and the maxilla in the upper jaw

(Figure 1D). It is highly probable that more sites were present but

were impossible to identify because of poor preservation. It is also

possible that additional sites of secondary chondrogenesis existed

Figure 2. Thin-sections showing secondary cartilage. (A) Cross section of the surangular (at the quadrate articulation) of Hypacrosaurus. White
arrows indicate the limit between bone and secondary cartilage. (B) Detail in upper red box in (A). The ovoid lacunae are remnants of hypertrophied
chondrocytes. Resorption is evidenced by erosion bays. (C) Cross section in a 16 day-old-chick embryo showing Meckel’s primary cartilage
(uncalcified) above, the perichondrium below it and secondary cartilage (white bar) on eroded surangular bone struts (black arrow). Sudan black B
shows that the most mature secondary cartilage is calcified (in dark blue). Adapted from a figure in [40]. (D) Detail in lower red box in (A). Secondary
cartilage (white arrow) is undergoing resorption and endochondral ossification (black arrows). (E) Coronal section in a maxilla. The nodule of
secondary cartilage (black arrows) has globular hypertrophied chondrocytes. The area in the small red box (indicated by the red arrow) is detailed in
figure (F). (F) Detail of red box in (E). The globular and hypertrophied chondrocyte lacunae are encased in a small amount of extracellular matrix. The
white arrows indicate bone struts. (G) Cross section in the caudal part of a dentary showing teeth (white asterisk). (H) Detail of red box in (G). An islet
of secondary cartilage is located between a tooth (indicated by the asterisk on the right) and alveolar bone (left). The black arrows show bone struts.
Photographs taken under natural light.
doi:10.1371/journal.pone.0036112.g002

Figure 3. Thin-sections showing remnants of primary cartilage in Hypacrosaurus. Longitudinal sections a quadrate (distal end) (A), a
basisphenoid (B) and a tibia (proximal end) (C). Primary cartilage is organized into long straight tubes (asterisks), oriented toward the direction of
growth, and separated by bone trabeculae (arrows). The junction between these cartilaginous tubes and the bone trabeculae, i.e., the chondro-
osseous junction, is undulating (as opposed to straight). Photographs taken under natural light.
doi:10.1371/journal.pone.0036112.g003
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during the embryonic development of Hypacrosaurus, or that new

and different nodules arise at later ontogenetic stages, as in birds

[20,21]. Any confusion with primary cartilage of endochondral

bones of the skull can be avoided, first because it is not found on

the same types of bones, and second, because it is organized

differently with straight tubes of cartilage, oriented in one direction

and with an undulating chondro-osseous junction. This undulating

chondro-osseous junction is also present in the epiphyseal growth

cartilages of the long bones of non-avian dinosaurs and birds

(Figure 3C; [17,30]). This is a shared derived anatomical character

corroborating the inclusion of birds within the Dinosauria [30].

We describe it here for the first time in the cartilaginous skull of a

non-avian dinosaur.

Most importantly, this study indicates that the craniofacial

development of birds and at least one clade of dinosaurs, the

Ornithischia, is adapted to resist mechanical stress through

secondary chondrogenesis.

Induced fracture repair did not produce secondary cartilage in

lissamphibians [27] or in lepidosaurians [28], and in crocodilians

(the closest living relatives of birds), secondary chondrogenesis was

not observed during the development of Alligator mississippiensis

[29], nor has it been reported during reptilian development [28].

Therefore, because this process fails to occur in any other extant

lissamphibian and non-avian sauropsid, we hypothesize that avian

and Hypacrosaurus secondary cartilages are homologous. If this is

the case, and as a result of its inferred presence in their common

ancestor secondary cartilage would be present in the other

dinosaurian clade, the Saurischia. The alternate hypothesis, that

this complex ability of the periosteum to switch from osteogenesis

to chondrogenesis evolved independently, seems less plausible.

The discovery of ‘‘avian’’ secondary cartilage in a non-avian

dinosaur further solidifies the dinosaurian origin of birds and

suggests the creation of the more appropriate term ‘‘dinosaurian’’

secondary cartilage. Further histological analyses are underway to

study members of the Saurischia, such as non-avian theropod

material.

Materials and Methods

The disarticulated MOR (Museum of the Rockies) 548

specimens were collected from an exceptional hadrosaur nesting

ground that has yielded dozens of disarticulated embryos and post

hatchlings from at least fifteen individuals of Hypacrosaurus stebingeri

(Ornithischia, Lambeosaurinae), in the Upper Cretaceous (Cam-

panian) Two Medicine Formation of Montana [6]. The elements

used in this study were selected carefully from the collections, in

order to represent the approximate same growth stage (i.e., post-

hatching, a few months old) with an estimated skull length of

20 cm. A composite skull of a similar size is still on display at the

MOR. So far, no texture by which secondary cartilage could be

recognized on gross examination was found. In order not to lose

any data concerning the size and the morphology of the

disarticulated bones, molds and casts were made prior to

histological analysis. In total, twenty-five elements were sectioned

(Table 1) according to standard fossil thin-sectioning techniques

[39]. Specimens were embedded in polyester resin and sectioned

with a diamond powder disk on a precision saw. Two to five thin-

sections were made of each element, with various cut orientations

(i.e., sagittal, parasagittal, transverse and coronal) in order to study

multiple potential secondary chondrogenesis sites such as articu-

lations and sutural areas involving membrane bones (Table 2).

Sections were then mounted on glass slides, ground and polished.

Completed thin section slides were observed with a Nikon

Optiphot-Pol polarizing microscope. Photomicrographs were

taken with a Nikon DS-Fi1 digital sight camera and the NIS-

Elements BR 3.0 software.

Supporting Information

Text S1 Informations about Mammalian and Teleostean

secondary cartilages.

(DOC)
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