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Background and Purpose: Cognitive impairment has been observed in patients with

bilateral vestibular loss (BVL) and in patients with sensorineural hearing loss (SNHL).

DFNA9 is an autosomal dominant disorder that causes a combination of both sensory

deficits by the 3rd to 5th decade.We therefore hypothesize a combined detrimental effect

on cognition. The aim of this systematic review was to identify studies related to DFNA9

in general and its relationship with cognitive impairment more specifically.

Materials and Methods: Several databases including Medline, Cochrane Database

of Systematic Reviews, Cochrane Central Register of Controlled Trials, ISI Web of

Knowledge, and Web of Science were searched to accumulate information about

DFNA9-mutations, including phenotype, genotype, pathophysiology, quality of life (QOL),

and imaging in general and cognitive function more specifically. A qualitative analysis was

performed on the 55 articles that qualified.

Results: The clinical features of DFNA9 are different along the 24 COCH mutations,

described up to now. Vestibular symptoms generally present themselves a few years

after SNHL onset in mutations associated with the vWFA-domain although they can

precede SNHL onset in other mutations associated with the LCCL-domain. QoL has

not been studied extensively in DFNA9, although scarce work is available on the positive

impact of cochlear implantation to rehabilitate hearing. No studies were found evaluating

cognition in DFNA9 patients.

Conclusion: Although cognitive impairment has been demonstrated in patients with

hearing loss as well as in patients with BVL, no studies have been reported on the

combination of both sensory deficits, such as in DFNA9. Further research is warranted

to correlate otovestibular status with cognition.
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INTRODUCTION

Sensory input may be an important determinant between normal
and pathological cognitive aging. Over the past few years, the
relationship between hearing loss and cognitive impairment
has been studied extensively in the aging population. Large
prospective studies have found an independent relationship
between hearing loss on the one hand and age-related cognitive
decline and incident dementia on the other hand (Lin et al., 2011,
2013; Gallacher et al., 2012; Gurgel et al., 2014; Fulton et al., 2015;
Castiglione et al., 2016; Wuyts et al., 2016). The mechanistic basis
of this correlation remains unclear: hearing loss may accelerate
cognitive decline in older adults and therefore acts as a risk factor
of cognitive decline. Alternatively, hearing loss could be an early
symptom of cognitive decline and could be an effect rather than
a cause of cognitive impairment. A common cause that induces
both pathologies may be a third underlying mechanism of the
association (Martini et al., 2014; Peracino, 2014).

Cognitive deficits were also observed in animal and human
studies on bilateral vestibular loss (BVL) (Smith et al., 2005). In
individuals with BVL, increased vigilance is necessary to avoid
falling, which makes multitasking difficult: e.g., patients need to
stop walking in order to talk (Lundin-Olsson et al., 1997; Bessot
et al., 2012). Furthermore, a reduction of gray matter volume
was observed in BVL patients in the bilateral hippocampal region
CA3 (Göttlich et al., 2016). Atrophy of the hippocampus in BVL
patients resulted in emotional, navigational, spatial memory, and
spatial anxiety deficits (Brandt et al., 2005; Fanselow and Dong,
2010; Kremmyda et al., 2016).

Hereditary hearing loss can be classified as syndromic hearing
loss and non-syndromic hearing loss. DFNA9 is a cause of
autosomal dominant non-syndromic late-onset sensorineural
hearing loss (SNHL) associated with progressive BVL (Chen
et al., 2013). It is caused by mutations in the COCH (coagulation
factor C homology) gene, found on the long arm of chromosome
14 (14q12-q13). This gene encodes for the cochlin protein, which
is highly expressed in the inner ear and found in lower levels in
the spleen and very low levels in the eye, cerebellum and brain
stem, kidney and liver (Bischoff et al., 2005; Li et al., 2005; Cho
et al., 2012).

The function of cochlin is not fully understood though it
is known to assist in structural support, sound processing,
and maintenance of balance within the inner ear (Gallant
et al., 2013). Animal models suggests an immune-mediating
effect by regulating cytokine production, recruitment of immune
effector cells, and bacterial clearance (Py et al., 2013). DFNA9
overexpression is also associated with raised intraocular pressure
within patients and mice (Bischoff et al., 2007; Goel et al., 2012;
Verbecque et al., 2017).

Although the pathophysiology behind the progressive bilateral
cochleovestibular loss is not entirely understood, mutated
cochlin deposits in the inner ear are considered pathognomonic
(Robertson et al., 2006). Recent work has established the
individual impact of hearing impairment as well as BVL on
quality of life (QoL) and cognitive function (Smith et al., 2005;
Vermeire et al., 2006; Guinand et al., 2012; Besnard et al., 2015;
Popp et al., 2017).

Our objective was to perform a systematic review on
DFNA9, specifically focusing on its phenotype, genotype,
pathophysiology, histologic findings, imaging findings, QoL on
the one hand and its effect on cognitive function on the other
hand.

MATERIALS AND METHODS

The strategy used and the reporting hereafter is based on
the Meta-analysis of Observational Studies in Epidemiology
statement (Stroup et al., 2000), and follows Cochrane guidelines
(Green, 2014).

We focused on several bibliographical databases to identify
relevant reports in English: Medline, Cochrane Database of
Systematic Reviews, Cochrane Central Register of Controlled
Trials, ISI Web of Knowledge, and Web of Science. The search
was performed on 1 July 2016, and also included articles
published ahead of print. The global search term was adapted to
all databases (Green, 2014; Scholten et al., 2014). We searched for
etiology, pathophysiology, QoL, MRI, CT, and cognitive function
as outcome (O) of the studies. We included studies in English.
Single case reports and systematic reviews were excluded.

The following search terms were combined for the PubMed
/ Medline search: (((((bilateral vestibulopathy) OR vestibular
areflexia) OR DFNA9) OR Bilateral semicircular canal stenosis)
OR semicircular canal fibrosis) AND ((((((Causality[Mesh]) OR
Etiology[Subheading]) OR Pathophysiology[Subheading]) OR
QoL) OR CT) OR MRI OR Cognitive function) For Web of
Science, the following search terms were used: [TS = (bilateral
vestibulopathy) OR TS = (vestibular areflexia) OR TS =

(DFNA9) OR TS = (Bilateral semicircular canal stenosis) OR TS
= (semicircular canal fibrosis)] AND [TS= (Causality) OR TS=
(Etiology) OR TS= (Pathophysiology) OR TS= (QoL) OR TS=
(CT) OR TS= (MRI) OR TS= Cognitive function].

All studies were screened for eligibility in two screening phases
based on the inclusion and exclusion criteria. In the first phase, all
studies were screened on title and abstract by two reviewers (JDB,
SM). If there was no abstract present but the title was applicable,
the study was included to the second phase. In the second phase,
the studies were screened in full-text using the same inclusion
and exclusion criteria. The flow of included articles can be found
in Figure 1.

The articles written by Dodson et al. (2012) and (Choi et al.
(2013) were added based on references within other relevant
articles. To get a better understanding of the function of cochlin
within the eye we also included Goel et al. (2012).

RESULTS

Phenotype
DFNA9 is characterized by progressive bilateral SNHL. The age
of onset varies depending on the mutation although the average
age of onset lies around the 3rd−5th decade (Chen et al., 2013).
SNHL typically starts in the higher frequencies at the age of onset
with an evolution toward deafness (Bom et al., 2003; Gao et al.,
2013).
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FIGURE 1 | Systematic study inclusion. Studies were excluded if they conformed to the following criteria: Population: unilateral vestibulopathy, absence of DFNA9,

pathology not concerning bilateral vestibulopathy or not cause by DFNA9 mutation. Intervention, not strictly observational; Outcome, When the goal of the study was

not to acquire data involving the etiology or pathophysiology; Design, Reviews and single case studies; Language, Not English or Dutch. Double, If found in more than

one database that article was only used once.

Dizziness is another important clinical aspect in most cases.
Patients may initially complain of episodic vertigo spells and
evolve toward BVL, which causes oscillopsia and imbalance
(especially in the dark), difficulty while cycling etc. The vestibular
symptoms generally present themselves a few years after the
SNHL onset although there are some mutations where the
vestibular symptoms present themselves simultaneously or even
prior to SNHL onset (G88E, P51S, G87V, G87W; Bom et al.,
1999a,b; Khetarpal, 2000; Bischoff et al., 2005; Kemperman et al.,
2005; Collin et al., 2006; Chen et al., 2013). One exception was
found, i.e., the P98H mutation, which presented with unilateral
congenital hearing loss in a single case. (Dodson et al., 2012)
The presentation of Ménière-like symptoms (tinnitus, vertigo
spells, and hearing loss) is not uncommon. However, Ménière’s
disease typically presents with a more fluctuating pattern of
hearing and vestibular symptoms, and a low-frequency SNHL.
(Fransen et al., 1999; Wuyts et al., 2016) BVL symptoms may
lead to reduced vitality, fear of falling and reduced general
health, further described in the “QoL” paragraph. One study

has also documented the absence of cervical vestibular-evoked
myogenic potentials (cVEMPs), indicating saccular otolithic
deficits (Robertson et al., 2008).

Genotype
The COCH gene is located on chromosome 14q12-13 which
encodes for cochlin (Manolis et al., 1996). We identified 24
different mutations in the COCH gene, autosomal dominantly
inherited and heterozygous (Table 1). COCH encodes for a 550-
amino-acid protein called cochlin. The COCH gene contains
the following domains: an N-terminal signal peptide (SP), a late
gestation lung protein Lgl1 (LCCL) domain, two vWFA domains
(von Willebrand factor A-like) and two short intervening
domains (ivd) (Robertson et al., 2001; Gallant et al., 2013; Bae
et al., 2014). The vestibular symptoms are more correlated with
mutations within the LCCL domain than to mutations within
the vWFA domains. Individuals withmutations within the vWFA
domain usual have an earlier onset of hearing loss than those with
mutations in the LCCL domain (Bae et al., 2014).
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TABLE 1 | Known COCH mutations and clinical features.

Effected protein Domain Progressive

hearing loss

Decade of

onset

Vestibular

involvement

Accompanied by

tinnitus

Ethnicity References

p.A119T LCCL Yes 4th Present in all – Japanese Pauw et al., 2011

p.A487P vWFA2 Yes 2nd Present in some – Italian Bae et al., 2014

p.C162Y Intervening Yes 2nd Not present – Chinese Gao et al., 2013

p.C542F vWFA2 Yes 2nd−5th Present in some – USA Street et al., 2005; Yuan et al., 2008

p.C542R vWFA2 Yes 2nd Present in one – Japanese Tsukada et al., 2015

p.C542Y vWFA2 Yes 2nd−5th Not present Frequent (82%) Chinese Yuan et al., 2008

p.F121S LCCL Yes 2nd−3rd Present in all Common USA Hildebrand et al., 2010

p.F527C vWFA2 Yes N.A. Not present – Korean Cho et al., 2012

p.G38D LCCL Yes N.A. N.A. N.A. Korean Choi et al., 2013

p.G87V LCCL Yes 4th Present in all Sometimes Chinese Chen et al., 2013

p.G87W LCCL Yes 5th Present in all – Dutch Collin et al., 2006; Pauw et al., 2007a,b

p.G88E LCCL Yes 4th−7th Present in some – Dutch, USA Kemperman et al., 2005

p.I109N LCCL Yes 2nd−3rd Present in all – Australian Kamarinos et al., 2001

p.I109T LCCL Yes 4th−6th Present in all – Dutch Pauw et al., 2007b

p.I372T vWFA2 Yes 4th−5th Not present – Japanese Tsukada et al., 2015

p.Ile399_Ala404del vWFA2 Yes 3rd Not present Common USA Gallant et al., 2013

p.L114P LCCL Yes N.A. N.A. N.A. Korean Choi et al., 2013; Burgess et al., 2016

p.M512T vWFA2 Yes 5th Not present Sometimes Chinese Yuan et al., 2008

p.P51S LCCL Yes 2rd−5th Present in all Common Dutch, USA Lemaire et al., 2003; Bischoff et al., 2005

p.P89H LCCL Yes Congenital N.A. – USA Dodson et al., 2012

p.V104del LCCL Yes 4th Present in all – Hungarian Nagy et al., 2004

p.V123E LCCL Yes 4th−6th Not present – N.A. Jung et al., 2015

p.V66G LCCL Yes 2nd−3rd Present in some – USA Grabski et al., 2003

p.W117R LCCL Yes 3rd Present in some – Korean, USA Nagy et al., 2008; Tsukada et al., 2015

Decade of onset of either hearing loss, vestibular symptoms or both. In most mutations hearing loss precedes vestibular symptoms by a few years; N.A., no data available; Dutch, The

Netherlands and Belgium.

Several COCH mutations originate from specific locations
such as North America, Japan, Australia, Korea, China, and
Belgium/the Netherlands. For the Pro51Ser mutation a Dutch
founder was discovered (de Kok et al., 1999; Verhagen et al.,
2001).

Pathophysiology
The DFNA9 mutations lead to the production of mutated
cochlin. Since the exact physiological role of cochlin is yet to be
discovered, the pathophysiological relevance of mutated cochlin
is still unknown.

Different pathophysiological mechanisms have been described
for different mutations, although they lead to similar phenotypes
(Liepinsh et al., 2001; Robertson et al., 2003; Yao et al., 2010;
Bae et al., 2014; Jung et al., 2015). For the mutations p.V104del,
p.I109T, and p.F121S located on the Limulus factor C, cochlin,
and LCCL domain and p.C162Y, p.A487P located on the vWFA
domains Bae et al. found that they were not secreted into
the media (Yao et al., 2010). A failure in transport from
the endoplasmatic reticulum to the Golgi complex leading to
accumulation within the cell was documented for the latter
mutations. Dimeric aggregates and multimeric aggregates are the
product of protein misfolding (Grabski et al., 2003; Robertson
et al., 2003; Street et al., 2005; Yao et al., 2010; Cho et al.,
2012). LCCL domain mutations were found to form intracellular

dimeric aggregates while mutations in vWFA domains lead to
the formation of multimeric aggregates. High-molecular-weight
aggregates are linked to early onset of hearing loss in DFNA9
patients whereas dimeric aggregates are associated with a later age
of onset (Cho et al., 2012; Bae et al., 2014). For the vWFA domain
mutations p.F527C and p.C542Y intracellular accumulation of
multimeric cochlin was found, however monomeric secretions
of mutant cochlin reach similar levels as in wild-type. COCH
mutations in the LCCL domain are dominated by vestibular
symptoms, while mutations in the vWFA predominantly lead to
hearing loss. (Nagy et al., 2004; Bae et al., 2014).

Another pathophysiological mechanism involving decreased
secretion is reduced cleavage of intracellular cochlin by
aggrecanase, described for p.P51S, p.V66G, p.G88E, p.I109T,
p.W117R, p.V123E, and p.C162Y. Wild type cochlin is cleaved
by aggrecanase after which the LCCL-domain is secreted into
the extracellular compartment. The c-terminal domain remains
intracellular (Py et al., 2013; Jung et al., 2015). Because of
the misfolding, post-translational cleavage of mutated cochlin
is impaired. This leads to a reduction in secretion of the
LCCL domain to the extracellular compartment. The absence
of cleaved LCCL within the inner ear would lead to a
reduced inflammatory reaction because of the innate immune
function of LCCL, which eventually leads to an accumulation
of endotoxins within the inner ear and the characteristic
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late-onset bilateral cochleovestibular deficiency (Bae et al.,
2014).

Other hypotheses involving the normal secretion of mutated
cochlin speak of impaired integration in the extracellular matrix
(ECM) leading to structural changes in the matrix of the
cochleovestibular system (Grabski et al., 2003; Robertson et al.,
2006) or extracellular dimerization and multimerization, this is
yet to be further elucidated (Yao et al., 2010; Jung et al., 2015).

Histology
McCall et al. (2011) found that temporal bones of DFNA9
patients had abnormal mixed eosinophilic deposits within the
cochlea and vestibular labyrinth, the tympanic membrane,
incudomallear, and incudostapedial joint. In the middle ear,
deposits in the tympanic membrane cause a thickening of
the middle layer. The deposits resembled the morphology of
cartilage. Other mobile areas within the middle ear such as the
stapediovestibular joint, tensor tympani tendon, anterior malleal
ligament, and incudal ligament did not reliably demonstrate
similar deposits. Important to note is that these histological
findings are different to those of the inner ear.

Within the inner ear, the presence of eosinophilic cochlin
deposits is considered pathognomonic for DFNA9. These
deposits are acellular and homogenous as found by Robertson
et al. (Goel et al., 2012) Electron microscopy of the inner ear
section in DFNA9 patients shows a highly branched, densely
packed and haphazardly branched microfibrillar substance. Only
one type of microfibrils is detected which is 20 nm or less in
size. These findings are in contrast with the extracellular matrix
of healthy individuals where multiple types of microfibrils are
periodically banded with a moderate amount of space between
the bundles (Bom et al., 2003).

Imaging
Limited evidence is available on sclerotic lesions and/or
narrowing of one of the semicircular canals in DFNA9. These
findings have been observed on T2-weighted MRI images as a
phenotypic radiological feature of DFNA9 by de Varebeke et al.
(2014) who also found that the fibrotic process within the inner
ear is only later followed by ossification. However, Van Rompaey
et al. (2016) demonstrated afterwards that these findings are
also present in patients with simultaneous cochleovestibular
deficiency compared to patients who only have bilateral deafness.
Since there is a correlation between MRI abnormalities and
lateral semicircular canal function loss they proposed T2-
weighted MRI as possible biomarker for BVL in general.

Quality of Life
BVL often leads to a decreased QoL, as reported by Guinand
et al. (2012), who have studied QoL in a general BVL population,
including four DFNA9 patients. Several health-related QoL
instruments were used to study the impact of BVL overall,
including the Short-Form Health Survey (SF-36), Dizziness
Handicap Inventory (DHI), and the Short Falls Efficacy Scale-
International (Short FES-I) (Guinand et al., 2012). Physical
functioning, general health, vitality, and social functioning
were significantly impaired (compared to the general Dutch

population), meaning that both physical, and mental QoL is
significantly decreased in these patients (Guinand et al., 2012).
Thirty-three BVL patients (85%) had a score of 30 or higher
(moderate self-perceived handicap), of which 17 (44%) had a
score of 60 or higher (severe self-perceived handicap). The
Short FES-I is a questionnaire used to assess the fear of
falling. Only seven patients reported to have no fear of falling,
whereas 29 patients (74%) had a slight to moderate fear. Three
patients with BVL (8%) had a severe fear of falling. To evaluate
oscillopsia, a specific questionnaire was reported by Guinand
et al. (2012) Due to its chronic nature patients tend to report
less inconvenience by oscillopsia over time due to habituation,
though the questionnaire still revealed a significant impact on
daily life.

Vermeire et al. (Vermeire et al., 2006; Castiglione et al.,
2016) describe a significant improvement in QoL and speech-
recognition in DFNA9 patients after cochlear implantation. They
used the Hearing Handicap Inventory for Adults, the Glasgow
Benefit Inventory, and the Scale for the Prediction of Hearing
Disability in SNHL (Vermeire et al., 2006).

Cognitive Impairment
Numerous studies have already described the correlation between
hearing impairment and cognitive decline. (Fulton et al., 2015;
Miller et al., 2015; Castiglione et al., 2016; Claes et al.,
2016) In DFNA9 patients, the impact on QoL of SNHL and
cochlear implantation was studied, without focusing on cognitive
impairment (Vermeire et al., 2006; Castiglione et al., 2016). No
data were available on the evaluation of cognition in DFNA9
patients or BVL in general at the time of the literature search.
Afterwards, Popp et al. reported on data suggesting cognitive
impairment in BVL patients (Popp et al., 2017).

DISCUSSION

DFNA9 is an autosomal dominant non-syndromic disorder
characterized by late-onset SNHL associated with progressive
BVL (Chen et al., 2013). This systematic review is characterized
by a transparent search strategy and study selection.

The pathophysiology is not yet fully elucidated, although
all documented mutations share roughly the same phenotype,
including late-onset SNHL and BVH. Some exceptions have been
documented, p.P89H is associated with congenital SNHL, while
p.C162Y, p.C542Y, p.F527C, p.I372T, p.Ile399_Ala404del, and
p.M512T are not associated with BVL.

QoL has not been studied extensively in DFNA9, although
scarce work is available on the positive QoL impact of cochlear
implantation to rehabilitate hearing (Vermeire et al., 2006;
Castiglione et al., 2016). Currently, no treatments are available
clinically to restore vestibular function. The treatment consists
mainly of specific exercises and informing the patient. Practical
information such as fall risk precautions is discussed (Furman
et al., 2010). To restore vestibular function, several centers have
studied the possibility of a vestibular implant (Lewis, 2016). In
analogy to the cochlear implant, the vestibular implant sends
electronic signals to the vestibular system. In doing so, it imitates
normal vestibular function and provides the central nervous
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system with motion information (van de Berg et al., 2011,
2012; Merfeld and Lewis, 2012; Thompson et al., 2012; Guinand
et al., 2015). Even in an etiologically heterogeneous patient
population (including DFNA9 patients), a vestibular implant
could be an effective way to activate the vestibular system and
have a significant impact on QoL of BVL patients (Guinand et al.,
2015).

Several studies have been conducted on the impact of hearing
loss on cognition (Lin et al., 2013; Fulton et al., 2015; Miller
et al., 2015; Castiglione et al., 2016; Claes et al., 2016). Lin
et al. performed a large prospective study with 1,984 older adults
of which there were 1,162 hearing impaired. They evaluated
the cognitive state during multiple years, and concluded that
hearing loss is an independent factor that causes an acceleration
of cognitive decline. The progression of the cognitive decline
is linear to the progression of the hearing deterioration. The
mechanism of this link between hearing and cognitive decline is
still to be further examined (Miller et al., 2015).

Few studies have been conducted on the impact of
BVL on cognition. Some animal models and patient studies
documented hippocampal deterioration following vestibular
dysfunction leading to impaired spatial memory. Also, over
several patient studies deficits in memory, spatial memory,
perception, attention, and ability to analyze information were
found. Moreover, in some cases a correlation was found between
the severity of the vestibular symptoms and cognitive impairment
(Smith et al., 2005). However, in 2003 an epidemiological
study, involving 200 patients, conducted by Gizzi et al. found
no significant correlation between the diagnosis of vestibular
dysfunction and the presence of cognitive complaints (Gizzi
et al., 2003). The correlation between BVL and cognitive tasks
involving spatial tasks has always been the strongest. Popp et al.
recently found a significant impairment of visuospatial abilities,
processing speed, short-term memory. and executive functions
in BVL patients. They compared unilateral vestibular loss (UVL)
with BVL and controls and found a significant difference in
cognitive deterioration between patients with BVL and UVL. For
patients with UVL they documented significant impairment in
visuospatial skills and reduced processing speed, the latter only
in some cases.

Since there is a correlation between BVL and cognitive
deterioration specifically in spatial domains, even for non-spatial
skills a strong similar deterioration can be expected in DFNA9
patients (Popp et al., 2017). However, DFNA9 patients also suffer
from hearing loss, which may also affect immediate memory,
language, attention, and delayed memory. We would therefore
anticipate a combined detrimental effect on cognition. For this
reason, we conducted a systematic review on the available
literature. However, we were unable to find studies evaluating
cognition in patients affected by BVL and SNHL such as in
DFNA9.

There are many instruments to evaluate the cognitive
function of a patient. The most frequently used are the
Montreal Cognitive Assessment (MoCa), Mini-Mental State
Exam (MMSE), Addenbrooke’s Cognitive Examination revised
version (ACE-R), Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS), Neurobehavioral Cognitive
Screening Examination (NCSE), etc. When comparing MMSE,
MoCa, and RBANS a strong correlation is found between
the score of RBANS and MOCA, while only RBANS has a
strong correlation with total brain volume (Paul et al., 2011;
Lin et al., 2017). While the MOCA can screen for mild
cognitive impairment and the MMSE is used more frequently
in Alzheimer’s disease, the RBANS has more potential as a
tool in case repeated measures are required, e.g. prospective
follow-up studies. The RBANS also has the benefit of generating
one outcome measure (instead of focussing on one aspect
such as d2, Boston Name, etc.) and its easy application in an
ENT clinic. Two other tools that also offer this benefit are
Alzheimer’s Disease Assessment Scale Cognitive (ADAS-Cog)
and Mattis Dementia Rating Scale (MDRS), however ADAS-
Cog does not test executive functions, which was found to be
impaired in patients with vestibular dysfunction. (Popp et al.,
2017) Both MDRS and RBANS require verbal communication
with the patient, which makes the results questionable when
used in studies including patients with hearing impairment
(Appels and Scherder, 2010). However, an adjusted version of the
RBANS, the RBANS-H, has been drafted especially for patients
with impaired hearing, overcoming the bias caused by hearing
impairment within these cognitive assessment tools (Claes et al.,
2016).

CONCLUSION

Cognitive impairment has been demonstrated in several studies
in patients with hearing loss and in one study on patients
with bilateral vestibular failure. However, no studies have been
reported in DFNA9, where patients are affected by combined
otovestibular failure. Further research is warranted to correlate
otovestibular status with cognition.
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