
Citation: Ta, Q.-B.; Huynh, T.-C.;

Pham, Q.-Q.; Kim, J.-T. Corroded Bolt

Identification Using Mask

Region-Based Deep Learning Trained

on Synthesized Data. Sensors 2022, 22,

3340. https://doi.org/10.3390/

s22093340

Academic Editors: Giuseppe

Lacidogna, Sanichiro Yoshida,

Guang-Liang Feng, Jie Xu,

Alessandro Grazzini and

Gianfranco Piana

Received: 24 March 2022

Accepted: 24 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Corroded Bolt Identification Using Mask Region-Based Deep
Learning Trained on Synthesized Data
Quoc-Bao Ta 1 , Thanh-Canh Huynh 2,3 , Quang-Quang Pham 1 and Jeong-Tae Kim 1,*

1 Department of Ocean Engineering, Pukyong National University, Busan 48513, Korea;
qb.tabao@gmail.com (Q.-B.T.); bkdn06x3a@gmail.com (Q.-Q.P.)

2 Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
huynhthanhcanh@duytan.edu.vn

3 Faculty of Civil Engineering, Duy Tan University, Danang 550000, Vietnam
* Correspondence: idis@pknu.ac.kr; Tel.: +82-51-629-6585

Abstract: The performance of a neural network depends on the availability of datasets, and most deep
learning techniques lack accuracy and generalization when they are trained using limited datasets.
Using synthesized training data is one of the effective ways to overcome the above limitation. Besides,
the previous corroded bolt detection method has focused on classifying only two classes, clean and
fully rusted bolts, and its performance for detecting partially rusted bolts is still questionable. This
study presents a deep learning method to identify corroded bolts in steel structures using a mask
region-based convolutional neural network (Mask-RCNN) trained on synthesized data. The Resnet50
integrated with a feature pyramid network is used as the backbone for feature extraction in the
Mask-RCNN-based corroded bolt detector. A four-step data synthesis procedure is proposed to
autonomously generate the training datasets of corroded bolts with different severities. Afterwards,
the proposed detector is trained by the synthesized datasets, and its robustness is demonstrated
by detecting corroded bolts in a lab-scale steel structure under varying capturing distances and
perspectives. The results show that the proposed method has detected corroded bolts well and
identified their corrosion levels with the most desired overall accuracy rate = 96.3% for a 1.0 m
capturing distance and 97.5% for a 15◦ perspective angle.

Keywords: deep learning; vision-based approach; Mask-RCNN; bolt corrosion; image processing;
bolted connection; steel structures

1. Introduction

Bolted joints serve to connect load-bearing members in various structural systems.
During their life cycle, bolted joints are frequently exposed to different environmental
conditions of moisture and air pollutants and therefore are susceptible to corrosion [1,2].
Thus, early detection of bolt corrosions should be regularly and periodically implemented
to secure the safety and integrity of the bolted joints.

In the past few decades, many structural health monitoring (SHM) methods have been
developed to gradually replace time-costly traditional visual inspections [3–7]. Researchers
have attempted to monitor the health of bolted connections using contact-sensor-based
methods, such as the acoustic-based method [8], wavelet-analysis-based methods [9],
coda wave interferometry [10], piezoelectric-active-based methods [1], electromechanical-
impedance-based methods [11,12], fiber Bragg gratings (FBGs)-based methods [13,14].
However, those methods often require expensive and precise instruments to record the
damage-sensitive responses from a bolted joint. They are also ineffective when implement-
ing a large bolted joint and in field experiments. Although the wireless-based damage bolt
monitoring sensors [7] have been designed to be flexible, energy-saving, and promising for
realistic structures, maintaining and protecting those sensors under hazardous environment
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conditions are the dilemma issues. Besides, the data recorded from the sensors and actua-
tors are affected by environmental factors, leading to a certain difficulty in damage-feature
extraction. Recently, the vision-based SHM approach has been receiving significant interest
from the research community [5]. This technology has the potential to solve the inherent
issues of sensor-based techniques. In brief, the vision-based approach offers the following
advantages: a simple setup and operation, non-contact sensing technology, immune to
temperature and humidity changes, suitable for SHM of large structures.

Due to those promising features, the machine learning and vision-based approaches
have been applied for SHM of steel bolted joints [15–22]. Several vision-based bolt-looseness
monitoring techniques were developed on the basis of the region-based convolutional
neural network (RCNN) or Faster RCNN [23–25]. Pan et al. [26] proposed a detect-track
method based on the YOLOv3-tiny [27] and Kanade–Lucas–Tomasi (KLT) algorithm [19] to
track the rotation of clean bolts under lab-scale light conditions. Cha et al. [17] also proposed
a vision-based faster RCNN model for detecting multi-damage in civil structures (i.e., steel
corrosion, delamination, etc.). Moreover, Chun et al. [28] used a deep learning-based image
captioning technique to explain bridge damage types (e.g., corrosion, cracks). However,
most of the studies have focused on stainless bolts and only a few studies have developed
a vision-based method for corroded bolt detection. Recently, Ta et al. [24] proposed an
RCNN-based corroded bolt detector and verified it on a lab-scale bolted joint of a steel
girder. Despite the promising result, the proposed detector was developed to identify two
classes, clean and fully rusted bolts, and its performance for detecting partially rusted bolts
is still questionable. Thus, there is a need to develop an alternative deep-learning-based
method for detecting early-corroded bolts in the steel joint. Mask-RCNN is the state-of-
the-art algorithm for object segmentation and is developed on top of Faster RCNN. One of
the major advantages of the Mask-RCNN model is that it can return both the bounding
box for each object and its instance segmentation. Thus, the use of the Mask-RCNN model
could allow for the further quantification of the severity of corrosion damage on bolts at
the pixel level.

The performance of a neural network depends on the availability of datasets, and
most deep learning techniques lack accuracy and generalization when they are trained
using limited datasets. With the aim of advancing the perception of deep learning models,
many studies have developed computer graphics to synthesize realistic virtual models that
support creating the training graphic datasets. Several deep learning models trained on
synthesized datasets have recently demonstrated an outstanding performance when tested
on realistic datasets [29–31]. Regarding bolted joint monitoring, Pham et al. [29] built a 3D
graphical model of a bolted plate to generate high-quality images for training an RCNN-
based bolt detector. The proposed model achieved fairly good detection results compared
to the model trained on realistic data. Recently, Yang et al. [27] have developed a graphical
model with bolt-loosening marks to create synthetic datasets for training YOLO-based deep
learning models. They investigated bolt-looseness detection under different environmental
conditions and achieved pretty good results. However, the graphical models from those
studies, consisting of only clean bolts, can be easily created with less time. In the case
of modeling a corroded bolted joint, it will take a long time to build a realistic graphical
model and render it considering actual environment behaviors. The process of manual
label annotation for the training dataset from those studies was also incredibly timewasting,
especially in the case of distributed labeling objects within a narrow complex background.

The objective of this study is to develop a deep learning model for identifying early-
corroded bolts in steel joints and to present a data synthesis technique to autonomously
generate training datasets. Firstly, a Mask-RCNN-based corroded bolt detector is proposed.
The Resnet50 integrated with the feature pyramid network is used as the backbone for
feature extraction in the detector. Next, a four-step procedure is proposed to autonomously
generate three datasets: clean bolt (Bolt), partially corroded bolt (PCBolt), and fully cor-
roded bolt (FCBolt), along with their corresponding masks. Thirdly, the generated datasets
are used to train the Mask-RCNN-based corroded bolt detectors. Finally, the robustness of
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the method is demonstrated by detecting corroded bolts in a lab-scale steel structure under
varying capturing distances and perspectives.

2. Mask-RCNN-Based Corroded Bolt Detector
2.1. Architecture of the Detector

The Mask-RCNN model is built based on the Faster RCNN model for instant object
segmentation with three primary changes: (1) a Resnet50 backbone is integrated with the
feature pyramid networks (FPN) to generate better-scaled features; (2) RoiAlign layers are
used instead of the RoiMaxPooling layers to provide more sub-pixel levels than RoiMax-
Pooling layers; and (3) a mask branch for pixel-level object segmentation is attached to
generate pixel masks.

According to the previous studies [32,33] a Mask-RCNN model is developed for
identifying corroded bolts in bolted connections, as shown in Figure 1. The Mask-RCNN-
based corroded bolt detector can automatically identify bolts in the input image, classifying
them into as clean bolts (ClBolt), corroded bolts (PCBolt) or fully corroded bolts (FCBolt),
and deliver corresponding segmentation maps (e.g., a pixel mask) with individual identities.
This could help to provide a faster process for retrieving object information, even with
overlapped objects in a similar category, as compared to semantic segmentation tasks [34].
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As illustrated in Figure 1, the Mask-RCNN architecture includes two primary modules:
feature extraction and feature prediction. In the first module, a Resnet50-Feature Pyramid
Network (FPN), Region Proposal Network (RPN), and RoiAlign layers are sequentially
designed to extract plausible features information from the input image. The feature
prediction module is a series of neural network layers such as classification, regression,
and segmentation that take responsibility for predicting class names, bounding boxes, and
the pixel masks of the bolt features, respectively. The classification and bounding box
regression offset, as the detection branch runs parallel with the segmentation branch. In the
following, the feature extraction and the feature prediction modules are described in detail.

Detection results from each category are marked by the different colors. For example,
clean bolts (ClBolt) are assigned by a white color at the bounding boxes and masks, whereas
the partially corroded bolts (PCBolt) and fully corroded bolts (FCBolt) are marked by yellow
and red colors, respectively.

2.1.1. Feature Extraction Module
Resnet50-FPN

The architecture of the Resnet50-FPN is depicted in Figure 2 [35,36]. The detailed
visualization of the Resnet50-FPN shows the first 13 layers are of the Resnet50, and the five
next layers (i.e., 14, 15, 16, 17, and 18) are of the FPN net.

Different from other networks, the Resnet50 network [35], a very deep network, is
built based on Convolutional (Conv) and Identity (ID) blocks. These blocks are stacked
and repeated to deal with the vanishing gradient problem in the learning process when the
gradient is extremely small [35]. The convolution blocks are used to skip the connection
in case of unmatching between the input and output. Each fusion block of the Resnet50
is built with the aim of halving the feature map sizes and doubling the number of feature
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maps. The Resnet50 was adopted for extracting feature maps of bolts due to its good
performance as the winner in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition in 2015 [37]. In this study, the ResNet50 was modified to fit the
Mask-RCNN for feature learning of bolt images.
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As fundamental components of an object recognition system [36], the FPN layers are
combined with the Resnet50 for detecting bolts at different scales. The maps from the
ResNet50 apply an operation of 1 × 1 convolution before passing to the FPN layers, as
shown in Figure 2. These 1 × 1 convolution layers not only help to shrink the number
of feature channels, reduce computational cost, and remove unimportant features, but
also support finding out many other complex hidden features from the feature maps
extracted from the Resnet50 network without changing the size of the features’ width and
height. According to the increasing orders of the FPN layers, an up-sampling operation by
two times is used to build each pyramid of the bolt features excepted for the 18th FPN layer.

RPN

As the second module, the region proposal network (RPN) layers (see Figure 1) receive
the feature maps from the FPN layers to directly create region proposals based on anchor
boxes and scaled rates instead of using an external algorithm such as edge boxes [38],
which makes the network faster and better at learning from data [33]. To obtain proposal
boxes from the RPN layers, the maps continue being subjected to an operation of 3 × 3
convolution. It is noted that only the feature maps of the 18th FPN layer were generated by
subsampling from the feature maps in the 22nd RPN layer with a stride of 2. Visualization
of five levels of feature maps with anchor boxes from the RPN layers is shown in Figure 2.

RoiAlign Layer

The third module is the RoiAlign layers. They receive feature boxes and scale these
features to a uniform size. By using an interpolation of feature calculation, the RoiAlign
layers (the 24th layer) are used in Mask-RCNN instead of the RoiMaxPooling layers because
they accurately provide sub-pixel levels better than RoiMaxPooling layers [32].

Table 1 shows layers and operators of modified Resnet50. It includes an input image
layer (Input), convolution layers (Conv), a batch normalization layer (Batch norm), an
activation function layer (ReLu), max-pooling layers (Max pool), four Conv blocks, and
twelve ID blocks. The details of the FPN, RPN, and RoiAlign layers can also be found
in [32].
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Table 1. Detailed layers and operators of modified Resnet50-FPN.

No Type Depth Filter
Size Stride Padding Output Image Size

1 Input 3 - - - [w × h] *
2 Conv 64 7 × 7 2 3 [w/2 × h/2]
3 Batch norm - - - - [w/2 × h/2]
4 ReLu - - - - [w/2 × h/2]
5 Max pool 64 3 × 3 2 2 [w/4 × h/4]

6/8/10/12.
Conv block

Conv-1 64/128/256/512 1 × 1 1/2/2/1 0/0/2/0

[w/4 × h/4] for block #6
[w/8 × h/8] for block #8

[w/16 × h/16] for block #10
[w/32 × h/32] for block #12

BN-1 - - - -
ReLu-1 - - - -
Conv-2 64/128/256/512 3 × 3 1 1
BN-2 - - - -

ReLu-2 - - - -
Conv-3 256/512/1024/2048 1 × 1 1 0
BN-3 - - - -

ReLu-4 - - - -
Conv-4 256/512/1024/2048 1 × 1 1/2/2/1 0/0/2/0
BN-4 - - - -

7/9/11/13.
ID Block

Conv-5 64/128/256/512 1 × 1 1 0

[w/4 × h/4] for block #7
[w/8 × h/8] for block #9

[w/16 × h/16] for block #11
[w/32 × h/32] for block #13

BN-5 - - - -
ReLu-5 - - - -
Conv-6 64/128/256/512 3 × 3 1 1
BN-6 - - - -

ReLu-6 - - - -
Conv-7 256/512/1024/2048 1 × 1 1 0
BN-7 - - - -

ReLu-7 - - - -

* w and h are the width and height of an image.

2.1.2. Feature Prediction Module and Loss Functions

The feature prediction module of Mask-RCNN (see Figure 1) is constructed from the
Faster-RCNN’s feature prediction layers (e.g., classification and box regression layers) and
the object segmentation layer. These layers receive scaled features from the RoiAlign layers
and work in parallel to output the class, bounding box, and pixel mask of the objects
(e.g., bolts).

The classification layer contains fully connected (FC) layers, and the final FC layer
outputs four-class types, ClBolt, FCBolt, PCBolt, and BG. The classification loss function of
the classification layer is defined in Equation (1), in which pi is the probability value of the
ith anchor box, and p∗i is the probability value of the true class that is decided by the IoU
index [32].

Lclass(pi, p∗i ) = −log[pi p∗i + (1− p∗i )(1− pi)] (1)

The box regression layers aim to generate bounding boxes covering the objects. This
branch similarly operates as RPN layers: it refines the location and size of the bounding
box. Equation (2) shows the bounding-box loss function (Lbox), where ti and t∗i contain four
components: the first two components represent the translation direction, and the others
represent the scaling direction, as shown in Equations (3) and (4), respectively. The indexes
x, y, w, h are the x coordinate, y coordinate, x-direction length, and y-direction length of
the predicted bounding box, respectively. The indexes marked “∗” refer to the coordinates
of the ground truth box, and those marked “a” refer to the coordinates of the anchor box.

Lbox(ti, t∗i ) =
{

0.5(ti − t∗i )
2, i f |x| < 1

|x| − 0.5, i f |x| > 1
(2)

tx =
x− xa

wa
, ty =

y− ya

ha
, tw = log

w
wa

, th = log
h
ha

(3)
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t∗x =
x∗ − xa

wa
, t∗y =

y∗ − ya

ha
, t∗w = log

w∗

wa
, t∗h = log

h∗

ha
(4)

The mask segmentation layers are fully convolutional layers, and they take responsibil-
ity for producing pixel-level masks for each bolt using four consecutive 3 × 3 convolutional
layers, a 1 × 1 deconvolutional layer, and a 1 × 1 convolutional layer. This branch’s
architecture is specified in the Mask-RCNN paper by He et al. [32]. The output mask of
the branch is modified to 4, which is equal to the number of classes in the classification
branch. Equation (5) shows the mask loss function (Lmask). Lmask is defined as the average
binary cross-entropy loss for positive region of interests (RoIs), which has the IoU index
overlap be equal to or larger than 0.5. The value xi is the ith pixel predicted in positive
RoIs, the value bi is the correct ith pixel from the ground truth in positive RoIs, and N is the
number of pixels in positive RoIs. The value of yi, ai are shown in Equations (6) and (7),
respectively.

Lmask = −
1
N
[yiln(ai) + (1− yi)ln(1− ai)] (5)

yi =
1

(1 + e−xi )
(6)

ai =
1

(1 + e−bi )
(7)

The total loss function during training of the Mask-RCNN model [32] for each anchor
is shown in Equation (1). The representative loss value (Lloss) is calculated by the sum of
the classification loss (Lclass), bounding-box loss (Lbox), and mask loss (Lmask).

Lloss = Lclass + Lbox + Lmask (8)

2.2. Evaluation Metrics

Intersection over union (IoU) indices are used to calculate accuracy and error rates [39].
The concept and visualization of the IoU calculation are shown in Figure 3a. The IoU
indexes indicate the proportion of overlapping areas between the predicted and ground
truth values. The overlapping rate that is larger than 50 percent is considered the correct
object. The Box IoU index is used to measure how well the object classes/categories are
correctly classified, and the results of bolt classification are expressed by fusion matrix
charts (see Section 5.1). As shown in Figure 3a, the Box IoU is the intersection between
the box’s ground truth (Bgt) and the box’s prediction (Bp) over their union. The Mask IoU
index is the intersection of the mask’s ground truth (Mgt) and the mask’s prediction
(Mp) over their union, and it is used to calculate the mean average precision (mAP). The
Mask IoU is used for the mAP calculation because the overlapping of bounding boxes is a
poor approximation of object forms.

As shown in Equation (9), the Precision metric, the so-called true-predictive rate, is the
true positives (TP) ratio over TP and false positives (FP), and the false-discovery rate is the
FP ratio over TP and FP. The Recall metric, the so-called sensitivity or the true-positive
rate, is denoted as the ratio of TP over TP and false negatives (FN), and the false-negative
rate is the FN ratio over TP and FN. The BF score, the so-called contour matching score,
measures the similarity between the predicted pixel segmentation in the prediction and the
true pixel segmentation in the predefined ground truth. As depicted in Equation (9), the
BF score is the harmonic mean of the Precision and Recall values and is calculated via the
Mask IoU index.

Average precision (AP) represents the ability of the bolt detector to perform prediction
tasks and figure out the corresponding objects accurately. It is noted that the P-R curve
shows the variation of recall values at various levels, and the integration of areas under the
corresponding P-R curve is the AP value. For a test image, the calculation of the AP for all
categories/classes is shown in Equation (10), in which P is the Precision of the image, ∆r
is the change of the Recall, and N is the total number of divided segments. The mAP (see
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Equation (11)) is the index to assess the power of the Mask-RCNN network, and it averages
the sum of the APi value, in which i stands for the ith test image, and the q index indicates
the total images used (e.g., ten images for each case).
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Figure 3. Definition of intersection over union: (a) Intersection over union (IoU); (b) Predefined
ground truth.

Figure 3b shows an example of the predefined ground truth bolts for an 8-bolt splice
connection, in which a clean bolt is labeled as “ClBolt”, three bolts are assigned as “PCBolt”,
and the other ones are “FCBolt”.

Precision = PositivePredictiveRate = TP
TP+FP , FalseDiscoveryRate = FP

TP+FP

Recall = TruePositiveRate = TP
TP+FN , FalseNegativeRate = FN

TP+FN

BF = 2× Precision×Recall
Precision+Recall

(9)

AP =
N

∑
k=1

P(k)∆r(k) (10)

mAP =
1
q

q

∑
i=1

APi (11)

3. Synthesized Data Generation and Training Process
3.1. Synthesized Data Generation

To overcome the issue of lacking training data, some researchers have synthesized the
imagery datasets using synthetic environments with realistic image features [40–43]. The
main idea is to crop the target objects and blend them with the backgrounds through trans-
formation algorithms during the image blending process. The changes in the background
not only reduce noise features from the original data but also enrich the training data.
This strategy allows the simulation of target representations under a diversity of many
complex conditions, which is hard to obtain by using 3D graphical models [29] or current
data argumentation techniques [44]. The speed of the label annotation can be significantly
enhanced by applying autonomous blending algorithms.

To overcome the issue of limited training data and to enhance the robustness and
generality of the Mask-RCNN-based corroded bolt detector for varying backgrounds (BG),
a four-step synthesized dataset generation process is proposed in Figure 4a. The proposed
process includes four main steps: (1) image data collection; (2) image pre-processing;
(3) image data generation; and (4) synthetic dataset. This process can autonomously
synthesize training datasets of the clean bolt (ClBolt), fully corroded bolt (FCBolt), and
partially corroded bolt (PCBolt), along with their corresponding masks.
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training data; (b) Examples of bolted connection; (c) Examples of complex backgrounds; (d) Examples
of synthesized images.

In the first step, 577 raw images, including 568 bolted connection images (see Figure 4b)
and nine different background (BG) images (see Figure 4c), are collected from various steel
structures. The size, color, and format type of the collected images are shown in Table 2. The
568 real-world images of bolted connections are captured by an iPhone X’s dual cameras at
1–1.5 m distances, 0–30◦ perspective distortions, and a roughly 154 Lux light intensity. The
captured images have a 3024 × 4032 × 3 resolution and contain many levels of corroded
bolts (from fully corroded to clean). Afterwards, the excess backgrounds were removed
from the raw images. To feed the Mask-RCNN model, the width-cropped images are
rescaled to 640 pixels, while their height follows the rate of the cropped width divided by
640. It is noted that the rescaled image size for the training image generation of the Mask-
RCNN model follows the general image size of the COCO dataset [45]. The nine BG images
are shot at a distance of around 0.2 m on different steel structures with the same resolution.
The contents inside the BG images are complex, with different possessing properties such
as colors, shadows, brightness, dirty spots, roughness, and random-noise points.
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Table 2. Details of image properties in the dataset.

Raw Images Foreground (FG)
Sub-Background (SBG)

Dataset

Image BG FG-1 FG-2 FG-3 D1 D2 D3

Number of images 568 9 566 332 865 414 * 1875 1875 1875
Size 3024 × 4032 × 3 34 × 42 × 3–173 × 187 × 3 512 × 512 × 3 512 × 512 × 3

Color RGB ** RGBA ** RGB RGB
Format .jpeg .png .jpeg .jpeg

* 414 images of SBG per 9 background, ** RGB(A): red, green, blue, (alpha) color.

In the second step, the FG bolt images are cropped out with respect to the six edges of
the bolt surfaces and then grouped into three groups, namely, FG-1 with 566 ClBolt images,
FG-2 with 332 FCBolt images and FG-3 with 865 PCBolt images. The size of the FG images
ranges from 32 × 42 × 3 to 173 × 187 × 3 pixel resolutions. Afterwards, the BG images
are divided into sub-background (SBG) patches. Each BG image produces 46 SBG patches
with the same size of 512 × 512 × 3. As seen in Table 2, the color and format of the FG
images are RGB-alpha (RGBA) and “.png”, and those of the SBG images are red-green-blue
(RGB) and “.jpeg”, respectively. The RGBA color is an extension of the RGB color, in which
A (alpha) represents the level of transparency [46]. The “.png” format is selected for the
FG bolt images because it supports transparent backgrounds, which means that when
the alpha is equal to zero, the transparent background of the bolt image will be no color.
Moreover, the image format “.png” could not be broken when modifying or mixing with
other image formats [46].

In the third step, the domain randomization (DR) approach [47] was used to randomly
combine the FG and SBG images for generating synthetic datasets. To form a synthetic im-
age, an FG image is randomly orientated to a randomly-investigated background domain.
This is a strong point of the synthesized datasets with regards to quality and environ-
ment compared to real-world datasets. To make data much larger in quantity [48] and
reduce overfitting status [49], the FG bolts are randomly applied by the rotation, scale
and brightness transformation algorithms in the respective ranges (0–360◦], (0.6–1.0] and
(0.7–1.2] during the image blending process. The ResNet50, which is a very deep learning
network, is used to build the Mask-RCNN-based corroded bolt detector. To secure the
success of the training process and enhance the performance of the CNN backbone and the
feature prediction, a data argumentation technique was utilized as recommended in a few
studies [44,50,51]. The FG address of the synthetic images, such as identity (ID) number,
category/class name, and contour position, are saved in the “.json” formatted file, and the
corresponding masks are automatically created from the saved file.

In the final step, three synthetic datasets are autonomously created, including D1
(ClBolt), D2 (FCBolt), and D3 (PCBolt). Each dataset contains 1875 synthetic images of
512 × 512 × 3 pixels with 1875 corresponding annotated masks. All processing and image
data generation processes use the python programing language (version 3.8). Figure 4d
shows some examples of generated bolt images.

3.2. Training Process

The training process was conducted by a desktop computer system (GPU: GTX 2080
Ti 11G, CPU: Intel i9-9000KF 3.6 GHz, RAM: 64 GB) using python programing language
(version 3.8) and the supporting libraries tensorflow [52], karas [53], and opencv [54]. The
Mask-RCNN-based corroded bolt detector is trained on the synthesized datasets D1, D2
and D3 to identify ClBolt, FCBolt, and PCBolt, respectively. The training and validation
images are randomly selected in each dataset, following the rate of 80% and 20%. Thus,
the number of training and validation images is 4500 and 1125, respectively. The training
algorithm is the stochastic gradient descent with momentum (SGDM) with a momentum
of 0.9, a weight decay of 0.0005, and 1000 iterations per epoch. During the learning process,
the IoU ratio is specified in the range of (0.8–1.0] for positive training samples. The anchor
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box of the RPN is defined with five sizes of (16; 32; 64; 128; 256] and three scales of (0.5;
1.0; 2.0]. With those setups, the bolt feature sizes (e.g., width × height) can be detected by
down-sampling to an 8× 8 pixel resolution and up-sampling to 384× 384 pixels. Therefore,
in the case of bolts with different sizes, the proposed Mask-RCNN model is still able to
detect corroded bolts. For faster convergence and time-saving, the pre-trained ResNet50
is used [35]. To investigate the convergence of loss functions, the detector was run for
50 epochs with different learning rates: 10-4 (1st–30th epoch) and 10-5 (31st–50th epoch).
The learning time of the detector was about 381 min.

Figure 5 illustrates the training and validation results of the detector. The total loss
values (including the training and validation loss) are summed up from the loss com-
ponents: RPN class, RPN box, Mask-RCNN class, Mask-RCNN box and, Mask-RCNN
mask [32]. In general, the loss value of the detector was sharply reduced in the first five
epochs, followed by a gradual fall up to the 40th epoch, and then remained stable through
the end of the learning process (50th epoch). The total training loss of the selected detector
is approximately 0.13 at the 43rd epoch, which corresponds to the lowest validation loss of
nearly 0.18.
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Figure 5. Results of training and validating the Mask-RCNN corroded bolt detector.

As observed in Figure 5, there are sudden drops in the total loss lines at the 30th epoch
due to a 10-time decrease in the learning rate, from 10−4 to 10−5. After the first 43 epochs,
those loss lines are quite stable until the end of the learning process. Thus, the learning
rate of 10−5 should be considered an optimal value for training the Mask-RCNN corroded
bolt detector.

4. Experiments on Bolted Girder Connections

The corroded bolt detector was experimentally evaluated for identifying the early-
corroded bolts in a lab-scale steel girder. The structure was constructed from two steel
H-girder segments connected by bolted flanges, as shown in Figure 6. Details about the
geometrical parameters of the test structure can be found in [24]. The target joint has eight
pairs of bolts and nuts (Bolt 1–Bolt 8). Among them, Bolts 2, 4, 6, and 7 are fully corroded
bolts (FCBolt), Bolts 1, 3, and 5 are partially corroded bolts (PCBolt) with different corrosion
levels, and Bolt 8 is a clean bolt (ClBolt). It is noted that the corrosion was artificially
created on the bolts and nuts using an acid solution (10% HCl) and by putting them under
a wet condition. It is noted that the distribution of corrosion spots on the bolts and nuts is
random to simulate a realistic situation. Clean washers were also inserted into Bolts 6 and
7 to simulate uncertainties.
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Figure 6. Lab-scale steel girder connection with clean and rusted bolts.

The camera of an iPhone X (with the following specs: 12 MP, wide-angle f/1.8 aperture,
telephoto f/2.4 aperture) was used to shoot the image of the bolted connection with a
3042 × 4028 pixel resolution. During the experiment, the light intensity at the bolted joint
was controlled at around 154~157 lux (measured by a digital light meter-GILTRON GT
1309, as shown in Figure 6).Two capturing conditions were investigated, including varying
capturing distances and perspective angles. For each case, 10 images were captured.
Figure 7a shows the bolted connection images captured under a distance of 1.0 m, 1.5 m,
and 2.0 m with no perspective distortion. Figure 7b shows the bolted connection images
captured under a perspective angle of 15◦, 30◦, 45◦, and 60◦ with a fixed distance of 1.5 m.
In total, 30 images were captured under different distances, and 40 images were shot under
different perspective angles.
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5. Corroded Bolt Detection Results
5.1. Corroded Bolt Detection under Various Capturing Distances

For different capture distances, the accuracy of the corroded bolt detector was evalu-
ated using fusion matrix charts, as shown in Figure 8. It is noted that each cell in a matrix
chart contains the number of observations and their percentage. The diagonal cells (from
left to right) are observations that are correctly classified. The off-diagonal cells represent
incorrectly classified observations. In the “Sum” column, each cell shows orderly the sum
of the number of observations, the percentage of correctly predicted observations (in green)
that belong to each class, and the percentage of incorrectly predicted observations (in red)
belonging to each class. In the Sum row, each cell shows orderly the sum of the number
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of observations, the percentage of correctly classified observations, and the percentage of
incorrectly classified observations. The bottom-right cell of the chart indicates the overall
accuracy (in green).
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As shown in Figure 8a, for a capturing distance of 1.0 m, the detector precisely detected
FCBolt and PCBolt, and 90% of ClBolt was correctly classified. The percentage of correctly
classified observations for PCBolt reached about 96.67%. The overall accuracy of the
detector was 96.3% for 1.0 m capturing distance. For a capturing distance of 1.5 m, as
depicted in Figure 8b, ClBolt and FCBolt were correctly predicted. The PCBolt prediction
accounted for an accuracy of 93.75%, and the overall accuracy of the detector was 90%. In
the case of 2.0 m capturing distance, as shown in Figure 8c, the prediction accuracy was
100% for ClBolt and FCBolt and 76.92% for PCBolt, and the overall accuracy accounted for
only 86.42%. It is found that ClBolt and FCBolt were identified with high accuracies (over
90%) for a capturing distance of up to 2.0 m, and PCBolt was classified as accurate for a
capturing distance of up to 1.5 m. The representative results of corroded bolt identification
for different capturing distances are visualized in Figure 9. As seen in Figure 9, there was
a false alarm out of the joint at 1.0 m of distance. The reason is that the contents of the
background area appear similar to the ClBolt’s shapes, which made the model incorrectly
detect the mark as ClBolt. At a 2.0-m distance, the proposed model was unsuccessful in
recognizing a corroded bolt. This could be caused by the reduction in the resolution of the
bolt’s image. As the capturing distance is increased, the resolution of the bolt’s image is



Sensors 2022, 22, 3340 13 of 18

decreased. As a result, the bolt features in the captured image are altered, leading to the
reduced accuracy of the corroded bolt detector.
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Figure 9. Visualization of the corroded bolt detection results at different capturing distances.

The P-R curves were plotted in Figure 10. The BF and mAP values of the detector
were computed for the three capture distances. As the capturing distance was increased,
the BF and mAP values decreased, indicating a reduction in the prediction accuracy of the
detector. The reason could be that the resolution of the captured images decreased with
an increased capturing distance. Particularly, the BF value obtained at a 1.0-m and 1.5-m
distance were 0.68 and 0.67, respectively, while that at 2.0 m was 0.65. The mAP value was
0.97, 0.94, and 0.86, corresponding to 1.0 m, 1.5 m, and 2.0 m. Conclusively, the partially
corroded bolts (PCBolt) were well classified by the proposed detector, although there still
were some false alarms.
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Figure 10. P-R curve, BF and mAP for different capturing distances.

The effect of the pixel resolution number on the performance of the Mask-RCNN-
based corroded bolt detector is plotted in Figure 11. It is shown that the accuracy of the
model decreases along with the decrease in the resolution. When the resolution is reduced
to less than 263K pixels, the mAP of the detector dropped significantly (see Figure 11).

5.2. Corroded Bolt Detection under Various Perspective Distortions

The results of corroded bolt classification under varying capturing angles (at 1.5 m
capturing distance) are shown in Figure 12. Overall, the accuracy of the detector was
reduced with an increased perspective angle. For a capturing angle of 15◦ (as seen in
Figure 12a), the proposed detector identified ClBolt and PCBolt in the bolted joint with
100% accuracy, and the prediction for FCBolt was 97.50% accounted for. At the 30◦ capturing
angle (as seen in Figure 12b), the prediction accuracy was slightly reduced to 92.68% for
FCBolt, but still remained 100% for both ClBolt and PCBolt. Although the detector in some
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cases was confused in classifying FCBolt and PCBolt, the overall accuracy of the detector
was quite high at 96.3%.
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Figure 11. Resolution effect of the pixel number on the performance of Mask-RCNN-based corroded
bolt detector.
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As shown in Figure 12c,d, when the capturing angle increased to 45◦ and 60◦, the
overall accuracy of the detector was reduced to 94.05% and 87.64%, respectively. At the same
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time, the prediction accuracy for FCBolt dropped slightly from 93.02% to roughly 90.91%,
respectively, and the accuracy for PCBolt fell from 96.67% to 82.35%, respectively. Figure 13
shows the representative corroded bolt identification results for different perspective angles.
It is obvious that the detector was accurate in classifying FCBolt, with a desired accuracy of
96.67% for a perspective angle of up to 45◦.
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Figure 13. Visualization of corroded bolt detection results at different capturing angles.

Figure 14 shows the P-R curves, the BF and mAP values of the corroded bolt detector
for different perspective distortions. The BF scores at four perspective distortions range
between 0.67 and 0.69. It is found that the obtained BF scores are quite low because the
detector identified most of the bolt washers, which were not pre-defined. Further, the mAP
scores lie in the range of 0.95 to 0.98. The mAP was ignorably lower when the perspective
angle was increased.
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6. Concluding Remarks

In this study, the Mask-RCNN model was developed for the early identification of
partially corroded bolts in steel structures. In the model, the Resnet50 integrated with the
feature pyramid network was used as the backbone for feature extraction. To overcome the
issue of limited training data, a four-step data synthesis method was newly proposed for
the Mask-RCNN corroded bolt detector. To evaluate the accuracy of the proposed method,
the experiment was conducted on a lab-scale steel structure for which corroded bolts were
detected under varying capturing distances and perspectives.

From the experimental evaluation, the following concluding remarks are drawn:



Sensors 2022, 22, 3340 16 of 18

(1) Clean bolt, partially and fully corroded bolts along with their corresponding masks
were autonomously created by the proposed data synthesis method. The Mask-
RCNN-based detector was successfully trained using the generated datasets.

(2) The trained detector was accurate for corroded bolts in the tested structure. The
corroded bolts and their corrosion levels were detected with the most desired accuracy
of 96.3% for the 1.0-m capturing distance and 97.5% for the 15◦ perspective angle.

(3) The number of pixels for the test image of the bolt connection should not be less than
263K to ensure the accuracy of the bolt identification results.

In comparison to a previous study [24], it was found that the autonomous image
generation and label annotation method significantly reduced labor cost and working
time. Moreover, the Mask-RCNN-based detector could identify partially corroded bolts by
distinguishing them from fully corroded bolts. Regarding the effect of capturing angles,
the proposed detector could achieve an accuracy up to 97.5% at a 15◦ perspective angle.
For the varying capturing distances test, the accuracy of both models shows a tendency to
decline along with the capturing distance.

The proposed data synthesis method is autonomous and fast. Thus, it is promising
for computer-vision-based damage detection in practice using standard and high-quality
datasets at a low computational cost. In particular, the method could be used to simulate
damage (i.e., cracks, spalling, defects, corrosion, etc.) on the structure surfaces that have
rarely been caught during their operation period. Furthermore, the generated synthetic
data could be used as training data sets for multi-targets, such as semantic segmentation,
object detection, etc., with only minor changes in the use of programing language.

In some cases, the detector could not distinguish the partially and fully corroded
bolts. This might be due to the presence of bolt washers, as those were missed from the
generated training datasets. Therefore, research needs remain (1) to improve the accuracy
of the developed corroded bolt detector, (2) to compare the performance of the detector
on different data types with and without using the pre-trained model, (3) to investigate
the accuracy of the model by changing parameters such as the sizes of the training images,
sizes of the corroded bolt foregrounds, the flashlight of cameras, and the lights of the
environment, and (4) to estimate the corrosion areas of detected bolts.
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