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Abstract
Deep generative models can learn the underlying structure, such as pathways or gene programs, from omics data. We 
provide an introduction as well as an overview of such techniques, specifically illustrating their use with single-cell gene 
expression data. For example, the low dimensional latent representations offered by various approaches, such as variational 
auto-encoders, are useful to get a better understanding of the relations between observed gene expressions and experimental 
factors or phenotypes. Furthermore, by providing a generative model for the latent and observed variables, deep generative 
models can generate synthetic observations, which allow us to assess the uncertainty in the learned representations. While 
deep generative models are useful to learn the structure of high-dimensional omics data by efficiently capturing non-linear 
dependencies between genes, they are sometimes difficult to interpret due to their neural network building blocks. More 
precisely, to understand the relationship between learned latent variables and observed variables, e.g., gene transcript 
abundances and external phenotypes, is difficult. Therefore, we also illustrate current approaches that allow us to infer the 
relationship between learned latent variables and observed variables as well as external phenotypes. Thereby, we render 
deep learning approaches more interpretable. In an application with single-cell gene expression data, we demonstrate the 
utility of the discussed methods.

Keywords Explainable AI · Deep learning · Generative model · Dimension reduction

Introduction

Omics data allow to characterize individuals genetically 
and phenotypically in high resolution. Since almost two 
decades, high-resolution genetic data is now employed in 
genome-wide association studies (Bush and Moore 2012) 
to examine associations of single nucleotide polymorphisms 
(SNPs) with phenotypes. In recent studies, investigations 
have expanded to include high-dimensional phenotypes, 
e.g., gene expression in expression quantitative loci (eQTL) 
studies (Gilad et al. 2008) or metabolites (Suhre et al. 2011). 
These high-resolution data offer a fundamentally better 
understanding of the heritability of traits or causal factors 

for disease susceptibility. However, an interpretation of the 
results derived from this sheer mass of data is challenging. 
The lack of established methods for the interpretable analy-
sis of such data is one reason. Routinely, pairwise associa-
tions between individual SNPs and the high dimensional 
phenotypes such as gene expression are inferred. This con-
fronts the researchers with potentially millions of statistics 
that ignore the interdependency of the genotypical and phe-
notypical variables.

However, it is reasonable to assume a high amount of 
redundancy in the genotype and phenotype data. Therefore, 
a small number of variables can capture the essential varia-
tion in the data. If we assume a linear relation between the 
observed variables and the variables of a dimension-reduced 
latent representation, principal component analysis (PCA) 
can be used for dimension reduction. However, if non-linear 
relations should be allowed, deep generative models (DGMs), 
such as variational autoencoders (VAEs) (Kingma and Well-
ing 2013), deep Boltzmann machines (DBMs) (Salakhutdinov 
and Hinton 2009), or generative adversarial networks (GANs) 
(Goodfellow et al. 2014), provide a potential solution. In the 

 * Martin Treppner 
 treppner@imbi.uni-freiburg.de

1 Institute of Medical Biometry and Statistics, Faculty 
of Medicine and Medical Center, University of Freiburg, 
Stefan-Meier-Str. 26, Freiburg 79104, Germany

2 Freiburg Center for Data Analysis and Modeling, University 
of Freiburg, Freiburg 79104, Germany

http://orcid.org/0000-0002-7284-2085
http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-021-02417-6&domain=pdf


1482 Human Genetics (2022) 141:1481–1498

1 3

following, we provide an overview of such techniques. As 
deep learning approaches have been criticised for being hard 
to interpret, we also introduce approaches for interpretability. 
In an exemplary application for single-cell gene expression 
data, we want to illustrate how such techniques can be useful 
to more generally stimulate use for omics data.

A probabilistic, parameterized model allows for better 
generalizations and better flexibility. In fact, deep genera-
tive models have been successfully applied in a number of 
scenarios. For example, Xu et al. (2021) integrated gene 
expression profiles from single cells of different experimen-
tal origins. Here, DGMs were employed to give a continu-
ous indicator of how likely an inferred label was, given the 
omics information. Similarly, Kim et al. (2020) proposed to 
employ DGMs for improved predictions based on omics data 
by integrating different data sources.

Deep generative models can also be employed as an 
extension to shallow latent variable models, which have 
been proposed to account for gene expression heterogeneity 
related to nuisance factors (Yang et al. 2013; Stegle et al. 
2010). Specifically, in Lopez et al. (2018), DGMs were 
employed to extract sources of technical variation from the 
data.

In addition to gene expression data, DGMs have also been 
successfully applied to high-dimensional SNP data. Mon-
taez et al. (2018) employed deep learning approaches for 
performing the joint analysis of multiple SNP loci, thereby 
allowing the researcher to study multigenic diseases. Ries-
selman et al. (2018) used generative models for predicting 
the effects of nucleotide changes on the DNA level. A com-
prehensive overview of deep learning for SNP data can be 
found in Azodi et al. (2020).

In the following, we first briefly describe building blocks 
such as artificial neural networks, autoencoders, and cor-
responding model-fitting approaches. Secondly, we provide 
an overview of popular deep generative approaches. We then 
discuss adaptations to omics data, specifically single-cell 
RNA-sequencing (scRNA-seq) data. Afterwards, we discuss 
current approaches for rendering DGMs interpretable. This 
involves methods for identifying components of the latent 
space that relate to specific external phenotype data, as well 
as methods for inferring the observed variables that relate 
to the latent variables. We also provide exemplary applica-
tions for two interpretable DGMs. These applications can be 
recapitulated in supplementary Jupyter notebooks.

Building blocks for dimension reduction 
by deep neural networks

In all dimension reduction techniques, from principal com-
ponents analysis (PCA) to deep neural networks, we assume 
that the measured variables, e.g., the gene expression profiles 

of cells of a group of patients, do not optimally capture the 
underlying structure in the data because much of the under-
lying information is hidden by noise and redundancy. For 
high dimensional omics data, this means that the similar-
ity of observations, e.g., patients, can be sufficiently well 
described by a small number of latent variables learned from 
a dimension reduction approach. PCA, for instance, trans-
forms the original coordinate system defined by the observed 
variables into a new one. In the case of multivariate nor-
mally distributed data, the new axes, namely, the principal 
components (PCs), are all orthogonal to each other and are 
sorted according to the variance they explain. Using only the 
PCs that explain the highest amount of variance then allows 
for studying the structure in the data in a low dimensional 
space (Fig. 1c). Similar approaches such as nonnegative 
matrix factorization (NMF) (Lee et al. 1999) use different 
objective functions. Nevertheless, they have in common with 
PCA that they only capture linear relationships. Non-linear 
variants of PCA have been proposed but usually fail in real-
world applications (Van Der et al. 2009).

Artificial neural networks

We consider an example for a non-linear relationship, e.g., 
of gene expression levels (Fig. 2a). Specifically, expres-
sion data for three genes ( G

1
 to G

3
 ) which are involved in a 

regulatory circuit are available. We now want to model the 
pathway activity which is not directly observed and is to 
be estimated from the gene expression data. The biochemi-
cal function of G

1
 and G

3
 depends on G

2
 . For example, G

2
 

might be a co-factor and G
1
 and G

3
 might be transcription 

factors. If we would model the pathway activity with a 
linear technique such as PCA, and want to model the path-
way activity with a single variable, we could only infer 
the linear combination of the gene expression levels of 
G

1
 to G

3
 . In this example, we are unable to discriminate 

between an activated and non-activated regulatory com-
ponent, since the values of the latent variables are more 
or less equal. A dimension reduction technique which can 
model the above-described non-linear pattern, however, 
could infer a single latent variable which indicates if G

2
 is 

expressed. The value observed for the latent variable could 
then represent the expression level of G

1
 and G

3
 under the 

condition that G
2
 is expressed. Deep neural networks are 

able to learn such a pattern since they are able to approxi-
mate any complex function through an ensemble of latent 
variables, namely, neurons, which are arranged in layers 
(Hornik et al. 1989) (Figs. 2b and 3). Connections between 
neurons of the same layer are usually absent. The under-
lying principle of learning non-linear relationships with 
neural networks is that individual neurons are activated 
when a weighted sum of the states of connected neurons 
reaches a given threshold. The strength with which two 
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neurons are connected to each other is termed ”weight” 
and is a dimensionless value. To make training feasible, 
no hard threshold is explicitly employed. Instead, a non-
linear activation function is used, which transforms the 
weighted sum into a non-linear response. In case of the 
sigmoid function, which was frequently employed in the 
early implementations of neural networks, the input is 
transformed into a range of 0–1 (Fig. 2b). The weighted 
sum then defines the sensitivity with which the output of 
a neuron responds to the input. The higher the input, the 
more the output resembles a binary step function (com-
pare outputs 1 and 2 in Fig. 2b). Today, rectified linear 

units (ReLU) are frequently employed. In contrast to the 
sigmoid function, their output is not bounded, while oth-
erwise the same principles apply.

Autoencoder (AE)

An AE is a neural network that learns a low dimensional 
representation from the training data in an unsupervised way 
(for a popular application, see Hinton and Salakhutdinov 
(2006)). The AE contains a number of layers of latent varia-
bles (neurons) (Fig. 3). The dimension reduction is achieved 
by reducing the number of latent variables in an intermediate 

Fig. 1  Dimension reduction and structure of omics data. Dimension 
reduction aims at extracting a low-dimensional representation from 
high-dimensional data. a Observations of single-cell RNA-sequenc-
ing (scRNA-seq) count data. Twenty variables (columns) are studied 
in about 200 observations (rows). Hierarchical clustering of log-trans-
formed counts reveals a crude discrimination between two groups of 
cells (blue and red labels). Still, an interpretation of how genes con-
tribute to the clusters seems difficult. b In scRNA-Seq data, genes are 
often bimodally expressed. Expression is very low or absent in a large 
number of cells, while higher levels corresponding to an active state 
are observed in a smaller proportion. Density estimates are shown for 
the 20 genes presented in (a). c Principal components analysis (PCA) 
is usually applied for extracting an interpretable representation from 

omics data. In the graphic depicted above, the two PCs which cap-
ture the highest proportion of variation are shown. Each dot corre-
sponds to the values of PC1 and PC2 for a single cell. Since PCA 
is, to a large extent, equivalent to a linear factor model, the contri-
bution of the observed variables (genes) to the PCs can be straight-
forward extracted (arrows). Shown are six exemplary genes. Each 
arrow corresponds to a gene and the direction of the arrow indicates 
how the genes are related to the PCs. Specifically, an arrow indicates 
how a single cell would move in the two-dimensional PC space if the 
expression of the corresponding gene would change. The length of 
the arrows indicates how sensitive the movement is with respect to 
the change in gene expression levels
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layer. This layer is also frequently referred to as the bottle-
neck layer (Fig. 3). The multiple layers of latent variables 
with non-linear activation functions in the AE allow to learn 
interactions of the input variables. For example, one neuron 
in the bottleneck layer could represent the non-linear pattern 
shown in Fig. 2a. An AE is trained in an unsupervised man-
ner. Specifically, training examples, i.e., gene expressions 
of a single cell, are fed into the input layer of the AE. By 
multiplication with the weights, which indicate the strength 
with which two neurons are connected, the values for all 
latent variables and the variables in the output layer are sub-
sequently calculated (Fig. 3). The objective function of an 
AE is then to minimize the reconstruction error for the train-
ing data. This is achieved by comparing the reconstruction 
of the input x′ with the original input x (Fig. 3). Since the 
number of parameters in an AE is usually much larger than 
the number of observations, the AE is prone to overfitting. 
To avoid overfitting, regularization can be employed with 

different approaches, one popular of them being the dropout 
technique (Srivastava et al. 2014). During training, a random 
selection of neurons is ignored from the fitting process. This 
introduces noise during the fitting process, which makes the 
training more robust. The approach has some conceptual 
similarities with random forests (Breiman 2001) which avoid 
overfitting of partition trees by considering only a random 
selection of variables at each partition. A technique, similar 
to the dropout technique is employed in denoising AEs. In 
contrast to dropout, no latent neurons are removed during the 
fitting process, but input nodes are set to zero. This results 
in an AE, which learns to reconstruct potentially missing 
observations (Vincent et al. 2008).

Fitting deep neural networks

Fitting a deep neural network to data is generally more 
complex compared to shallow approaches such as linear 

Fig. 2  Capturing non-linearity with deep neural networks. a  Exam-
ple of a of non-linear relationship of gene products. Three genes 
are involved in a regulatory circuit. G

1
 and G

3
 are only functional if 

G
2
 is expressed. In this graphic, two examples for latent variables 

which are / are not able to capture the non-linear dependency are 
shown. Color intensity of genes indicates transcript abundance as e.g. 
measured by scRNA-seq. Color intensity of latent variables repre-
sents dimensionless values. Arrows indicate the post-transcriptional 
dependency. b Deep neural networks can capture non-linearities by 
non-linear activation functions. In this example, the output of two 
neurons conditional on their input is shown. The weights (arrows) 

connecting neuron 2 with its input neurons are larger than those for 
neuron 1. This means that neuron 2 responds much more sensitively 
to activations of input neurons. Specifically, neuron 2 closely resem-
bles a step function that is active if some level in the input neurons is 
reached. In contrast, neuron 1 responds more linearly to its input. In 
a simplified example, neuron 2 might be active when some genes in 
a pathway are expressed beyond a given expression level. This gene 
expression pattern might be frequently observed in the training data, 
which led to the learning of the respective high weights. Note that the 
input of the two neurons is shown normalized
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regression models. The reason is that not only the weights 
of observed variables have to be estimated, e.g., to predict 
the value of a response variable. In addition, we have to infer 
the states of the latent variables in the hidden layers. Let us 
consider the training of an AE as an example. Our goal is to 
minimize the reconstruction error, the loss, which is calcu-
lated from the input and output layers of the AE. In order to 
derive an AE whose reconstructions are similar to the input, 
resulting in a low loss, we have to get meaningful values for 
the weights that connect the neurons in the different lay-
ers. Specifically, we need information about how sensitive 
the reconstruction error is to a change in the weights that 
connect input, hidden as well as output neurons. This infor-
mation is termed the gradient. The gradient is, due to time 
constraints, usually evaluated based on a small fraction of 
the training data, which is termed stochastic gradient descent 
(SGD) (explained in Bottou (2012)). SGD is an iterative 
procedure. Model parameters are optimized by feeding the 
training data in multiple iterations (epochs) to the model. 
Parameters are updated by small proportions of the gradi-
ent, while the magnitude of the proportion is also termed 

”learning-rate”. To adjust the weights not only for the ter-
minal layer but also for all layers in between, a technique 
called backpropagation of errors (Rumelhart et al. 1986) is 
employed. Here, the gradient, evaluated at the terminal layer, 
is decomposed to reflect the contribution of each neuron in 
the complete network. As the gradient is the derivative of 
the loss function with respect to the network parameters, this 
decomposition is achieved by the chain rule.

Deep generative models

Deep generative models (DGMs) introduce random latent 
and observed variables, which allow learning a distribution 
over both (Fig. 3). They explicitly or implicitly maximize a 
likelihood lower bound for the training data, which means 
that the likelihood of the training data can be maximized 
up to a certain amount. The likelihood indicates how well 
a data point, i.e., a patient instance or cell, is supported by 
the model. With regards to deep generative models, this 
could also be termed as: ”How likely is it that a given data 

Fig. 3  Autoencoder and deep generative approaches. An Autoen-
coder (AE) is trained in an unsupervised manner to minimize the 
error between a reconstruction x′ and the input data x used for train-
ing. Usually, the mean squared error is employed (see formula). The 
loss is minimized by computing the gradient for the network param-
eters, e.g., the weights, indicated here as arrows. In this example, all 
weights are equal, indicated by the identical thickness of lines. The 
gradient indicates to what extent the loss is dependent on the respec-
tive parameter. The loss computed for the terminal layer ( x′ ) is propa-
gated back through the network (exemplary indicated for some neu-
rons by dashed arrows) to calculate the dependence on neurons in 
the intermediate (hidden) layers. DGM approaches have in common 
that they employ a number of random variables (indicated by dashed 
lines) z (and x in case of the DBM) to generate synthetic data ( ̂x ), 
which should mimic the training data (x). In the VAE a distribution is 
learned over the variables in the bottleneck layer (z). During training, 
the distribution is regularized to follow a multivariate normal distri-
bution with diagonal covariance, which is parameterized by a mean 

and standard deviation represented by the neurons � and � . These are 
also termed the variational parameters. A neural network, also termed 
encoder, parametrizes the distribution of z. The latent representation 
(z) is transformed to the space of the observed variables with the gen-
erator network (decoder). Like the VAE, the GAN also has a genera-
tor network, but here, no encoder is available that learns the latent 
representation. Instead, a supervised encoder network (discriminator) 
computes a loss which indicates if the generated examples x̂ can be 
discriminated from real data (x). A gradient of the generator param-
eters with respect to the loss is then used to update the weights of the 
generator to generate examples that the discriminator cannot discrim-
inate from real data. The parameters of the discriminator are updated 
as well to compete with the improved generator. DBMs deviate from 
GANs and VAEs in their general design. In contrast to those men-
tioned above, they are undirected models and consist only of random 
variables. x

1
,x̂

1
 , and x′

1
 are a training example, a synthetic sample or a 

reconstruction respectively
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point has been generated by the model”. This implies that 
a likelihood can be assigned to a single data point, e.g., as 
performed in Ding et al. (2018; Fig. 4).

Deep generative approaches have been successfully 
applied in many fields of gene expression related research. 
For an overview, see e.g., Lopez et al. (2020).

Fitting deep generative models

Since deep generative models learn a distribution over 
the observed and latent variables, potentially very com-
plex distributions have to be approximated. Consider, e.g., 
(Gaussian) mixture models that estimate the parameters 
of a mixture of (Gaussian) distributions. The probabilities 
with which observations are assigned to the components of 
the mixture can be seen as latent factors that have to be 
inferred. In the popular expectation-maximization (EM) 
algorithm (Dempster et al. 1977), values for the latent vari-
ables computed in a current iteration are plugged in for an 
iterative optimization. For deep generative approaches, this 
approach is not possible because the values of the latent 
variables can not exactly be computed. Instead, they have to 
be approximated. For approximation, there are two promi-
nent approaches termed (Bayesian) variational inference 
(Blei et al. 2017) and Gibbs sampling (explained in Resnik 
and Hardisty (2010)). In variational inference, we assume 
that the distribution of the latent variables is related to a 
simple distribution (prior distribution). During training, 

we condition on the prior distribution to infer the posterior 
distribution of the latent variables. Specifically, we get an 
approximation for the distribution of the latent variables, 
given the training (here gene expression) data. Gibbs sam-
pling is a Markov chain Monte Carlo (MCMC) technique. 
In DGMs, the objective is to infer the joint distribution of 
observed and latent variables. This is achieved by estimating 
a series of conditional expectations for latent and observed 
variables. Specifically, in each iteration, the states of all 
neurons are sequentially inferred by conditioning on the 
states of all other neurons. After performing the procedure 
for several iterations, we arrive at an estimate for the joint 
distribution of observed and latent variables. The absence 
of lateral connections in a neural network makes Gibbs sam-
pling comparatively efficient. Nevertheless, this approach 
is still considerably slower than variational inference, espe-
cially when a large number of observed and latent variables 
are studied. The above presented approaches to approximate 
the joint distribution of observed and latent variables indi-
cate a close relationship between the training of DGMs and 
generating synthetic samples.

Variational autoencoder (VAE)

VAEs (Kingma and Welling 2013) are, given the architecture 
of the neural network, similar to the AE, but their training 
objective differs fundamentally. AEs aim to learn a recon-
struction of the data, which generalizes well to new unseen 
data. As a by-product, a low dimensional representation can 
be learned by introducing a bottleneck layer of significantly 
lower dimensionality compared to the dimensionality of the 
original training data. In contrast, the objective of the VAE is 
to directly learn a posterior distribution over latent variables, 
which represent the latent structure of the observed data. As 
the VAE learns a distribution, we can draw samples from the 
distribution and thereby get information about uncertainty in 
the data. The distribution of the latent variables is inferred 
by variational inference. As a prior distribution, research-
ers often use a multivariate standard Gaussian distribution. 
In the VAE, there are two neural networks, the inference 
(encoder) and the generator (decoder) network (Fig. 3). The 
inference network is trained to learn the parameters of the 
distribution over the latent variables, while the generator 
network is trained to learn a transformation from the latent 
variables to the observed variables. The parameters of the 
inference and the generator network are updated by a loss 
which is composed of two factors. One factor ensures that 
the generated synthetic observations are similar to the train-
ing data by employing the reconstruction error (see Fig. 2a). 
The other factor assures that the distribution estimated for 
the latent variables is similar to the employed prior distribu-
tion. This is achieved by the Kullback–Leibler divergence 
(Kullback and Leibler 1951) which is used to measure the 

Fig. 4  Dimension reduction with DGMs. Example for a two-dimen-
sional latent representation of the data shown in Fig. 1 learned by a 
DGM. Notice the compared to PCA (Fig. 1) better linear separability 
of the observations. Contours shown in the figure indicate that a dis-
tribution over the latent variables has been learned. This implies, that 
we can get the uncertainty for observations in the latent space, also 
indicated by the concentric rings plotted around a red observation in 
the bottom right
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deviation from the prior distribution. As the learned distribu-
tion over the latent space z is regularized to mimic a Gauss-
ian distribution with diagonal covariance, the latent vari-
ables in z should be more or less independent. The amount of 
regularization can be controlled by increasing the influence 
of the deviation from the prior distribution on the loss. This 
principle is employed in the �-VAE (Higgins et al. 2016) 
which has also been proposed as an approach for increasing 
the interpretability of VAEs. VAEs have been observed to 
learn the joint distribution even from small amounts of data 
with a low amount of variance (Nußberger et al. 2020).

Generative adversarial network (GAN)

A generative adversarial network (GAN) (Goodfellow 
et  al. 2014), similar to VAEs, employs feed-forward 
neural networks for learning a transformation between 
the observed and latent variables. Similar to the VAE, 
a generative component (generator) is present (Fig. 3). 
This neural network transforms samples from a simple 
distribution, such as a multivariate normal distribution 
with a diagonal covariance matrix, into a representation 
of the same dimensionality as the training data. How-
ever, the training objective differs fundamentally from the 
VAE. While in the VAE, there is an explicitly formulated 
objective for maximizing the likelihood of the training 
data, meaning that for data points, a probability given the 
model parameters can be stated, the maximization of the 
likelihood is implicitly achieved in the GAN. Specifically, 
the GAN possesses a discriminator network which can be 
seen as a supervised neural network. The objective of this 
network is to discriminate between real data points and 
synthetic data points sampled from the generator. Dur-
ing training, the discriminator and the generator com-
pete against each other. The generator aims at generating 
synthetic observations which the discriminator cannot 
discriminate from real observations. The discriminator 
then assigns a score to each presented synthetic or real 
data point. When the generator is sufficiently accurate in 
generating synthetic data that the discriminator cannot 
discriminate from real data, a value of 0.5 is returned for 
both in case the score ranges from 0 to 1, which is the 
case for the classic GAN that builds on the Kullback-
Leibler divergence. While classic GANs are difficult to 
train, using the Wasserstein metric has been proposed in 
the Wasserstein GAN (Arjovsky et al. 2017). Compared 
to DBMs and VAEs, GANs have been described to be 
difficult to adapt to omics data with a small sample size 
(Nußberger et al. 2020). Nevertheless, Xu et al. (2020) 
successfully employed GANs for imputing gene expres-
sion data.

Deep Boltzmann machine (DBM)

The deep Boltzmann machine (Salakhutdinov and Hinton 
2009) represents a different approach compared to VAE 
and GAN. Similar to the VAE and GAN, the training objec-
tive is to learn weights so that the samples drawn from the 
DBM have the same properties as found in the training data. 
Explicitly, the weights are optimized according to a gradient 
formed between states of the observed and latent variables 
calculated for the training data and a sample from the DBM. 
Samples from the DBM are retrieved by Gibbs sampling 
from the distribution formed over all observed and latent 
variables. Thereby, the likelihood for the presented data is 
increased while simultaneously reducing the likelihood for 
the randomly selected states. DBMs have been shown to 
work particularly well for binary omics data, such as haploid 
SNP data (Nußberger et al. 2020).

Adaptation of DGMs to omics data

Modeling count data

Among all omics-type measurements, scRNA-seq is the 
most frequently studied, e.g., in single-cell eQTL approaches 
(Majumdar et al. 2020). Typically, a scRNA-seq protocol 
involves the isolation of single cells and their messenger 
RNA (mRNA), reverse transcription, library preparation, 
and sequencing (Kim et al. 2015). The experimenters obtain 
counts of how many of the fragments have been mapped 
to a particular gene, resulting in a large cell by gene count 
matrix. The experimental steps and the resulting sampling 
process in scRNA-seq studies were commonly modeled 
using the Poisson distribution, which was shown to give a 
good description of the technical noise in scRNA-seq data 
(Grün et al. 2014; Kim et al. 2015; Wang et al. 2018). How-
ever, the assumptions accompanying the Poisson distribution 
often do not match real observations. Usually, our datasets 
contain heterogeneous cell populations or heterogeneity due 
to biological processes like cell cycle, which increase the 
dispersion (width) of the distribution (Kim et al. 2015). This 
can lead to excess variability, also referred to as overdis-
persion, which the Poisson distribution might not be able 
to model (Hilbe 2011). To account for this overdispersion, 
we have to add an additional layer of modeling. Hence, 
most researchers use the negative binomial distribution 
(also known as gamma-Poisson mixture), which captures 
technical and biological variability, to describe scRNA-seq 
data. Additionally, different experimental protocols might 
also lead to varying levels of zero counts, the modeling 
of which has been widely investigated (Hicks et al. 2018; 
Townes et al. 2019; Silverman et al. 2020; Svensson 2020). 
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The presence of many zero counts and biological variabil-
ity often leads to bimodal distributions in scRNA-seq data 
(Fig. 1b).

Single cell variational inference (scVI)

A framework to adapt the classical VAE to the character-
istics of count data resulting from scRNA-seq experiments 
was developed by Lopez et al. (2018). Just like the VAE, in 
scVI, the data is encoded into a lower-dimensional latent 
representation and reconstructed via a decoder network (see 
VAE in Fig. 3). Two neural networks are employed to esti-
mate the parameters of the negative binomial distribution. 
Additionally, the model can estimate the parameters for a 
zero-inflation term, allowing for acknowledging a higher 
number of zeros than expected. Synthetic scRNA-seq data 
can be generated in scVI by the following process. In the 
latent space of scVI, samples are drawn from a multivari-
ate normal distribution. The samples are then, together with 
batch information, where each cell is assigned membership 
to an experimental batch such as a well plate in which cells 
have been processed, fed into two decoder networks. One of 
the networks estimates the expected number of transcripts 
across all genes, and the other estimates whether a dropout 
event has occurred. As described above, scRNA-seq data 
can be modeled by a gamma-Poisson mixture. Hence, the 
expected number of transcripts for each gene is entered into 
a gamma distribution, and the corresponding inverse dis-
persion is estimated using variational inference. Thereby, 
the overdispersion, which can occur, e.g., through hetero-
geneous groups of cells, is taken into account. The resulting 
random variable is then multiplied by a library-size scaling 
factor and used as the rate parameter of a Poisson distribu-
tion. This mixture, resulting in a negative binomial distribu-
tion, is the output of the generative process in scVI (Lopez 
et al. 2018).

The learned lower-dimensional latent representation of 
scVI can give insights into the molecular phenotypes of 
cells through an unsupervised learning approach. These 
representations learned through the encoder can be used 
for downstream analyses to aid interpretability (Lopez et al. 
2018). For example, representations can be visualized in two 
dimensions and then colored with the help of known factors, 
e.g., batch information, to get a first impression of whether 
this factor leads to increased variation in the data (see, e.g., 
Fig. 4). Additionally, by accounting for technical factors 
in the lower-dimensional latent representations, one can 
improve the interpretability of the models, as the biological 
signal can be extracted more clearly (Lopez et al. 2020).

Due to the probabilistic orientation of scVI, researchers 
can also use the decoder for statistical inference. For exam-
ple, Lopez et al. (2018) show that the model can be used to 
test differential expression between the genes of two groups 

of cells while also accounting for potential technical effects. 
Boyeau et al. (2019) have extended scVI with a more com-
plex Bayesian approach to test differential expression.

So far, the lower-dimensional latent representations 
learned by scVI have primarily been used to correct for batch 
effects, i.e., systematic differences between, e.g., well plates 
during the execution of an experiment, and to integrate bio-
logical data from different modalities. For example, Gupta 
et al. (2021) investigated single-nuclei RNA-sequencing 
(snRNA-seq) for its ability to identify cell types at different 
states of adipogenesis. They used scVI for removing techni-
cal batch effects which facilitated integrating snRNA-seq 
and scRNA-seq data for inferring joint patterns between 
both data types. As a result, they were able to detect shared 
cell populations across the different sequencing techniques 
which was impossible otherwise. Govek et al. (2021) used 
scVI to retrieve a lower-dimensional representation of a 
CITE-seq dataset of the murine spleen. This representation 
was helpful in further downstream analyses such as clus-
tering and differential expression analysis. Similarly, Quinn 
et al. (2021) and Schupp et al. (2000) made use of scVIs 
ability to learn complex non-linear representations in cancer 
cells and lung epithelial cells, respectively.

Gayoso et al. (2021) provide a comprehensive and highly 
optimized package called scvi-tools with which scientists 
can perform end-to-end analyses. They also offer tutorials 
on using the corresponding methods and ensure integration 
with other common analysis methods such as Seurat (Stuart 
et al. 2019), and Scanpy (Wolf et al. 2018).

Interpretable AI

As defined by Montavon et  al. (2018), an interpretable 
representation is a representation that can somehow be 
understood by humans. For example, a two-dimensional 
representation retrieved by PCA yields an interpretable rep-
resentation because we can visually inspect if samples with a 
given label are more or less similar to each other, given their 
scores on e.g., two plotted principal components (see Fig. 1). 
Compared to PCA, DGMs can more efficiently capture the 
essential structure, which reduces the number of latent vari-
ables to be studied and thereby increases interpretability.

In contrast to deep supervised models, deep unsupervised 
models thus have the advantage that they are, to some extent, 
interpretable. They learn a latent representation that can be 
visually inspected.

While the reduced dimensionality of learned latent 
representations allows for, e.g., better studying how a 
genotype or haplotype affects the cellular state, i.e., helps 
interpret the data, this comes at the price of opaqueness. 
Thus, we partially lose the relationships between genes or 
genomic loci and the learned latent representation since 
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latent representations are non-linearly associated with the 
observed variables, e.g., gene expression levels. However, 
this is important, e.g., in the development of therapeutics, 
where we need to know the genes that we want to target.

In addition, although the estimated latent space is rather 
low dimensional, different latent variables in the latent space 
might be related to an external phenotype. Consequently, 
it would be desirable if variability in external phenotypes 
would be explained by mutually exclusive latent variables 
(see Fig. 5a).

Being able to infer the above-mentioned two relationships 
between latent variables and observed variables (genes) as 
well as between latent variables and external phenotypes 
increases the interpretability of DGMs.

A different yet frequently synonymously employed term 
is ”explainability”. Explainability is closely related to cau-
sality and consequently addresses, in the case of an unsu-
pervised setting, the question of why samples are more or 
less similar to each other (Montavon et al. 2018). The ”why” 
in the case of omics data means that we are interested in 
obtaining the variables (e.g., genes) and also combinations 
over these, which are affecting the distance of data points. 
From this definition, we can see that interpretability is 
required for explainability.

A taxonomy of approaches for interpretable deep 
learning models

Murdoch et al. (2019) present a general overview of inter-
pretable AI approaches. They discriminate between model-
based interpretability, where the model itself is designed 
to yield interpretable results, and post-hoc interpretability, 
where information is extracted from a potentially non-inter-
pretable model (Fig. 5b,c). They also discriminate between 
global (dataset-level) and local (prediction-level) interpre-
tation. While global interpretability relates to the features 
(variables) that are overall important, local interpretability 
relates to the determination of features that explain the pre-
dictions made for a given observational unit, e.g., a patient. 
In unsupervised models, the predictions are the coordi-
nates of an observation in the latent space. Consequently, 
a local interpretation derived from a deep generative model 
should indicate how levels of observed variables respond 
to a change in the values of a latent variable for a specific 
observation.

As shown in the previous section, DGMs can estimate the 
parameters of the distribution of a low-dimensional repre-
sentation of the original data. Having a distribution allows 
in addition to describing high dimensional observations to 
also assessing uncertainty of the observations in the latent 
space. This unique feature of generative approaches allows 
for estimating generalizability to different scenarios and for 

quantifying how well a specific observation is supported by 
the model.

With respect to interpretability, the same rules applica-
ble to non-generative deep approaches also apply to DGMs. 
However, since DGMs learn a distribution over observed 
and latent variables, they offer additional opportunities due 
to their potential to generate new synthetic observations.

In the following, we give some examples for model-based 
and post-hoc approaches for interpreting the results from 
DGMs.

Model‑based approaches

Model-based interpretability refers to models that incorpo-
rate mechanisms that allow direct interpretation of learned 
relationships (Fig. 5c). However, the gain in interpretability 
is often accompanied by a loss in predictive accuracy or a 
lower support for the modeled data, i.e., lower likelihoods 

Fig. 5  Taxonomy of interpretable deep learning models. a Learning 
relations between latent and observed variables as well as external 
phenotypes. Learning disentangled representations by model-based 
approaches enforces that individual latent variables are only related 
to a subset of observed variables or phenotypes. b A schematic illus-
tration explaining post-hoc interpretability. The model is still a black 
box, i.e., the inner processes are not interpretable, but the influence 
of the observed variables on the output can be explained. c An illus-
tration of model-based interpretability. Here, the model is adapted to 
the extent that the inner processes are interpretable. This is usually 
accompanied by a reduction in the performance of the model
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(Murdoch et al. 2019). The most prominent example of 
such an approach is a linear regression model, where one 
can directly interpret the models’ parameters. For increased 
capability to precisely model the data, additional terms, 
e.g. to model interactions between the variables, need to 
be incorporated into the model which subsequently impairs 
interpretability.

Taking the opposite path, complex deep learning 
approaches are modified to enforce, e.g., linearity or mono-
tonicity (Molnar 2020).

Disentanglement strategies play a prominent role in mak-
ing deep generative models more interpretable. Here, the 
goal is to learn latent representations that are, to a large 
degree, independent from each other. PCA, for example, is to 
a large extent frequently employed for deriving interpretable 
representations because the PCs are statistically independent 
from each other. This increases interpretability because it 
allows for annotation of the latent space, e.g., with external 
phenotypes. If multiple latent variables were linked with 
an external phenotype, the relationship would be fuzzy. Put 
differently, disentanglement strategies allow for learning an 
interpretable factor of variation (Fig. 5a).

Lotfollahi et al. (2021) propose the compositional per-
turbation auto-encoder (CPA), which learns a disentangled 
representation associated with, e.g., cells and genetic per-
turbations. The authors use an adversarial loss to separate 
latent cell representations from other covariates. More spe-
cifically, the model learns neural networks that try to dis-
criminate between covariate information, such as genetic 
perturbations, from the learned latent representation. If the 
classification yields poor results, it is assumed that there is 
little or no information about the covariates in the learned 
representation; hence cell representations and representa-
tions associated with genetic perturbations would be disen-
tangled and, therefore, easier to interpret. Another example 
of the use of disentanglement strategies is shown in Kinalis 
et al. (2019). Here the authors use a mixture of model-based 
and post-hoc interpretability by modifying an auto-encoder 
to include an orthogonality constraint in the loss function. 
This constraint ensures that the model learns disentangled 
representations, which can then be interpreted using saliency 
maps. More precisely, the authors visualize the influence of 
a small change in the expression of a gene on the representa-
tion. The authors also state that they can use this model to 
identify gene signatures of biological pathways.

Biological pathways are a prominent example of an 
underlying latent structure within noisy gene expression 
measurements. In Gut et al. (2021), the authors present 
pathway module VAE (pmVAE), which incorporates 
prior knowledge about biological pathways into the net-
work architecture of a VAE and thus aids interpretability 
by learning latent representations that are factorized by 

pathway membership. This approach comes with the dis-
advantage that prior biological information is necessary, 
which might not always be the case. Another model, which 
relies on prior knowledge from pathway databases like 
Reactome (Jassal et al. 2020), that aids interpretability is 
presented in Rybakov et al. (2020). Here, the authors use 
VAEs with a regularized linear decoder to explain the vari-
ation of annotated factors from pathway databases, unan-
notated factors, and factors assumed to represent technical 
confounders.

DGMs also allow us to infer statistical relationships 
between the inferred latent variables and the observed var-
iables. In an application to scRNA-seq data, Yu and Welch 
(2021) combine VAEs and GANs to learn disentangled 
representations, which showed, e.g., that a specific latent 
variable was related to immune function. Specifically, 
they show that a particular latent variable has learned the 
mesenchymal-epithelial transition using their model.

Unlike the previous approaches, Märtens and Yau 
(2020) propose to adapt the decoder network to decompose 
the variability for each gene into multiple components. 
More precisely, the model learns to separate the fraction of 
explained variance for each gene into variance explained 
by the latent variables, variance explained by additional 
covariates, and variance explained by their interaction 
effect. Here, the statistical relationship between latent 
and observed variables is given by a variance decomposi-
tion. Such a decomposition can be found, for example, in 
the classical analysis of variance (ANOVA). The authors 
demonstrate their method’s effectiveness in an applica-
tion to bone marrow derived dendritic cells from multi-
ple time points. Eventually, they decompose the temporal 
effects, effects due to a particular stimulus, and interac-
tions between the stimulus and the time variable.

A substantial contribution to biology and medicine that 
disentangled, and thus interpretable, representations can 
make are predictions of changes in gene expression under 
previously unobserved drug treatments. One approach to 
do this is the so-called latent space vector arithmetics. In 
Yu and Welch (2021), e.g., the effects of drug treatments 
were predicted for previously untreated cell types by deter-
mining the average difference of latent representations for 
a given cell type under other drug treatments. This dif-
ference is then combined with the untreated cell type to 
predict changes in gene expression. A similar approach 
was used by Lotfollahi et al. (2019) to predict the pertur-
bation response observed on mouse data for human cells. 
Similarly, Lotfollahi et al. (2021) model previously unob-
served drug doses and drug responses, which biologists 
could use to optimize, e.g., experimental design. Although 
these methods involve strong assumptions, there is a large 
potential for biological and medical applications.
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Linearly decoded variational autoencoder (LDVAE)

An intuitive way to make deep learning methods interpreta-
ble is to look at the last layer of a neural network in the linear 
form (Lopez et al. 2020). Similarly, Svensson et al. (2020a) 
try to regain interpretability through a linear decoder in scVI 
(Fig. 3). Every cell represented by latent variables in the 
lower-dimensional latent space of scVI would typically be 
decoded to generate the corresponding parameters for each 
gene in each cell by using a negative binomial distribution. 
However, the low-dimensional latent representations are 
not easily interpretable. Hence, it is not possible to identify 
which genes influenced the representation of a particular 
cell. In many scenarios, e.g., eQTL studies, it is essential 
to know whether specific cell phenotypes are influenced by 
sets of genes that tend to be jointly expressed. This makes 
the interpretability of the latent space in the scVI framework 
essential. By integrating a linear factor model into the recon-
struction part of the scVI framework–called linearly decoded 
variational autoencoder (LDVAE), Svensson et al. (2020a) 
show that they can use the flexibility of the non-linear repre-
sentation of data without losing interpretability. However, in 
this model, a trade-off is made between the fit of the model 
and its interpretability, reflected in an increase in reconstruc-
tion error. The generative model of LDVAE remains very 
close to that of the classical scVI framework. However, one 
of the decoder networks, which estimates the expected num-
ber of transcripts per gene, is replaced by a linear factor 
model. Due to the linearity of the decoder, interpretability 
can be secured. This linear factor model assigns a weight 
to each gene in each cell, making the influence of this gene 
on the representation of the cell intelligible (Svensson et al. 
2020a). Factor analysis, a generalization of the well-known 
principal components analysis, provides a generative model 
based on linear Gaussian latent variables (Murphy 2022). In 
factor analysis, the genes are modeled as linear combinations 
of the latent variables with an added error term. These linear 
combinations of several correlated genes are also referred 
to as meta-genes in the literature (Raychaudhuri et al. 1999; 
Brunet 2004; Svensson et  al. 2020a). LDVAE provides 
model-based interpretability because it allows direct insight 
into the relationships between latent variables and input data 
through the linearity enforced on the decoder. Additionally, 
Svensson et al. (2020a) state that the proportion of variance 
explained by each latent variable can be computed, which 
brings additional advantages for interpretability. Being able 
to assign to each gene a factor loading allows performing 
an in-depth investigation of, e.g., pathway activity. We 
extracted the gene set corresponding to the B cell receptor 
signaling pathway, natural killer cell mediated cytotoxicity 
pathway, and primary immunodeficiency pathway from the 
KEGG database. Next, we took the maximum of the abso-
lute factor loadings for each gene across all latent variables 

to compare for which pathways the LDVAE has learned an 
increased activity (See supplementary Notebook).

To illustrate the utility of LDVAE, we show an example 
analysis of scRNA-seq data from peripheral blood mononu-
clear cells (PBMC) (Zheng et al. 2017). We can use LDVAE 
to infer gene programs from the data. More specifically, the 
model learns a latent representation of cells where cells with 
similar transcriptomes are grouped together and potentially 
depict gene expression phenotypes. However, due to the 
non-linearities in the networks of scVI, information about 
each gene’s influence on these latent representations stays 
hidden to the user. Using LDVAE, we can infer the relation-
ship between gene weights and latent variables, which gives 
us a way to interpret the influence of one or several genes 
on the complex gene expression phenotypes (Svensson et al. 
2020a). We train the network on the 2000 most highly vari-
able genes and 7480 cells. The latent factors separate mul-
tiple cell types, all of which were defined by marker genes 
in Zheng et al. (2017) (Fig. 6). We can infer the correspond-
ing information about co-expressed genes from the factor 
model’s loadings. More specifically, loadings for S100A8 
and S100A9 indicate monocytes, loadings for CD79A and 
CD79B mark b-cells (Hu et al. 2020), GNLY and NKG7 rep-
resent a cluster of natural killer cells (Fig. 6). The model can 
infer gene programs by examining more latent dimensions 
for extracting co-expressed genes (Svensson et al. 2020a).

The learned lower-dimensional representations can be 
used as covariates in linear models to account for, e.g., 
confounding factors. In a recent preprint examining work-
flows to sc-eQTL mapping, the authors used LDVAE in a 
comparison with other methods to adjust their analyses for 
batch effects, and potentially unknown covariates (Cuomo 
et al. 2021). LDVAE did not perform particularly well in 
this setting. However, we believe that more elaborated inter-
pretable deep learning approaches might be used to account 
for potential confounding factors in sc-eQTL studies in the 
future.

Post‑hoc approaches

In contrast to model-based interpretability, post-hoc 
approaches (Fig. 5b) have the advantage that they are appli-
cable to any kind of model, irrespective of the detailed 
make-up. This also implies that post-hoc approaches, in con-
trast to model-based approaches, do not have to be tailored 
to the specific properties of omics data.

Post-hoc approaches infer feature importance by approxi-
mating the non-interpretable model with simpler models. 
The most popular post-hoc approaches employ an additive 
model to approximate the output (the predictions or the 
coordinates in a learned low-dimensional embedding) of the 
complex model. The output of the interpretable model then 
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is the effect of the individual input variables on the output 
of the complex model.

The input variables are usually binarized where 0 repre-
sents an absence, or a reference value, while 1 the original 
value of the variable. The effect of the input variables on 
the complex models’ output is then assessed by perturbing 
the input data.

Popular approaches are Local Interpretable Model-agnos-
tic Explanations (LIME) (Ribeiro et al. 2016), the SHap-
ley Additive exPlanation (SHAP) (Lundberg et al. 2018) 
approach, e.g., demonstrated in Lundberg et al. (2020) and 
visualization techniques such as Layer-wise Relevance Prop-
agation (LRP) (Bach et al. 2015; Montavon et al. 2017).

LIME provides a local explanation based on samples of 
similar observations around a given observation whose pre-
diction is to be explained. The result is a locally interpret-
able model in which we can assess the impact of the input 
variables on the prediction or latent space information we 
want to explain.

LRP is specifically tailored to deep neural networks and 
can identify the observed variables which are activated in an 
observation, relative to a reference state, and which respond 
sensitive to a change in the prediction made by the NN. LRP 
has been employed, e.g., in Chereda (2021) for prediction of 
metastasis in breast cancer.

In the SHAP approach, marginal feature importance on 
predictions is inferred by removing different variables when 
fitting the simple additive model. This implies that a multi-
tude of different combinations of input variables have to be 
investigated. Due to the resulting combinatorial complexity, 

SHAP is computationally intensive but has been frequently 
applied for interpretable deep learning with omics data, e.g., 
for inferring gene importance on predictions of survival 
(Kuruc et al. 2021) and clustering in combinations with AEs 
(Lemsara et al. 2020).

While the aforementioned approaches have been success-
fully applied to supervised networks, they might generally 
be applied to DGMs. In fact, DGMs can easily generate new, 
perturbed observations, which is a building block of many 
post-hoc approaches. Moreover, since DGMs represent a 
model for the joint distribution of latent and observed vari-
ables, the perturbation process can be controlled very well. 
Recently, VAEs have been reported to improve the interpret-
ability of the LIME approach (Schockaert et al. 2020).

Extracting patterns with log‑linear models

One post-hoc approach which has been recently proposed 
by us (Hess et al. 2020) is able, to infer the relationship 
between observed variables and latent variables. Being a 
post-hoc approach, it is applicable to any kind of DGM 
such as DBMs, VAEs and GANs. Specifically, the approach 
only requires synthetic observations for the observed and 
latent variables sampled from a trained DGM. In contrast 
to LDVAE, where relations between latent and observed 
variables are derived by simplifying the decoder, our post-
hoc approach works by simplifying the distribution of 
observed and latent variables. Specifically, observed and 
latent variables are discretized, and the co-occurrence of 
the derived discrete states for observed and latent variables 

Fig. 6  Interpreting latent representations using linearly decoded 
variational autoencoders (LDVAE). By using the LDVAE approach 
on the PBMC dataset (Zheng et  al. 2017), we can visually examine 
the learned latent representations, here the first two variables. The 
color-coded kernel density estimates show the arrangement of three 
cell types (monocytes, B-cells, and natural killer (NK) cells) (left). 
The factor loadings of the first two variables can now also be dis-

played visually (right). Since the first two latent variables (Z 1 and 
Z 2) learned by the LDVAE approach separate the three cell types, 
they can be directly linked to factor loadings of co-expressed genes. 
Hence, variation along the Z 1 axis corresponds to variation in 
expression of CD79A and CD79B, whereas variation along the Z 2 
axis corresponds to variation in expression of NKG7 and GNLY
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are investigated in high dimensional cross tables (Fig. 7). For 
the analysis of cross tables, log-linear models are employed, 
which are related to Poisson regression. Specifically, a linear 
model is employed to study potentially higher-order inter-
actions between latent and observed variables. By fitting 
log-linear models step-wise, an observed variable is added 
if the interaction with already included observed variables 
conditional on the state of latent variables is higher than all 
others until to that point not selected variables. By consider-
ing the interactions between observed and latent variables, 
we are able to infer patterns over observed variables that 
contribute to the essential structure in the data. This ren-
ders the approach specifically interesting since it allows for 
prediction-level interpretability. This means that different 
observations, e.g., different cells, can be compared in terms 
of their similarity in the latent space, and the patterns in the 
observed variables can be subsequently studied to infer the 
essential differences between the cells (see also the supple-
mentary Jupyter notebook for an exemplary analysis).

In an exemplary application, we infer a latent representa-
tion of single-cell RNA-Seq data using scVI (Lopez et al. 
2018) (see also section ”Single Cell Variational Inference 
(scVI)”). We employ the same data-set as used for the 

application of LDVAE. Using the approach described in 
Hess et al. (2020), we then extract eight genes which form 
joint patterns with latent variables. To demonstrate that the 
extracted variables contribute to the essential structure in the 
data, we annotate samples from the posterior distribution of 
the VAE based on patterns identified in the eight variables. 
Specifically, we transfer a label of an observed cell-type to 
the sample, by pattern matching in the eight identified vari-
ables. As also demonstrated in Hess et al. (2020) these genes 
carry enough information to annotate the samples generated 
from scVI (Fig. 8). We observe some deviations compared 
to using the original labels, but overall the synthetic cells 
are correctly annotated. We employ both the original VAE 
as described by Lopez et al. (2018) as well as the LDVAE, 
which lacks hidden layers in the generator network (Fig. 3). 
We observe that the samples generated by the LDVAE allow 
for a slightly worse separation of cells compared to the VAE. 
The identified genes which carry essential information do 
now allow us, e.g., to compare the individual cells in terms 
of their expression pattern in the identified genes. In the 
supplementary Jupyter notebook you can find a compari-
son of cell-types in terms of their expression profile in the 
identified genes.

Fig. 7  Extracting joint patterns between observed and latent variables 
with log-linear models. A deep generative model such as a variational 
autoencoder (VAE) as employed by scVI is trained on single-cell 
RNA-Seq data. After training, synthetic observations for observed 
and latent variables ( ̂x and ẑ , shown are four observations) are sam-
pled from the posterior or the prior distribution of the latent variables 
z. Synthetic observations are further discretized, which is straightfor-
ward in the case of single-cell RNA-Seq data where usually bimodal 
distributions are observable. Log-linear models are step-wise fit to the 

discretized synthetic observations to identify joint patterns between 
latent variables and observed variables (the genes). Starting with no 
selected observed variables, the association of the latent variable with 
all observed variables is inferred (strength of association indicated by 
grey color; step 1). The variable with the strongest association is then 
added to the model (step 2). In the following iterations, steps 3 and 
4 are repeated until a given number of variables has been selected. 
In this example, we stop after step 4 since all information-carrying 
observed variables (2 and 3) have been selected



1494 Human Genetics (2022) 141:1481–1498

1 3

Conclusion

DGMs are a versatile approach for extracting latent rep-
resentations from omics data. As they are unsupervised 
approaches, they learn the joint distribution of the data, 
which allows for addressing uncertainty and better general-
izability. This permits an improved integration of different 
population samples as well as data modalities or imputation 
of missing observations. A further promising application 
is the generation of counterfactual observations, which are 
important in assessing causality in observational studies as 
was done in, e.g., Louizos et al. (2017) and Parbhoo et al. 
(2018). With respect to explainability, e.g., to infer why two 
cells are more similar/dissimilar, DGMs thus are promising 
tools.

We described different approaches of rendering DGMs 
more interpretable, which extend the models beyond a bet-
ter description of the relationship between data points in 
terms of their overall similarity. Some approaches target 

interpretability by enforcing disentangled latent represen-
tations so that each latent variable is interpretable with 
respect to a given external phenotype. Another group of 
approaches is concerned with inferring the relationship 
between observed and latent variables.

In the following, we discuss the applicability and indicate 
challenges that are still to be resolved.

Model‑based vs. post‑hoc approaches 
for interpretability

The advantage of post-hoc approaches over model-based 
ones is their larger flexibility. It is possible to employ the 
best performing approach and only in the second step care 
about the interpretations (Samek et al. 2021). On the other 
hand, the risk in post-hoc approaches is that the model, 
due to uncontrollable noise, focuses on artifacts that hinder 
learning useful information and naturally also the subse-
quent interpretation (Laugel et al. 2019).

Fig. 8  Annotating synthetic observations derived by scVI based on 
patterns in extracted genes. Shown are samples from the posterior 
inferred by scVI from the PBMC data in a two-dimensional embed-
ding derived by t-stochastic neighbor embedding (t-SNE) (Van der 
Maaten and Hinton 2008). VAE and LDVAE are employed. Based on 
the samples from the posterior of VAE and LDVAE, the log-linear 
approach (Fig. 7) was employed to extract eight genes that form joint 
patterns with the latent variables. Samples drawn from the poste-

rior distribution were then assigned to a real expression vector and 
the corresponding cell type label, based on the pattern in the eight 
extracted variables (Inferred Labels). For comparison, samples from 
the posterior are also shown colored by the original cell type label 
(Original Labels). The extracted genes were FCN1, IGLC3, SH2D1B, 
GZMK, MEG3, KLRB1, NELL2, S100A12 for VAE and S100A8, 
IGKC, LYAR, FCGR3A, GPR183, COTL1, ARHGAP44, AQP3 for 
LDVAE
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Model-based interpretability approaches have the disad-
vantage that they are, by definition, adapted to a specific 
model class and thus cannot be used flexibly. Addition-
ally, model-based interpretability often leads to reduced 
predictive performance or increased reconstruction errors 
as described by Murdoch et al. (2019) and Svensson et al. 
(2020b). Additionally, see also our results presented in Fig. 8 
where the samples generated by LDVAEs, which are adapted 
for model-based interpretability, do less accurately reflect 
the different cell types compared to unmodified VAEs.

Advantages/disadvantages of different generative 
approaches

To date, most approaches for interpretable generative mod-
eling are focused on VAEs. The variational Bayes approach 
of VAEs allows for robust and time-efficient estimation 
of parameters. In contrast, DBMs are less frequently used 
because of the time consuming Gibbs sampling procedure. 
However, the DBM is an otherwise versatile approach 
because it allows for flexible sampling schemes. Compared 
to VAEs, there are also fewer approaches which employ 
GANs to extract interpretable representations. This is mainly 
because drawing latent space information conditional on 
information for the observed variables (the posterior distri-
bution in VAEs) is not straightforward to conduct (see GAN 
architecture in Fig. 3). However, GANs can generally cre-
ate more accurate samples compared to VAEs (Goodfellow 
et al. 2016). Therefore, Yu and Welch (2021) have proposed 
combinations of VAEs and GANs. They employ VAEs to 
generate disentangled latent representations, which are sub-
sequently employed in the generator of the GAN to generate 
synthetic samples of high quality.

Challenges

Training data and hyperparameter optimization

Approaches like scVI can generally yield an improvement 
over shallow approaches such as PCA (Raimundo et al. 
2020). Although there is not always a benefit in using deep 
models over shallow approaches Bellot et al. (2018), in the-
ory, deep approaches should always result in a better perfor-
mance given enough data being available. However, com-
pared to simpler approaches like PCA, DGMs require tuning 
hyper-parameters, e.g., the architecture of the network or 
the learning rate. Still, there is no established way to do so.

Suitable error model

Although interpretable AI methods hold great promise for 
automated analysis of complex biological data, it is still 
necessary to adapt the corresponding models to the given 

data structures. This also means that the technical noise 
introduced during experiments must be understood, which 
continues to require subject-matter expertise. Also, one 
should note that some of the deep generative models have 
been shown to have difficulties in learning bimodal distri-
butions, which are common in scRNA-seq data (Treppner 
et al. 2021). Additionally, it has been demonstrated by Breda 
et al. (2021) that scVI often falsely identifies genes as co-
expressed. This could also affect LDVAE and result in incor-
rect gene programs being identified.

Inferring significance of statistical associations 
between observed and latent variables

Although a number of the investigated approaches allow for 
extracting relations between learned latent and observed var-
iables as described e.g., in Märtens and Yau (2020), there is 
still a large amount of research to be performed in detecting 
significant associations. For instance, in both the LDVAE 
approach by Svensson et al. (2020b), and the log-linear mod-
eling approach by Hess et al. (2020) it remains challenging 
to infer a cutoff defining meaningful association of observed 
and latent variables. Hess et al. (2020) proposed to employ 
permutation-based approaches. Even though they are effec-
tive, they are also very time-consuming and only feasible for 
a small number of variables. The main problem in applying 
statistical testing here is the inevitable dependency between 
observed and latent variables for which no closed-form or 
time-efficiently evaluable density function is available.

Framework for evaluation and validation of extracted 
information

What is generally missing is a framework for rigorous evalu-
ation of the explanatory performance. As already pointed 
out by Murdoch et al. (2019), there are currently very few 
approaches for evaluating methods for interpretable machine 
learning. Hence, it is still challenging to compare differ-
ent approaches and judge the scale of their impact. Also, it 
is difficult for researchers to choose an appropriate method 
without proper evaluation methods.

As a solution, it is proposed to generate data based on 
the knowledge extracted from interpretable generative 
approaches, which could then be employed to test the respec-
tive models. Another approach suggested by Murdoch et al. 
(2019) could be to use the extracted information for solving 
real world problems. For example, consider the log-linear 
approach described by Hess et al. (2020). The proposed 
log-linear models allow to extract the statistical associa-
tions between observed (genes) and latent variables. Con-
sequently, we receive a model describing the similarity of 
cells with a small number of genes. This model could easily 
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be evaluated on other data sets in order to check if cell-type 
similarities are correctly inferred.

To improve model-based approaches, Murdoch et al. 
(2019) further suggest to use exploratory data analysis. 
This could involve exploring relationships learned from the 
models, for example, through visualizations. For instance, 
in Kinalis et al. (2019), saliency maps, a method for visual-
izing prominent features, are used to visualize the influence 
of Hallmark molecular pathways on latent representations. 
Murdoch et al. (2019) also suggest that the user could cor-
rect false correlations learned by interpretable methods. 
In a biological context, for example, it is conceivable that 
latent variables representing a particular pathway could be 
compared with prior knowledge from databases to generate 
feedback for the model.

In biology, more specifically, the analysis of omics data, 
there is the possibility of experimental validation of the 
putative findings from interpretable deep generative mod-
els. As this research area is still at an early stage, there are 
very few studies in which rigorous experimental validation 
is performed. However, both the methods and the potential 
users could benefit from this by adjusting model predictions 
to experimental results and giving users a better overview 
of the utility of the respective techniques in their applica-
tion areas.
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