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Abstract: The magnetic resonance Diffusion Tensor Imaging (DTI) is a powerful extension of Diffusion
Weighted Imaging (DWI) utilizing multiple bipolar gradients, allowing for the evaluation of the
microstructural environment of the highly anisotropic tissues. DTI was predominantly used for the
assessment of the central nervous system (CNS), but with the advancement in magnetic resonance
(MR) hardware and software, it has now become possible to image the peripheral nerves which were
difficult to evaluate previously because of their small caliber. This study focuses on the assessment of
the human median peripheral nerve ex vivo by DTI microscopy at 9.4 T magnetic field which allowed
the evaluation of diffusion eigenvalues, the mean diffusivity and the fractional anisotropy at 35 µm
in-plane resolution. The resolution was sufficient for clear depiction of all nerve anatomical structures
and therefore further image analysis allowed the obtaining of average values for DT parameters in
nerve fascicles (intrafascicular region and perineurium) as well as in the surrounding epineurium.
The results confirmed the highest fractional anisotropy of 0.33 and principal diffusion eigenvalue of
1.0 × 10−9 m2/s in the intrafascicular region, somewhat lower values of 0.27 and 0.95 × 10−9 m2/s
in the perineurium region and close to isotropic with very slow diffusion (0.15 and 0.05 × 10−9 m2/s)
in the epineurium region.

Keywords: magnetic resonance microscopy; peripheral nerve anatomy; diffusion tensor imaging;
fractional anisotropy; mean diffusivity

1. Introduction

Magnetic Resonance Imaging (MRI) is a well-established imaging modality capable of
providing high resolution structural and functional images of the tissues in the human body.
This technique is relatively safer than other imaging modalities such as X-rays and CT
scanning due to the absence of harmful radiation. Conventionally, pathologies have been
evaluated using a combination of medical history, clinical and diagnostic assessment, but
advances in MRI have increased the reproducibility of findings, post-surgical evaluation
and simultaneous assessment of the bones and soft tissue, thus, the utilization of MRI is
increasing with time. One of the important advantages of MRI over other radiological
methods is also in the ability to study a wide range of pathologies, which is made possible
by the high flexibility in designing pathology-specific imaging methods. One such group are
also neurological disorders that can be efficiently studied by Diffusion Weighted Imaging
(DWI) and its powerful extension Diffusion Tensor Imaging (DTI).

DWI employs bipolar gradient pulses for the assessment of diffusion, i.e., random
motion of molecules caused by temperature. The result of this is signal attenuation in DWI,
which is dependent on the diffusion constant of water molecules in the tissue and on the
instrumental parameter b-value, which incorporates the effects of the bipolar diffusion
gradient, specifically its amplitude and duration. Tissues with faster diffusion will have
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greater signal attenuation and this will also be increased with the higher b-values. DWI is,
particularly, useful in neuroimaging for the assessment of stroke [1]. The affected region
of brain appears brighter in the DWI than the normal part. From at least two different
DW images, in the same slice but with different b-values, it is also possible to calculate the
map of the Apparent Diffusion Coefficient (ADC), which is a quantitative measure for the
diffusion in the tissue. Still quantitative, however, a more advanced method is DTI that
employs bipolar gradients in many directions enabling it to visualize the microstructural
environment of the highly anisotropic tissues [2,3]. DTI is useful in the assessment of
pathologies in the white matter tract in the CNS [4], skeletal muscles and the peripheral
nerve pathologies such as carpel tunnel syndrome [5,6].

The imaging of acute nerve injuries, compression, inflammatory neuropathies and
peripheral nerve tumors have been made easier to evaluate with the advancements in DTI.
Skorpil et al. was the first who demonstrated the feasibility of using DTI in the assessment
of the sciatic nerve [7]. Hiltunen et al. then subsequently demonstrated the possibility of
utilizing DTI in the evaluation of peripheral nerves at the wrist, knee and ankle [8]. Khalil
et al. demonstrated the assessment of the median nerve in healthy volunteers and patients
with Carpel Tunnel Syndrome (CTS), showing a significant decrease in the fractional
anisotropy (FA) value in the patients with CTS but no change in the ADC values [6]. Bulut
et al. evaluated FA and ADC values in healthy volunteers and patients with mild, moderate
and severe CTS, demonstrating a significant difference in FA and ADC values not only
between the patients with CTS and healthy volunteers but also between the patients whose
CTS differed in severity [5]. Bäumer et al. has recently demonstrated the utility of DTI in the
diagnosis of ulnar nerve entrapment at the cubital tunnel [9]. Yamasaki et al. compared DTI
at 7 T with the histology in the rabbit model of the sciatic nerve crush injury [10]. Morisaki
et al. demonstrated similar findings at the 4.7 T system in a rat model of sciatic nerve
crush injury with a decrease in FA value and an increase in the radial diffusivity following
FA value augmentation and a decrease in radial diffusivity in a group with temporary
injury [11]. Meek et al. reported a DTI finding utilizing the fiber tractography in a case
following median nerve repair for nerve laceration at the wrist to demonstrate progressive
distal extension of the nerve over time [12]. Chen et al. was able to identify C5 to C8 nerve
roots using tractography [13]. To access lumbar nerve roots, Budzik et al. utilized reduced
field of view imaging and obtained a signal from the region of interest (ROI) [14]. Chhabra
et al. used DWI and DTI to demonstrate a variety of peripheral nerve tumors [15]. In case
of soft tissue tumors in close proximity to the peripheral nerves, Kasprian et al. assessed
the utility of DTI in identifying the peripheral nerve infiltration [16]. Kakuda et al. showed
a significant decrease in FA values of tibial nerve in subjects with chronic inflammatory
demyelinating polyneuropathy compared with the healthy controls [17], thus signifying
pathological utility and wide-adaptability of the DTI technique.

2. Theory

As follows from the Bloch–Torrey equation for nuclear magnetic resonance (NMR)
signal [18], the signal attenuation of the spin–echo is because of the diffusion in the presence
of magnetic field gradient equal to

A = γ2
TE∫
0

(⇀
F (t′)− 2H(t′ − TE/2)

⇀
f
)T D

(⇀
F (t′)− 2H(t′ − TE/2)

⇀
f
)
dt′, (1)

where γ is gyromagnetic ratio of the observed nuclei, TE, is time from the signal excitation
to the spin–echo, H(t) is the Heaviside step function

H(t) =
{

0 ; t < 0
1 ; t ≥ 0

(2)
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and D is the second-order diffusion tensor equal to

D =

 Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

. (3)

Here, vectors
⇀
F (t′) and

⇀
f are defined as

⇀
F (t′) =



t′∫
0

Gx(t′′ )dt′′

t′∫
0

Gy(t′′ )dt′′

t′∫
0

Gz(t′′ )dt′′


,

⇀
f =

⇀
F (TE/2). (4)

As proposed in [2], Equation (1) can be significantly simplified by introducing a
second-order tensor b defined as

b = γ2
TE∫
0

(⇀
F (t′)− 2H(t′ − TE/2)

⇀
f
)(⇀

F (t′)− 2H(t′ − TE/2)
⇀
f
)Tdt′ (5)

With the introduction of the tensor b, the signal attenuation in Equation (1) can be
expressed by double dot product of tensors (analogous to dot product of vectors) b and D

A = ∑
i,j

bijDij = b : D. (6)

Since both tensors are symmetric, they have six independent components, so that this
product can be transformed to a standard dot product

A =
⇀
b ·

⇀
D (7)

of six-component vectors defined as

⇀
D = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz),

⇀
b = (bxx, byy, bzz, 2bxy, 2bxz, 2byz). (8)

Equation (7) is the fundamental equation for calculation of the diffusion tensor (vector
⇀
D). Since this tensor has six independent components, at least six signal attenuations Ai

must be measured with different vectors
⇀
b i. Individual attenuation is usually measured in

a spin–echo experiment (Figure 1) where a pair of diffusion magnetic field gradient pulse is
added to the standard spin–echo imaging sequence. Two echo signals are acquired with this
sequence: one with the diffusion gradients off and the other with the diffusion gradients
on that yield signals Sb=0 and Si, respectively. These two signals can be mathematically
expressed by

Sb=0 = S0 exp(−TE/T2), Si = S0 exp(−TE/T2) exp(−
⇀
b i ·

⇀
D). (9)
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Figure 1. Imaging pulse sequence that was used for DTI. The sequence is based on the standard 3D
spin–echo sequence with the addition of diffusion gradients.

Here S0 denotes the signal that follows immediately after the signal excitation, TE is
the spin–echo time and T2 is the transversal NMR relaxation time. Signal attenuation Ai is
then obtained by calculating negative natural logarithm of the quotient of these two signals

Ai = − ln
(

Si
Sb=0

)
=

⇀
b i ·

⇀
D. (10)

For the pulse sequence in Figure 1, diffusion gradients have equal amplitudes but

different directions. These gradients can be expressed as
⇀
Gi = G0

⇀
n i where G0 are gradient

amplitudes and normal vectors
⇀
n i = (ni,x, ni,y, ni,z),

∣∣∣⇀n i

∣∣∣ = 1 define gradient directions.

For this case, the corresponding vectors
⇀
b i can be expressed as

⇀
b i = b

(
n2

i,x, n2
i,y, n2

i,z, 2ni,xni,y, 2ni,xni,z, 2ni,yni,z

)
, (11)

where the b-value is equal to
b = γ2G0

2δ2(∆− δ/3). (12)

Equation (10) for at least six different attenuations and the corresponding b-vectors
(i = 1 . . . N, N ≥ 6) that must be solved to determine diffusion tensor in general form an
overdetermined system


A1
A2
...

AN

 =


⇀
b 1

T
⇀
b 2

T

...
⇀
b N

T

 ·
⇀
D or

⇀
A = b

⇀
D (13)

Here, vectors
⇀
A and

⇀
D have dimensions N × 1 and 6 × 1, respectively, while tensor b

has dimension N × 6. The system of equations can be solved by a standard approach for
solving over-determined systems of linear equations, i.e., both sides of Equation (13) are
multiplied by bT thus obtaining a quadratic matrix bTb on the right side of the equation.

This quadratic matrix can be inverted so that finally vector
⇀
D that holds all components of

the diffusion tensor can be expressed as

⇀
D =

(
bTb
)−1

bT⇀
I . (14)



Life 2022, 12, 748 5 of 13

In the next step of the analysis, the diffusion tensor is diagonalized. As this tensor is
symmetric its diagonalization can be carried out with a unitary transition matrix in which
columns are eigenvectors of the diffusion tensor

D
[

⇀
e 1

⇀
e 2

⇀
e 3

]
=

 D1 0 0
0 D2 0
0 0 D3

[ ⇀
e 1

⇀
e 2

⇀
e 3

]
. (15)

The diagonalization of the diffusion tensor does not change its trace; i.e., trace of the
tensor is the same in the eigensystem and in the laboratory system

Dxx + Dyy + Dzz = Tr(D) = Tr

 D1 0 0
0 D2 0
0 0 D3

 = D1 + D2 + D3. (16)

Mean diffusivity can be defined for the diffusion tensor which can be considered as a
measure for an equivalent isotropic diffusion. Mean diffusivity MD is equal to one third of
the diffusion tensor trace

MD =
Dxx + Dyy + Dzz

3
=

D1 + D2 + D3

3
. (17)

In case of isotropic diffusion, mean diffusivity is equal to MD = D1 = D2 = D3.
If diffusion is anisotropic, the degree of its fractional anisotropy can be determined
by expression

FA =

√
3
2
(D1 −MD)2 + (D2 −MD)2 + (D3 −MD)2

D1
2 + D22 + D32 (18)

The value of FA is between 0 and 1; FA = 0 corresponds to complete isotropic diffusion
while FA = 1 corresponds to the most anisotropic diffusion.

3. Materials and Methods
3.1. Nerve Samples

This pilot study was performed on a single human median nerve that was obtained
from the distal part of the upper arm of a body donor (12 h after death) at the Institute of
Anatomy, Faculty of Medicine, University of Ljubljana. After drying on the filter paper, the
nerve sample was fast frozen using the standard procedure which includes immersion of the
nerve in liquid nitrogen and is followed immediately by its storage at −80 ◦C. Immediately
prior to the experiment, an approximately 1 cm long section of the nerve was thawed to
room temperature of 22 ◦C and then inserted in an NMR glass tube with a diameter of
1 cm. To prevent degradation of the sample during MRI scanning, the tube containing the
median nerve was filled with fluorinated fluid (Galden SV90, Solvay, Brussels, Belgium).
This fluid does not produce any NMR signal and is, therefore, ideal for this purpose. As the
fluid is denser than biological tissues, fixation of the nerve with plastic inserts was needed
to compensate buoyancy. The tube with the nerve sample was inserted in the 1 cm NMR
probe and then placed in the NMR magnet. This study was approved by National Medical
Ethics Committee (approval no. 0120-239/2020/3) at the Ministry of Health, Republic
of Slovenia.

3.2. Diffusion Tensor Imaging

DTI was performed on a system for magnetic resonance microscopy that consisted
of a 400 MHz wide-bore vertical superconducting magnet (Jastec Superconductor Tech-
nology, Kobe, Japan), Micro 2.5 probe for MR microscopy (Bruker, Ettlingen, Germany)
and Redstone NMR/MRI spectrometer (Tecmag, Houston TX, USA). DTI scanning was
performed with a pulse sequence based on a three-dimensional spin–echo imaging se-
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quence with added diffusion gradients (Figure 1). Parameters of the sequence were:
TE/TR = 36/880 ms, δ = 3 ms, ∆ = 27 ms, G0 = 0.26 T/m, b = 1150 s/mm2 in 19 different
gradient directions and one image with b = 0, field of view (FOV): 9 × 4.5 × 10 mm3,
imaging matrix 256 × 128 × 16, signal averages: 4, scan time: 1 day and 16 h. Image
resolution was equal to 35 µm along the in-plane directions and the slice thickness was
equal to 625 µm. Directions of 19 different diffusion gradients are shown in Table 1; all
diffusion gradients had identical amplitudes of G0 and therefore the same b-value.

Table 1. List of 19 different diffusion magnetic field gradients that were used for DTI. All the gradients
have identical amplitudes of G0 but different directions.

Number Gx/G0 Gy/G0 Gz/G0

1 −0.0620 0.2380 0.9693
2 0.6092 0.7125 0.3483
3 −0.7878 0.3181 −0.5274
4 0.0636 0.1273 0.9898
5 −0.8853 −0.0582 0.4613
6 −0.1428 −0.8146 0.5622
7 0.4337 −0.8094 −0.3959
8 0.2289 −0.4735 0.8505
9 −0.6445 −0.2860 −0.7091
10 −0.4461 0.3051 0.8414
11 0.0199 −0.9966 −0.0799
12 −0.7535 −0.5805 0.3086
13 −0.8716 0.4899 −0.0185
14 −0.4636 0.7949 −0.3914
15 −0.7682 0.4252 0.4787
16 −0.1220 −0.6652 −0.7367
17 −0.9632 −0.1645 −0.2125
18 0.3718 0.3251 −0.8696
19 −0.4298 −0.8959 0.1125

3.3. DTI Calculation and Image Processing

DTI maps of the diffusion eigen values D1, D2, D3, their corresponding eigen vec-
tors, mean diffusivity MD and the fractional anisotropy FA were calculated by C-code
software written specifically for this study by the authors. In this software, the solution of
Equations (14)–(18) was implemented using the numerical methods [19]. The calculated
maps were analyzed for mean values and their errors by ImageJ digital image processing
program (NIH, Bethesda, MD, USA). The illustration of DTI data by diffusion ellipsoids
was carried out by utilizing the ray-tracing POV-Ray software (open source) for creating
three-dimensional (3D) graphics. More details about this software along with its code are
included in the Supplementary Materials.

4. Results

The diffusion-weighted images of the central transversal slice across the nerve sample
are shown in Figure 2. All the images, except for the first one in the top left corner, were
acquired with the same diffusion weight of b = 1150 s/mm2, however, with different
diffusion gradient directions that are given in Table 1. The first image has no diffusion
weight (b = 0) and has on average more than double the signal compared to the images
with diffusion weight. The signal reduction is especially apparent in the intrafascicular
region, while it is practically negligible in the epineurium region. Higher signal reduction
coincides with the regions of faster diffusion (Table 2).
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Table 2. DTI parameters and their average for different ROIs in intrafascicular, perineurium and
epineurium anatomical regions of the median nerve.

Intrafascicular region

Number
Area

[mm2]
Signal
[A.U.]

D1 D2 D3 MD FA
[0–1][10−9 m2/s]

1 0.22 420 1.07 0.60 0.51 0.73 0.39
2 0.53 477 1.00 0.63 0.59 0.74 0.29
3 0.60 511 0.92 0.64 0.56 0.71 0.27
4 0.31 433 1.05 0.57 0.50 0.71 0.40
5 0.11 472 1.05 0.59 0.55 0.73 0.36
6 0.23 473 0.92 0.62 0.56 0.70 0.27
7 0.19 494 0.96 0.58 0.53 0.69 0.32

469 ± 32 1.00 ± 0.06 0.60 ± 0.02 0.54 ± 0.03 0.71 ± 0.02 0.33 ± 0.06

Perineurium region

Number
Area

[mm2]
Signal
[A.U.]

D1 D2 D3 MD FA
[0–1][10−9 m2/s]

1 0.06 641 0.92 0.67 0.43 0.68 0.35
2 0.08 672 1.09 0.76 0.70 0.85 0.25
3 0.04 708 1.04 0.96 0.56 0.85 0.29
4 0.03 795 0.94 0.87 0.53 0.78 0.27
5 0.04 625 0.84 0.67 0.46 0.66 0.29
6 0.02 676 0.95 0.76 0.60 0.77 0.23
7 0.02 692 1.05 0.93 0.46 0.81 0.36

687 ± 56 0.98 ± 0.09 0.80 ± 0.11 0.53 ± 0.09 0.77 ± 0.08 0.29 ± 0.05
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Table 2. Cont.

Epineurium region

Number
Area

[mm2]
Signal
[A.U.]

D1 D2 D3 MD FA
[0–1][10−9 m2/s]

1 0.32 1564 0.09 0.08 0.06 0.08 0.19
2 0.07 1442 0.04 0.03 0.03 0.03 0.20
3 0.06 1308 0.07 0.06 0.05 0.06 0.15
4 0.23 1551 0.04 0.03 0.03 0.03 0.12
5 0.07 1495 0.05 0.05 0.04 0.05 0.09
6 0.04 1383 0.04 0.03 0.03 0.03 0.20
7 0.05 1338 0.05 0.04 0.04 0.04 0.13

1440 ± 101 0.05 ± 0.02 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.02 0.15 ± 0.04

The images in Figure 2 were used as an input for the calculation of the diffusion tensor
and its diagonalization using Equations (14)–(18). Results for these calculations are shown
in Figure 3 with the images of diffusion tensor eigenvalues D1, D2, D3, mean diffusivity MD
and fractional anisotropy FA. From these images, it can be inferred that the first eigenvalue
D1 is on average considerably larger than the second and the third eigenvalue, D2 and D3.
These two eigenvalues are also closer in values to each other. Eigenvalue D1 is the largest in
the intrafascicular region, which has also the highest FA. Lower values of D1 and also of FA
were found in the perineurium region. The values of eigenvalues D2 and D3 were found
to be higher in the perineurium than in the intrafascicular region. Diffusion values (of all
eigenvalues) were found to be the lowest and practically below the detection threshold in
the epineurium region.
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Results for the eigenvalue calculation are also eigenvectors
⇀
e 1,

⇀
e 2,

⇀
e 3, which are

mutually perpendicular unit vectors and their directions correspond to the diffusion rates
of the eigenvalues D1, D2, D3, respectively. The first eigenvector

⇀
e 1 has direction of the

fastest diffusion, i.e., of eigenvalue D1. In Figure 4, the top row scale defines the x, y and z
components of the first eigenvector

⇀
e 1 by red-, green- and blue-scaled images, while in the

bottom segment illustrates the composite RBG image of all three previous images. In this
composite image, the blue color dominates, especially in the intrafascicular region. This
indicates that the diffusion in these regions is the fastest along the z-direction, i.e., along
nerve fibers, which is an expected result.
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Another presentation, which combines all the existing information, is demonstration
of the diffusion tensor by diffusion ellipsoids as shown in Figure 5. The values and
orientations for the ellipsoid axes match the eigenvalues and eigenvectors, while their
color scheme is orientation-dependent and is determined by the same principle as for
the composite RGB color specified in Figure 4. Again, it can be seen that the diffusion
is the fastest and predominately oriented along the z-direction (along the nerve fibers)
in the intrafascicular region, while in the other regions (perineurium), the directionality
(anisotropy) of diffusion is not so high. The slow rate of diffusion in the epineurium region
can be observed in this image by exceptionally small ellipsoids that appear like small dots.
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Figure 5. Diffusion tensor in pixels of selected slice represented by ellipsoids. Axes of ellipsoids
are proportional to diffusion eigenvalues, while direction of the axes (orientations of the ellipsoids)
corresponds to the directions of eigenvectors. Color of the ellipsoids is determined by the composite
RGB color as described in Figure 4.
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More precise quantitative evaluation of the results was carried out by the region of
interest (ROI) analysis of DWI signals from the intrafascicular, perineurium and epineurium
regions. This was conducted in seven different ROIs for each of these three anatomical
regions (Figure 6) by calculation of diffusion eigenvalues D1, D2, D3, mean diffusivity MD
and fractional anisotropy FA from the corresponding DWI signals shown in Figure 2. The
obtained results are presented in terms of means and standard deviations in Table 2. From
these results, it can be seen that in the intrafascicular region, D1 value of 1.00 × 10−9 m2/s
was 67% higher than D2 and 85% higher than D3. The intrafascicular region has also the
highest FA. An almost identical eigenvalue D1, however, only 22% higher than D2 and
85% higher than D3, was obtained for the perineurium region. The perineurium region
has therefore slightly lower FA than the intrafascicular region, while the MDs of both
regions are quite similar 0.71 × 10−9 m2/s vs. 0.77 × 10−9 m2/s (intrafascicular region
vs. perineurium). The ROI analysis verified that the epineurium region has the slowest
diffusion of all three analyzed regions. Its MD of 0.05 × 10−9 m2/s is approximately
15-times lower than the MDs of the intrafascicular and epineurium regions. FA of the
epineurium region of 0.15 is also the lowest of all three regions. This value is close to the
isotropic diffusion considering the influence of noise in the measured FA.
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5. Discussion

In this study, DTI microscopy at 9.4 T was performed on the human median nerve ex
vivo. Use of high magnetic field enabled high spatial resolution up to 35 µm and therefore
a clear visualization of all the major peripheral nerve anatomical structures were apparent,
not only in conventional proton-density and DW images, but also in the DT images. Finally,
the DTI parameters, such as diffusion eigenvalues D1, D2, D3, mean diffusivity (MD) and
the fractional anisotropy (FA), for the three different anatomical regions of the nerve, i.e.,
intrafascicular, perineurium and epineurium regions, were extracted. Since this was a pilot
study, all the research was concluded on an individual median nerve sample from a single
donor. Thus, the results obtained are mainly orientational and therefore do not include the
possible intra- and inter-subject differences.

As the peripheral nerves are small structures, the conventional clinical MRI scanners
can only provide resolution-limited results that merely allow approximate visualization
and analysis of the peripheral nerve anatomical structures, e.g., fascicles [20]. Much better
results considering the spatial resolution can be obtained by MR microscopy [21], but only
at the cost of limiting the extracted nerve samples and thus to ex vivo studies. While MR
microscopy can provide anatomical images of spatial resolutions that approach those of
optical microscopy, DTI is more challenging as it is very sensitive to noise and requires
longer scan times due to scanning in many different diffusion gradient directions. The
DW images of poor signal to noise ratio (SNR) or insufficient different diffusion gradient
directions (high condition numbers) may lead to overestimated diffusion values and an
increased FA [22]. A problem of low SNR is often encountered in MR microscopy. It
can be mitigated in hardware by using higher field magnets or more advanced detection
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systems (cryoprobes), while simpler solutions rely upon modifying the scan parameters,
e.g., signal averaging (time consuming) or simply image resolution reduction. In the
present experiment, in-plane resolution was 35 µm and the slice thickness was 0.6 mm,
which yielded SNR in DW images of 11.5 and 3.7 for the intrafascicular region with
b = 0 and b = 1150 s/mm2, respectively. However, DW signals of the regions in Figure 6
had, for the square root of the number of pixels in the region, higher SNRs, e.g., on
average 16-times higher for the intrafascicular region. The DTI parameters obtained by
calculating the DW signals from the regions (Table 2) are therefore different and more
accurate than the corresponding values obtained as region averages of DTI maps (Figure 3).
The median nerve is the biggest nerve of the upper extremity, while radial and ulnar nerves
are smaller in comparison to it in the upper arm, both nerves could be depicted with similar
parameters as described above [23]. However, branches of these nerves are considerably
smaller and would therefore require imaging with even higher spatial resolution, which
would inevitably lead to the reduction in SNR for DW images and thus render DTI less
accurate, or on the contrary, longer scan times due to more signal averaging to maintain
the accuracy of DTI.

A long scan time of 1 day and 16 h raised some other problems. One of them was
a need for assuring the sample stability during scanning. Small biological samples can
severely desiccate and consequently shrink. To prevent this, they can be wrapped in a
water impermeable (nonmetallic) foil or be better immersed in liquid. For most other
imaging techniques, immersion in physiological solution or in formaldehyde would be
optimal. However, for MRI, this is not the case as these liquids contain hydrogen atoms and
therefore produce a significant signal that can be comparable or higher to that of the sample.
This results in non-optimal receiver gain settings and the obtained images would have poor
contrast between the sample and the surrounding liquid. To avoid these problems, a special
perfluorinated liquid (Galden SV90) was used that has all hydrogen atoms replaced by
fluorine atoms and therefore does not produce any MR detectable signal. This liquid also
reduces the magnetic susceptibility problems that usually appear on the sample surfaces.

The use of perfluorinated liquid greatly reduced the sample’s stability problems; how-
ever, some minor sample shrinkage of the order of one pixel during sample scanning still
remained. This issue was tackled by using an innovative scanning strategy, namely, instead
of scanning all 20 images (in different diffusion gradient directions and one with b = 0)
sequentially, they were all scanned simultaneously. This was achieved by reordering the
scanning loops; the inner loop was for the directions of diffusion gradient; the middle
loop was for the first phase encoding gradient; and the outer loop was for the second
phase encoding gradient. In case of sample shrinkage, part of image resolution would be
lost; however, this loss would be the same in all the DW images and therefore would not
significantly affect the DTI calculation.

Another difficulty in this study refers to that instead of body temperature, the nerve
sample was scanned at a room temperature of 22 ◦C. As diffusion is temperature dependent
and faster at higher temperature, the obtained diffusion values are lower than those
expected at the body temperature. A rough estimate for how much the diffusion at
the body temperature is faster than at the room temperature provide measurements of
diffusion temperature dependency in water, where the increase in diffusion between these
two temperatures is equal to 40% [24].

As previously discussed, this study was performed on a frozen median nerve sample
that was thawed to room temperature prior to its preparation for MR scanning. A better
alternative (or at least an argument) to this would be the use of fresh nerves. Our prelimi-
nary results from a similar study on fresh median nerves had shown differences in DTI,
especially in the FA parameter which was significantly higher than that observed for the
frozen median nerve in the concurrent study. This difference can be explained by the cell
structure damage due to the fast-freezing/thawing cycle, which might result in cell rupture,
and therefore an increased extra- to intra-cellular ratio contributing towards the reduction
in FA.
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This study was performed ex vivo and at room temperature. Its adaptation to in vivo
conditions is associated with several challenges that are currently unsolved. For example,
the currently used clinical MRI scanners do not provide sufficient resolution for a quality
depiction of small structures such as nerve fascicles, especially not in the clinically accept-
able scan time. Another challenge is to provide quality zoomed images inside a human
body. The gradients in the clinical scanners are still considerably weaker than those used in
the present study. In the in vivo diffusion experiments, the pulse sequence optimization
for the reduction in possible motion artifacts is also a considerable challenge.

6. Conclusions

This study demonstrated that DTI of a peripheral nerve ex vivo is feasible with the use
of the current state of the art equipment for MR microscopy. With the anticipated future
development of the clinical MRI hardware, it is expected that similar studies could also be
performed in vivo in future. However, this is conditioned with several open challenges in
the development of the new more advanced MRI hardware that would allow high spatial
resolution imaging of smaller structures in the human body at acceptable scan times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12050748/s1, programs DTI_3D.c (page 3–7), DTI_3D_ellips.c
(page 8–12), nerve_ellips.pov (page 13).
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