
molecules

Article

The Effect of Ultraviolet Irradiation on the
Physicochemical Properties of Poly(vinyl Chloride)
Films Containing Organotin(IV) Complexes
as Photostabilizers

Duaa Ghazi 1, Gamal A. El-Hiti 2,* ID , Emad Yousif 1,* ID , Dina S. Ahmed 3 and
Mohammad Hayal Alotaibi 4

1 Department of Chemistry, College of Science, Al-Nahrain University, Baghdad 64021, Iraq;
duaa.g934@gmail.com

2 Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences,
King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia

3 Department of Chemistry, College of Science, Tikrit University, Tikrit 34001, Iraq; dinasaadi86@gmail.com
4 Center of Excellence in Integrated Nano-Systems, King Abdulaziz City for Science and Technology,

P.O. Box 6086, Riyadh 11442, Saudi Arabia; mhhalotaibi@kacst.edu.sa
* Correspondence: gelhiti@ksu.edu.sa (G.A.E.-H.); emadayousif@gmail.com (E.Y.);

Tel.: +966-11469-3778 (G.A.E.-H.); Fax: +966-11469-3536 (G.A.E.-H.)

Received: 3 January 2018; Accepted: 25 January 2018; Published: 28 January 2018

Abstract: Three organotin(IV) complexes containing ciprofloxacin as a ligand (Ph3SnL, Me2SnL2

and Bu2SnL2; 0.5% by weight) were used as additives to inhibit the photodegradation of polyvinyl
chloride films (40 µm thickness) upon irradiation with ultraviolet light (λmax = 313 at a light
intensity = 7.75 × 10−7 ein dm−3 S−1) at room temperature. The efficiency of organotin(IV) complexes
as photostabilizers was determined by monitoring the changes in the weight, growth of specific
functional groups (hydroxyl, carbonyl and carbene), viscosity, average molecular weight, chain
scission and degree of deterioration of the polymeric films upon irradiation. The results obtained
indicated that organotin(IV) complexes stabilized poly(vinyl chloride) and the dimethyltin(IV) complex
was the most efficient additive. The surface morphologies of poly(vinyl chloride) films containing
organotin(IV) complexes were examined using an atomic force microscope and scanning electron
microscopy. These showed that the surface of polymeric films containing organotin(IV) complexes were
smoother and less rough, compared to the surface of the blank films. Some mechanisms that explained
the role of organotin(IV) complexes in poly(vinyl chloride) photostabilization process were proposed.

Keywords: poly(vinyl chloride); photodegradation; ciprofloxacin; organotin(IV) complexes;
ultraviolet irradiation; scanning electron microscope; atomic force microscope

1. Introduction

The market for poly(vinyl chloride) (PVC) has grown significantly over the years due low
production cost and its large versatility [1–3]. However, environmental factors such as sunlight,
ultraviolet (UV) radiation, moisture, and high temperatures can lead to various chemical and physical
changes in the PVC materials [4–6]. Ultraviolet radiation has deleterious effects on PVC such as
the scissions of the polymeric chains that lead to the loss of mechanical properties such as strength,
elasticity, and color changes [7]. In addition, it can lead to the softening of polymeric materials, surface
cracking, loss of transparency, bleaching, and surface erosion [8,9].

A UV light of a wavelength longer than 190–220 nm is not expected to be absorbed by PVC since
it only contains single bonds (C-C, C-H, and C-Cl) [10]. Commercially available PVC has various
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structural defects due to the presence of several other molecules in small quantities [11]. The structural
defects due to the presence of photosensitive chromophores such as allylic chlorine due to random
unsaturation, tertiary bonded chloride, and impurities within the PVC polymeric chains can lead to
photodegradation. In addition, the steric hindrance within the monomeric units, i.e., the tacticity, could
influence the degradation process [9]. Therefore, the evaluation of the changes in the PVC properties
under service conditions is very important in order to find ways to improve the durability of PVC
containing products [12,13]. The susceptibility of PVC polymeric materials to UV light (300–400 nm)
has been investigated [14–16]. Various additives at low concentrations have been used to inhibit the
photodegradation process of PVC. The most common additives used are organometallics including
organotin complexes [17–19], organics [20–22], Schiff bases [23–27], and others [28–33].

As a continuation of our research in the field of polymers [34–40], we began to investigate
the effects of tin-ciprofloxacin complexes as additives at low concentrations (0.5% by weight) and
their role in the inhibition of photodegradation of PVC films, upon irradiation with UV light for
long period. We now report success in this respect in which the photostabilization effect of such
additives was found to be better than the previously reported organotin complexes of leucine [17],
2-[(2,3-dihydroxyphenyl)methylideneamino]benzenesulfonic acid [18], and furosemide [19].

2. Results and Discussions

2.1. Organotin(IV) Complexes

Three organotin-ciprofloxacin complexes (Ph3SnL, Me2SnL2 and Bu2SnL2; Figure 1) were
synthesized as previously reported [41] in 52–67% yields and their colors range from white to pale
yellow. The analytical and spectroscopic data for the synthesized complexes were consistent with the
ones reported [41]. The synthesized organotin were varied in their structures in which diorganotin
(Me2SnL2 and Bu2SnL2) and triorganotin (Ph3SnL) were used. Also, the substituents on the Sn were
varied as small (Me) and bulky (Bu and Ph) groups.
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2.2. Evaluation of PVC Photodegradation by Weight Loss

Photodegradation of PVC produces low molecular weight fragments as well as hydrochloride
(HCl) that lead to a weight loss [42]. The weight loss of PVC films (40 µm thickness), in the
presence of organotin(IV) complexes (0.5% by weight) upon irradiation (300 h), was calculated and
compared to that obtained for the blank PVC film. Figure 2 shows the changes in the PVC weight loss
percentage at different time of irradiation (up to 300 h). Evidently, the PVC films containing organotin
complexes show lower weight loss compared to that obtained for the blank PVC. Dimethyltin(IV)
complex, Me2SnL2, shows the most efficient stabilization effect against PVC photodegradation.
The dimethyltin(IV) complex is the least sterically hindered among the additives used and, therefore,
it acts as a better primary photostabilizer compared to the others. Triphenyltin complex shows the
least photostabilization effect presumably due to the presence of bulky phenyl groups.
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Figure 2. Changes in the weight loss (%) of poly(vinyl chloride) (PVC) versus time of irradiation.

2.3. Evaluation of PVC Photodegradation by FTIR Spectroscopy

Ultraviolet radiation of PVC films leads to the appearance of several functional group moieties, in
the IR spectra, such as OH (3500 cm−1), C=O (1722 cm–1) and C=C (1602 cm−1) [43]. The FTIR spectra
of PVC films containing Me2SnL2 complex before and after irradiation (300 h) are shown in Figure 3.
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Figure 3. FTIR spectra of PVC film containing Me2SnL2 complex before and after irradiation.
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The intensities of OH, C=O, and C=C peaks in the FTIR spectra were monitored for irradiated
PVC with a UV light (λ max = 313 nm) and compared to that obtained for the reference peak
(1328 cm–1) [44]. The IOH, IC=O, and IC=C indices were calculated for the PVC films in the presence
and absence of organotin additives (0.5% by weight) were calculated and plotted against time of
irradiation (Figures 4–6). The Me2SnL2 complex was the most effective photostabilizer among
the ones used for PVC photostabilization followed by the Bu2SnL2 and Ph3SnL. The changes in
the functional group indices were very noticeable for the blank PVC film compared to the ones
containing organotin complexes. Clearly, such additives act as efficient photostabilizers to inhibit PVC
photodegradation. Photo-oxidation of PVC leads mainly to chloroketone and ketone moieties along
with alkene, hydroperoxide, and alcohol fragments [26]. Therefore, it was expected that the change in
the IC=O (Figure 5) would be larger compared to the changes in IC=C (Figure 6).
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2.4. Evaluation of PVC Photodegradation by Viscosity

The exposure of PVC to UV light causes changes in the viscosity average molecular weight
(MV) [45]. The MV for the PVC films upon irradiation was calculated at 25 ◦C in THF. The relationship
between time of irradiation (h) and the changes obtained in MV for PVC films (40 µm thickness)
in the absence (blank) and presence of organotin(IV) complexes (0.5% by weight) was investigated
(Figure 7). A sharp decrease in the MV was observed for PVC (blank) in comparison to the PVC
containing organotin as additives up to 250 h of irradiation [46]. The decrease in MV was minimal for
PVC containing Me2SnL2.
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Some insoluble residues in THF were seen during the PVC photolysis process. The quantity of
such residues could be used as an indicator for the average chain scission (S) due to the crosslinking
and branching within the PVC polymeric chains [47]. Equation (1) can be used to calculate the S value
from the viscosity average molecular weight at the initial time of irradiation (MV,O) and at t time of
irradiation (MV,t).

S = MV,O /MV,t − 1. (1)
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The changes in the S value for PVC films versus irradiation time (up to 300 h) is shown in Figure 8.
There was a sharp increase in the S value for the blank PVC between an irradiation time of 100 and
300 h. The growth of the S value was less sharp for the PVC films that contain organotin(IV) complexes.
Clearly, the additives used inhibit the photodegradation of PVC significantly. The increases in the S
value was minimal when dimethyltin complex was present.
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At the initial stage of PVC photodegradation, randomly distributed weak bonds were rapidly
broken. The degree of deterioration (α) which is a measure for PVC photodegradation can be calculated
using Equation (2). The changes in the α values for PVC films containing photostabilizers on irradiation
is represented in Figure 9.

α = m.S/MV (2)

It can be seen that the α values for the irradiated PVC films containing organotin(IV) complexes
were much less compared to the blank PVC. In the absence of additives, the α value increases with
increasing time of irradiation. There was a sharp increase in the α values when the irradiation time
increases from 150 to 300 h. On the other hand, the α value was minimal when dimethyltin(IV) complex
was used as additive.

2.5. PVC Surface Morphological Study

2.5.1. Microscopic Analysis

The morphological study for the PVC films provides a clear picture about the crystalline case,
surface irregularity, smoothness, and roughness of the surface. In addition, it provides a tool to detect
the changes take place within the PVC surface due to photodecomposition [48]. The PVC surface
images before and after 300 h of irradiation are shown in Figure 10.
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It can be seen that the PVC surface before irradiation were smooth with no white spots present.
While, the PVC surface after irradiation has a degree of surface damage in which cracks, holes,
and grooves as well as change in the color possibly were noticeable as a result of photodegradation
and evolution of volatile products (e.g., dehydrochlorination). The images for the irradiated PVC
films containing organotin(IV) complexes show less cracks and white spots. The PVC surface was
much smoother with fewer numbers of cracks and white spots when Me2SnL2 complex was used as
the additive.

2.5.2. Scanning Electron Microscope (SEM) Analysis

The SEM examines the effect of UV irradiation on the surface morphology of PVC films [49].
The SEM images of PVC films are shown in Figure 11. The surface of the blank PVC film before
irradiation was essentially smooth and neat. The PVC surface was damaged after 300 h of irradiation
and the damage was much noticeable for the blank PVC compared to the ones containing the organotin
additives. Also, the cracks were larger in length and depth compared to the non-radiated film.
The formation of such cracks can be due to the chain crosslinking and evaluation of HCl and other
volatile degradation molecules [50]. It was clear that the PVC film containing Me2SnL2 complex
exhibits the least surface roughness and damage.
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2.5.3. Atomic Force Microscopy (AFM) Analysis

Atomic force microscopy (AFM) had been used to study the surface (area = 5.0 × 5.0 µm2)
morphology of the PVC films after exposure to UV light for 300 h. The AFM 2D and 3D images
for PVC (blank) and the one containing Me2SnL2 complex, as a photostabilizer, after irradiation are
shown in Figures 12 and 13, respectively. The PVC surface smoothness can be evaluated through the
roughness factor (Rq) [51]. High Rq indicates dehydrochlorination and bond breaking that lead to
rough surface [52,53]. Dehydrochlorination process normally takes place at high temperature [53].
The roughness factor was high (Rq = 17.92) for the PVC (blank) compared to the one containing the
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2.6. Suggested Mechanisms for PVC Photostabilization by Organotin(IV) Complexes

The efficiency of di- and triorganotin(IV) complexes as PVC photostabilizers follow the order
Me2SnL2 > Bu2SnL2 > Ph3SnL. The three organotin(IV) complexes used have reduced the PVC
photodegradation significantly, but, the Me2SnL2 was the most effective one. Several mechanisms
could be suggested to explain the photostabilization efficiency of these additives. Tin(IV) is a strong
Lewis and, therefore, it acts as a good HCl scavenger (Scheme 1). Tin atoms can substitute the chlorine
atoms within the PVC chains by the oxygen atoms of the carboxylate groups. Tin(IV) complexes can
provide long-term PVC photostability by acting as secondary photostabilizers [29].
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The coordination between the polarized bonds within the organotin complexes and the C-Cl
bonds within polymeric chains could inhibits the PVC photodegradation (Scheme 2). Organotin
complex could act as primary photostabilizers by absorbing the light energy. Also, they help to release
the energy of the PVC exited state, over time, to an energy level that is harmless to the polymeric
materials [22,54]. Clearly, the steric effect within triphenyltin complex render such additive to be an
efficient primary stabilizer.Molecules 2018, 23, x  10 of 15 
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Organotin complexes could also act as peroxide decomposers to inhibit photodegradation of
PVC. Photo-oxidation of PVC forms carbon radicals that lead to the production of peroxide radicals
on reaction with oxygen [53]. Therefore, it is expected that tin complexes can decompose peroxides
(e.g., hyrdroperoxides) and inhibit PVC photodegradation (Scheme 3) [55].
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Scheme 3. Organotin(IV) complexes as peroxide decomposers.

Organotin(IV) complexes could inhibit PVC photodegradation by acting as radical scavengers
(Scheme 4). Complexation could take place between the chromophore (e.g., peroxide radical; POO·)
and the additives to form un-reactive charge transfer complexes [55]. Also, organotin(IV) complexes
can absorb UV light directly and the energy absorbed can be dissipated at harmless level to the
polymeric chains possibly due to the resonance within the aromatic moieties [22].



Molecules 2018, 23, 254 11 of 15

Molecules 2018, 23, x  10 of 15 

 

 
Scheme 2. Organotin(IV) complexes as primary stabilizers. 

Organotin complexes could also act as peroxide decomposers to inhibit photodegradation of 
PVC. Photo-oxidation of PVC forms carbon radicals that lead to the production of peroxide radicals 
on reaction with oxygen [53]. Therefore, it is expected that tin complexes can decompose peroxides 
(e.g., hyrdroperoxides) and inhibit PVC photodegradation (Scheme 3) [55]. 

 
Scheme 3. Organotin(IV) complexes as peroxide decomposers. 

Organotin(IV) complexes could inhibit PVC photodegradation by acting as radical scavengers 
(Scheme 4). Complexation could take place between the chromophore (e.g., peroxide radical; POO·) 
and the additives to form un-reactive charge transfer complexes [55]. Also, organotin(IV) complexes 
can absorb UV light directly and the energy absorbed can be dissipated at harmless level to the 
polymeric chains possibly due to the resonance within the aromatic moieties [22]. 

 
Scheme 4. Organotin(IV) complexes as radical scavengers. 

  

Scheme 4. Organotin(IV) complexes as radical scavengers.

3. Experimental

3.1. General

Ciprofloxacin, reagents, and solvents were supplied from Sigma-Aldrich Chemical Company
(Gillingham, UK). PVC (K-value = 67, degree of polymerization = 800) was purchased from Petkim
Petrokimya (Istanbul, Turkey). The Fourier transform infrared (FTIR) spectra of PVC films were
recorded using a FTIR-8300 Shimadzu Spectrophotometer (Kyoto, Japan) at 400–4000 cm−1 (KBr disc).
An accelerated weather-meter QUV tester (Philips, Saarbrücken, Germany) equipped with UV-B
313 lamps (λmax = 313 nm and light intensity = 7.75 × 10−7 ein dm−3 s−1) was used to irradiate
the PVC films (25 ◦C). The PVC surface morphology was inspected using Meiji Techno Microscope
(Tokyo, Japan). The atomic force microscopy (AFM) images were recorded on Veeco instrument
(Plainview, NY, USA). The scanning electron microscope (SEM) images of the PVC surface was
recorded on the Veeco instrument (Veeco Instruments Inc., Plainview, New York, NY, USA) at an
accelerating voltage of 15.00 kV.

3.2. Synthesis of Organotin(IV) Complexes

Triphenyltin(IV) complex containing ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-piperazin-1-
ylquinoline-3-carboxylic acid) as a ligand (Figure 1) was synthesized as previously reported [41].
The reaction of equimolar ratio of ciprofloxacin (L) and triphenyltin chloride (Ph3SnCl) in refluxing
methanol for 6 h gave Ph3SnL complex as a white solid in 67%. Similarly, the reaction of excess
ciprofloxacin (two mole equivalents) and dimethyltin dichloride (Me2SnCl2) or dibutyltin dichloride
(Bu2SnCl2), in ethanol under reflux for 8 h, gave the corresponding Bu2SnL2 complex as a pale-yellow
solid (52%) or Me2SnL2 complex as an off white solid (61%) [41].

3.3. Preparation of PVC Films

A solution of PVC (5 g) and organotin(IV) complexes (0.5% by weight) in tetrahydrofuran
(THF; 100 mL) were stirred at 25 ◦C for 30 min. The mixture was casted onto glass plates and left at
25 ◦C for 24 h to ensure evaporation of residual of THF and the produced films were fixed.

3.4. Evaluation of PVC Photodegradation by Weight Loss

The photostabilization potency of organotin(IV) complexes as additives was evaluated by
measuring the weight loss percentage within PVC films during irradiation using Equation (3), where,
W1 and W2 are the PVC weight before and after irradiation, respectively [55]. The PVC weight was
measured using Sartorius Lab–BL 219S electronic balance (Sartorius, Göttingen, Germany) with an
accuracy of 0.0001 g.

Weight loss % = [(W1 − W2)/W1] × 100. (3)
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3.5. Evaluation of PVC Photodegradation by FTIR Spectroscopy

Photodegradation of PVC leads to the formation of a number of functional groups [56]. It has
been reported that PVC photo-oxidation produces hydroxyl, carbonyl, and conjugated double bonds
moieties [10,57,58]. The degree of photodegradation can be determined by monitoring the signals
for such groups in the FTIR spectra (400–4000 cm−1) of PVC films upon irradiation. The changes in
hydroxyl (IOH; 3500 cm–1), carbonyl (IC=O; 1722 cm−1), and polyene (IC=C; 1602 cm−1) indices were
calculated and compared to a reference peak (1328 cm−1) [44]. The reference peak is assigned to the
scissoring and bending of the CH2 groups in the FTIR spectra for PVC. Equation (4) was used to
calculate the functional group index (IS) from the absorbance of the functional group (AS) and the
reference peak (Ar).

Is = As/Ar. (4)

3.6. Evaluation of PVC Photodegradation by Viscosity

Viscosity, [η], can be used to evaluate the changes in PVC average molecular weight (Mα
V) using

the Mark–Houwink relation shown in Equation (5), where, α and K are constants [59].

[η] = KMα
V. (5)

The PVC molecular weight was calculated from the intrinsic viscosities using Equation (6).

[η] = 1.38 × 10−4 MV
0.77 (6)

4. Conclusions

Three organotin(IV) complexes containing ciprofloxacin as a ligand have been used as
photostabilizers to inhibit the photodegradation of PVC films, upon irradiation with ultraviolet light for
a long period. Various methods such as the growth of certain functional groups in the infrared spectra,
percentage of weight loss, variation in molecular weight, chain scission and degree of deterioration
were used to determine the efficiency of organotin(IV) complexes. In addition, the atomic force and
scanning electron microscopy were used to assess the surface morphology of poly(vinyl chloride) films.
The organotin(IV) complexes used act as efficient photostabilizers and reduce the photodegradation
rate of poly(vinyl chloride). It is believed that organotin(IV) complexes act as hydrogen chloride
scavengers, peroxide decomposers, free radical scavengers and UV absorbers. For future research
using organotin complexes as PVC photostabilizers, the possible leakage of tin should be assessed in
order to allow the long-term use of such additives.
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