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Abstract: Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl
ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal
group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabi-
lized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer
self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disas-
semble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle
X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs
is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in
a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer
simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0)
cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation
products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was
increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH
with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for
cancer therapy.

Keywords: MPEO-b-PCL nanoparticles; acyclic ketal group; paclitaxel; human HeLa carcinoma cells

1. Introduction

Over the past two decades, amphiphilic block copolymers (composed of hydrophilic
and hydrophobic blocks) have been extensively studied [1–5]. Because of their unique
capability to self-assemble in aqueous media, they attract considerable interest as potential
biomedical applications in drug delivery and in the gene transfection field [6–8]. One
key feature of these materials is associated with their capability to bear the lipophilic
agent (drug) and release it in a controlled manner [7,9]. However, these nanoassemblies
consist of a compact core of the insoluble block, which works as a reservoir for drugs
surrounded by a flexible corona of the soluble block and often shown the slow release
profile of encapsulated molecules [10–13]. It is of particular importance that hydrophilic
corona provides a highly water-bound barrier to ensure colloidal stability, reduction in
the rate of opsonin adhesion, and uptake by cells of the reticuloendothelial system (RES),
which prolongs blood circulation lifetime [10,14–16].

In addition, self-assembled NPs gain much more relevance in biomedical applications,
especially if they are tailored to be degradable as a response to external stimuli. Such
stimulus may be the enzymatic removal of protecting groups [16], light [17], tempera-
ture [18], redox gradient [19], or change of pH [20]. The degradation through stimuli-
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responsive involving the cleavage of labile linkages in response to external stimuli has
been widely studied as a promising platform for the enhanced/controlled release of encap-
sulated molecules [21,22]. To address this issue, the ability of such a system to generate a
nanoparticle release of cargo at selective pH in response to the acidic tumor environment
intracellularly triggered by endo/lysosomes has been extensively studied. Besides, the
targeted delivery to tumors can be achieved through cleavage of these linkages at acidic
tumor conditions (cancer cells and tumor tissues ranging from pH 5.7 to 7.2); the drug can
be rapidly released accompanied by dissolution of nanocarriers [23,24].

Considering the high acidity in tumor tissues and intracellular compartments, several
polymers responsive to pH-sensitive hydrolysis, enzymatic degradation, and/or redox
reactions could be suitable for triggering drug release undergoing degradation to various
extents in vitro and/or in vivo, acid-labile groups. Such acid-labile linkers, can be hydra-
zone [25], orthoester [26,27], imine [28], ketal, or acetal [29,30], which have often been used
as a responsive group to construct pH-responsive (co)polymers [31,32]. Among all these
mentioned above, acid-degradable (co)polymers that contain ketal/acetal labile linkers on
the polymer backbone or as pendant groups enabling drug attachment and these NPs have
received great interest due to their special features [33,34].

Among the various approaches reported to date, previously we have studied the
introduction of acid-cleavable ketal linkage at the junction of poly(ε-caprolactone) (PCL)
hydrophobic and poly(ethylene oxide) (PEO) hydrophilic blocks driven by the fact that
could have great potential as a drug delivery system [29]. The choice of PCL and PEO as
building blocks is due to their excellent biodegradability and biocompatibility. Indeed,
PCL is aliphatic hydrophobic polyester; it has been approved by the food and drug admin-
istration (FDA) and widely used for biomedical applications [35,36]. Furthermore, PEO
is a hydrophilic, water-soluble, and very flexible biocompatible polymer that is non-toxic
and easily eliminated from the body [37].

The present study was undertaken to investigate the potential of MPEO-b-PCL block
copolymer NPs as a tumor-specific drug delivery carrier (Figure 1). The cytotoxic drug
paclitaxel (PTX) was chosen as a model hydrophobic drug to evaluate the loading and
triggered release profiles of the NPs. PTX was encapsulated in the hydrophobic core
by hydrophobic interactions. The drug release and cytotoxic activity of the novel NPs
prepared from the MPEO44-b-PCL17 block copolymer were evaluated on human HeLa
carcinoma cells in vitro. Due to the specific chemical structure of the block copolymer, NPs
disassemble and release the drug cargo under mildly acidic conditions (which simulate
the acidic environment in endosomal and lysosomal compartments), exerting in vitro
cytostatic efficacy on HeLa human cervical carcinoma cell line. The hydrolysis of the ketal
linkage results in neutral degradation products, which can be easily excreted, avoiding
accumulation and likely inflammatory responses.
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Figure 1. Chemical structure of the pH-triggered acid-labile block copolymer MPEO44-b-PCL17 
(top) and the schematic nanoparticles assembly/disassembly mechanism at pH ~5.0 (bottom). 

2. Materials and Methods 
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Chemicals were purchased from Sigma-Aldrich at the highest purity and, if not 
stated otherwise, were used as received. 

2.2. Synthesis of MPEO44-b-PCL17 Diblock Copolymer Containing a Ketal Group 
The synthesis and characterization of MPEO-b-PCL diblock copolymer are described 

in our previous publication [29]. Briefly, a seven-step synthetic method that combines car-
bodiimide chemistry (DCC method), a “click” reaction, and ring-opening polymerization 
(ROP) was employed to successfully produce a series of MPEO-b-PCL diblock copolymers 
(herein referred to as MPEO44-b-PCL17). Firstly, through a four-step pathway containing 
different synthetic routes, the low-molecular-weight compounds were prepared, further 
used as precursors for constructing the acid-labile ketal group. Then the block copolymers 
were synthesized in the next three steps via a DCC method, “click” reactions, and ROP 
(Supplementary Materials, Figure S1). 

2.3. Characterisation Techniques 
1H NMR and 13C NMR spectra (300 MHz, respectively) were recorded using a Bruker 

Avance DPX 300 NMR spectrometer with CDCl3 as the solvent at 25 °C. The chemical 
shifts were relative to TMS using hexamethyldisiloxane (HMDSO, δ = 0.05 and 2.0 ppm 
from TMS in 1H NMR and 13C NMR spectra) as the internal standard. 

The number-average molecular weights (Mn), weight-average molecular weights 
(Mw), and dispersities (Mw/Mn) of the synthesized macromer, macroinitiator, and final 
block copolymer were determined by size exclusion chromatography (SEC). SEC analysis 
was performed using an SDS 150 pump (Watrex, Carolina Centrum, Czech Republic) 
equipped with refractometric (Shodex RI-101, Tokyo, Japan) and UV (Watrex UVD 250, 
Carolina Centrum, Czech Republic) detectors. The separation system consisted of two 
PLgel MIXED-C columns (Polymer Laboratories, Cambridge, UK) and was calibrated 
with polystyrene standards (PSS, Esslingen, Germany). THF was used as the mobile phase 

Figure 1. Chemical structure of the pH-triggered acid-labile block copolymer MPEO44-b-PCL17 (top)
and the schematic nanoparticles assembly/disassembly mechanism at pH ~5.0 (bottom).

2. Materials and Methods
2.1. Materials

Chemicals were purchased from Sigma-Aldrich at the highest purity and, if not stated
otherwise, were used as received.

2.2. Synthesis of MPEO44-b-PCL17 Diblock Copolymer Containing a Ketal Group

The synthesis and characterization of MPEO-b-PCL diblock copolymer are described
in our previous publication [29]. Briefly, a seven-step synthetic method that combines car-
bodiimide chemistry (DCC method), a “click” reaction, and ring-opening polymerization
(ROP) was employed to successfully produce a series of MPEO-b-PCL diblock copolymers
(herein referred to as MPEO44-b-PCL17). Firstly, through a four-step pathway containing
different synthetic routes, the low-molecular-weight compounds were prepared, further
used as precursors for constructing the acid-labile ketal group. Then the block copolymers
were synthesized in the next three steps via a DCC method, “click” reactions, and ROP
(Supplementary Materials, Figure S1).

2.3. Characterisation Techniques
1H NMR and 13C NMR spectra (300 MHz, respectively) were recorded using a Bruker

Avance DPX 300 NMR spectrometer with CDCl3 as the solvent at 25 ◦C. The chemical shifts
were relative to TMS using hexamethyldisiloxane (HMDSO, δ = 0.05 and 2.0 ppm from
TMS in 1H NMR and 13C NMR spectra) as the internal standard.

The number-average molecular weights (Mn), weight-average molecular weights
(Mw), and dispersities (Mw/Mn) of the synthesized macromer, macroinitiator, and final
block copolymer were determined by size exclusion chromatography (SEC). SEC analysis
was performed using an SDS 150 pump (Watrex, Carolina Centrum, Czech Republic)
equipped with refractometric (Shodex RI-101, Tokyo, Japan) and UV (Watrex UVD 250,
Carolina Centrum, Czech Republic) detectors. The separation system consisted of two
PLgel MIXED-C columns (Polymer Laboratories, Cambridge, UK) and was calibrated with
polystyrene standards (PSS, Esslingen, Germany). THF was used as the mobile phase at a
flow rate of 1.0 mL·min−1 at 25 ◦C. Data collection and processing were performed using
the Clarity software package.
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The DLS measurements were performed using an ALV CGE laser goniometer con-
sisting of a 22 mW HeNe linear polarized laser operating at a wavelength (λ = 632.8 nm),
an ALV 6010 correlator, and a pair of avalanche photodiodes operating in pseudo-cross-
correlation mode. The samples were loaded into 10 mm diameter glass cells and maintained
at 37 ± 1 ◦C. The data were collected using the ALV Correlator Control software and the
counting time was 45 s. The measured intensity correlation functions g2(t) were analyzed
using the algorithm REPES (incorporated in the GENDIST program) [38], resulting in the
distributions of relaxation times shown in equal area representation as τA(τ). The mean
relaxation time or relaxation frequency (Γ = τ−1) is related to the diffusion coefficient (D)

of the nanoparticles as D = Γ
q2 where q =

4πn sin θ
2

λ is the scattering vector being n the
refractive index of the solvent and θ the scattering angle. The hydrodynamic radius (RH)
or the distributions of RH were calculated by using the Stokes-Einstein relation:

RH =
kBT

6πηD
(1)

where kB is the Boltzmann constant, T the absolute temperature, and η the viscosity of
the solvent.

In the static light scattering (SLS), the scattering angle was varied from 30◦ to 150◦

with a 10◦ stepwise increase. The absolute light scattering is related to weight-average
molar mass (Mw(NP)) and to the radius of gyration (RG) of the nanoparticles by the Zimm
formalism represented as:

Kc

Rθ
=

1
Mw(NP)

(
1 +

R2
Gq2

3

)
(2)

where K is the optical constant, which includes the square of the refractive index increment
(dn/dc), Rθ is the excess normalized scattered intensity (toluene was applied as standard
solvent), and c is the polymer concentration given in mg mL−1. The refractive index
increment (dn/dc) of the MPEO44-b-PCL17 NPs in PBS (0.140 g L−1) was determined using
a Brice–Phoenix differential refractometer operating at λ = 632.8 nm.

The average ζ-potential of the NPs was performed using a Zetasizer Nano-ZS, Model
ZEN3600 Instrument (Malvern Instruments, Malvern, UK). The equipment measures the
electrophoretic mobility (UE) and converts the value into ζ-potential (mV) through Henry’s
equation (Equation (3)) where ε is the dielectric constant of the medium and f (ka) is Henry’s
function calculated through the Smoluchowski approximation with f (ka) = 1.5 which was
calculated using the DTS (Nano) program.

UE =
2εζ f (ka)

3η
(3)

The small-angle X-ray scattering (SAXS) experiments were performed on the P12
BioSAXS beamline at the PETRA III storage ring of the Deutsche Elektronen Synchrotron
(DESY, Hamburg, Germany) at 20 ◦C using a Pilatus 2M detector (Dectris, Baden, Switzer-
land) and synchrotron radiation with a wavelength of λ = 0.1 nm. The sample-detector
distance was 3 m, allowing for measurements in the q-range interval from 0.11 to 4.4 nm−1.
The q-range was calibrated using the diffraction patterns of silver behenate. Background
scattering of the solvent was carefully subtracted. We have used SASFit software [39,40]
and the combination of two models to describe the scattering behavior of nanoparticles.
The expression for the sphere with gaussian chains attached has been derived by Pedersen
and Gerstenberg [41,42]. Equation (4) for generalized Gaussian coil is as follow:

I(q) = I0

(
1

νU
1

2ν

γ

(
1

2ν
, U
)
− 1

νU
1
ν

γ

(
1
ν

, U
))

(4)
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where U = (2ν + 1)(2ν + 2)
q2R2

g
6 ; ν is the excluded volume parameter from the Flory

mean-field theory.
Transmission electron microscopy (TEM) analysis was carried out on a Tecnai G2

Spirit Twin at 120 kV (FEI, Lausanne, Switzerland).

2.4. Nanoparticle (NP) Preparation

A preheated (40 ◦C) acetone solution (2.0 mL) containing the MPEO44-b-PCL17 block
copolymer (5.0 mg) and the chemotherapeutic PTX (0.1 mg) was added drop-wise (EW-
74900-00, Cole-Parmer®) into a pre-heated (40 ◦C) PBS solution (4 mL, pH ~7.4). The
pre-formed NPs were allowed to self-assemble, and then the solvent was evaporated under
reduced pressure. The final concentration was adjusted to 1 mg·mL−1 (NPs) using PBS at
pH ~7.4.

2.5. Drug Loading and Drug Loading Efficiency

PTX loaded into the NPs was measured by HPLC (Shimadzu, Japan) using a reverse-
phase column Chromolith Performance RP-18e (100 × 4.6 mm2, eluent water-acetonitrile
with acetonitrile gradient 0–100 vol %, flow rate = 1.0 mL·min−1). Firstly 100 µL of the
drug-loaded NPs was collected from the bulk sample, filtered (0.45 µm), and diluted to
900 µL with Acetonitrile (Lach-ner, Neratovice, Czech Republic). Such procedure led to
NPs dissolution. Afterward, 20 µL of the final sample was injected through a sample loop.
PTX was detected at 227 nm using ultraviolet (UV) detection. The drug-loading content
(LC) and the drug-loading efficiency (LE) were calculated by using the following equations:

LC(%) =
drug amount in nanoparticles

mass of nanoparticles
× 100 (5)

LE (%) =
drug amount in nanoparticles

drug feeding
× 100 (6)

2.6. Drug Release Experiments

The in vitro release of PTX from the block copolymer NPs was studied in pH-adjusted
release media (pH ~7.4 and ~5.0) at 37 ◦C. Aliquots (500 µL) of drug-loaded block copoly-
mer NPs in PBS were loaded into 36 Slide-A-Lyzer MINI dialysis microtubes with MWCO
10,000 (Pierce, Rockford, IL, USA). These microtubes were dialyzed against 4 L of pH-
adjusted PBS buffer gently stirred. The drug release experiments were done in triplicate. At
each sampling time, it was removed three microtubes from the dialysis system, and 300 µL
from each microtube was sampled and diluted to 1.0 mL by using Acetonitrile (Lach-ner,
Czech Republic). The PTX content at each sampling time was then determined via HPLC
by applying the same procedure used to determine LC and LE.

2.7. Cell Culture and In Vitro Experiments

All HeLa cells experiments were performed according to the protocol used in our
previously published paper [43]. Briefly, the HeLa cells were cultivated in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% fetal calf serum, 100 units of
penicillin, and 100 µg·mL−1 of streptomycin (Life Technology, Waltham, MA, USA). The
cells were grown in a humidified incubator at 37 ◦C with 5% CO2. For the cytotoxicity
assay, 5000 cells per well were seeded in duplicates in 96 flats bottoms well plates in 100 µL
of media 24 h before adding the NPs. For adding of the particles, the volume was calibrated
to 80 µL, and 20 µL of the five times concentrated dilution of PTX or particle dispersion
were added per well to a final PTX concentration ranging from 10−5 to 5 µg·mL−1. All
dilutions were made in full incubation medium under thorough mixing of each dilution
step. The sample concentrations of the PTX-loaded particles were adjusted to contain the
same total amount of PTX as the samples with free PTX. The cells were incubated with the
free drug or NPs for 24 h or 48 h. Then 10 µL of alamarBlue® cell viability reagent (Life
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Technologies, Waltham, MA, USA) were added to each well and incubated a minimum
for 3 h at 37 ◦C. The fluorescence of the reduced marker dye was read with a Synergy
H1 plate reader (BioTek Instruments, Winooski, VE, USA) at excitation 570 and emission
600 nm. The fluorescence intensity of the control samples (with no drug or particles
added) was set as a marker of 100% cell viability. The fluorescence signal of “0% viability
samples“(where all cells were killed by the addition of hydrogen peroxide) was used as
background and subtracted from all values prior to calculations. The non-toxic character of
the blank particles without drug was shown by incubation of cells up to 0.67 mg·L−1 of
blank particles. This corresponds to the amount of polymer that is contained in the samples
of drug-loaded particles with 5 µg·L−1 total PTX content. For the cell experiments, the
PTX-dilutions in incubation medium were made from a PTX stock solution of 120 µg·mL−1

in PBS/DMSO (96.5: 3.5 v/v) [44]. Precipitation of the hydrophobic PTX out of the cell
culture medium can therefore be excluded because the PTX was previously fully dissolved
in a PBS/DMSO solution (96.5: 3.5 v/v) and subsequently diluted in the serum-supplied
medium under thorough mixing. Consequently, even at maximal PTX-concentration of
5 µg·mL−1, the final DMSO concentration in the incubation medium was below 0.2% and,
therefore, no effect on cell vitality in the applied setup [42,43]. All the cell experiments
were the average of at least 4 measurements (n ≥ 4).

3. Results and Discussion

A multi-synthetic pathway was developed in order to obtain well-defined acid-labile
self-assemble copolymer NPs, which could release hydrophobic drugs at an increased rate
at relevant mild acidic conditions. Due to careful selection of macromolecular character-
istics, such as the molecular weight and the relative block length, the MPEO44-b-PCL17
block copolymer self-assembles in PBS (pH ~7.4), forming spherical NPs with a bulky core
capable of encapsulating and controlling the release of the hydrophobic chemotherapeutic
drug-PTX. This should raise potential PTX toxicity to cancer cells, while after releasing the
cargo, the nanocarriers are further disassembled into environmentally neutral degradation
products (Figure 1, bottom).

The chemical structure, composition, molecular weight, and dispersity of the obtained
MPEO44-b-PCL17 block copolymer were confirmed by 1H and 13C NMR spectroscopy (see
Supplementary Materials, Figure S2) and SEC chromatography (Figure S3, black curve), as
well. The macromolecular characteristics of the block copolymer are listed in Table 1.

Table 1. Macromolecular characteristics of the MPEO44-b-PCL17 block copolymer.

Sample Mn, a

(theor.) (g moL−1)
Mn, b

(NMR) (g moL−1)
Mn, c

(SEC) (g moL−1)
Mw/Mn, d

(SEC)

MPEO44-b-PCL17 4000 4200 3130 1.45
a Mn = [M]o/[I]o × 114 + Mn α-methoxy-ω-hydroxy-MPEO containing a ketal group (Supplementary Materials, Figure S2). b Mn was
calculated by 1H NMR spectroscopy [29]. c Mn and d Mw/Mn values are relative to PS standards (Supplementary Materials, Figure S3).

The acid-responsive degradation of the MPEO44-b-PCL17 block copolymer linkage at
pH ~5.0 for 48 h was studied in detail by SEC analysis (Supplementary Materials, Figure S3
red curve) and 13C NMR spectroscopy (Supplementary Materials, Figure S4). The SEC
chromatogram of the diblock copolymer before and after hydrolytic degradation, as indi-
cated by the overlap of the SEC traces (see Figure S3, ESI), showed the full disappearance of
the chromatogram due to the parent copolymer (Supplementary Materials, Figure S3, black
curve). Two major populations have been formatted, corresponding to the PEO and PCL
homopolymer species upon the cleavage of ketal linkage at the block junctions in acidic
pH, respectively (Supplementary Materials, Figure S3 red curve). Besides, the cleavage of
the ketal group under acidic conditions in the composition of MPEO44-b-PCL17 diblock
copolymer confirmed by 13C NMR spectroscopy (Supplementary Materials, Figure S4), as
was demonstrated in our previous paper [29]. However, the performed analyzes showed
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strong evidence for the high selectivity of the hydrolysis towards the ketal group linker of
the diblock, and no hydrolytic degradation of the PCL backbone was observed over the
period mentioned above.

After solubilization in acetone, the MPEO44-b-PCL17 diblock copolymer underwent
nanoprecipitation and self-assembled into spherical NPs in PBS, encapsulating the PTX
chemotherapeutic (see, Section 2). The SLS and DLS data revealed the assembly of well-
defined NPs after acetone evaporation (Figure 2). The linear relationship resulted from the
plot of the relaxation frequency (I) versus the square of the scattering vector (q2) (Figure 2a),
which indicates the behavior of Brownian diffusion from spherical particles. Using the slope
of the diffusion coefficient and employing the Stokes-Einstein equation (Equation (1), Mat.
and Methods), an apparent RH of 32.1 nm was estimated, which was in good agreement
with the particle size measured at a fixed angle of 90◦ (Figure 2b).
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Figure 2. Measurement of angular dependence by DLS (•) and SLS (#) of the MPEO44-b-PCL17 NPs prepared using the
nanoprecipitation protocol (a) and normalized intensity size distribution of the MPEO44-b-PCL17 NPs measured at angle
90◦ at a concentration of 1,0 mg·mL−1 in PBS (pH ~7.4) and at 37 ◦C (b).

From the Zimm analysis of the SLS data (see Section 2), the values of the radius of
gyration (RG) were determined from the slope of the curve as being equal to 28.3 nm, and
from the inverse of the intercept, the values of the NPs molecular weight (Mw(NP’s)) were
determined as being equal to 2.9 × 107 g moL−1. The aggregation number of the NPs
(Nagg) were then calculated as Nagg = Mw(NP’s)/Mw(SEC) = 9265 chains being compatible
with Nagg related in literature for MPEO-b-PCL NPs [45].

It is well established that the RG/RH ratio may provide qualitative information re-
lated to the architecture of the self-assemblies in the solution. The obtained RG/RH ratio
was equal to 0.88, which is higher than that predicted for homogenous sphere (0.77)
and was compatible with the formation of spherical block copolymer NPs with solvated
shells [18,46]. The average ζ-potential of the studied self-assemble block copolymer NPs
performed at pH 7.4 (PBS buffer, 0.01M) was close to neutrality (~0.5 mV) which indicates
that particles were sterically stabilized by the PEO hydrophilic shell.

Thermodynamically stable polymeric NPs with a hydrodynamic diameter (2RH = DH)
of ~64 nm were obtained. These NPs were perfectly suited for drug delivery by specific
accumulation in solid tumor tissue by the EPR effect. The optimal particle size for the EPR
effect is usually stated to be ~20 to 70 nm [47]. Moreover, another previously mentioned
valuable target in cancer therapy is the acidic environment in endosomal (pH ~5.0 to
~6.0) and lysosomal (pH ~4.0 to ~5.0) compartments. Therefore, the degradation behavior
of the polymer NPs containing the acid-labile ketal group was evaluated under acidic
physiological conditions (pH ~5.0; at 37 ◦C) using DLS, SAXS, and TEM.
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The DLS data from NPs measurements over 48 h at pH ~7.4 and ~5.0 are depicted in
Figure 3. The DLS data clearly demonstrated that the hydrodynamic radius (RH) of NPs
remains unchanged at pH ~7.4 for 48 h (black circles, Figure 3a), whereas it continuously
increased at pH ~5.0 over the 48 h (blue circles, Figure 3a). Additionally, we also observed
the appearance of a scattering population that increased over time, that corresponded
to smaller sizes fraction with RH ~2 to 15 nm (blue circles, Figure 3a). A representative
average intensity distribution of the NPs after 48 h at pH ~7.4 and ~5.0 are shown in
Figure 3b. In contrast to the unimodal average size distribution of the NPs at pH ~7.4
(black circles, Figure 3b), the NPs average size distribution at pH ~5.0 is bimodal and
shows two main population of particles with RH ~15 nm and RH ~58 nm (blue circles,
Figure 3b), respectively.
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Figure 3. RH evolution (a) and intensity distribution (b) measured by DLS at pH ~7.4 (•) and pH ~5.0 (•) for the MPEO44-b-
PCL17 NPs after 48 h.

Moreover, the changes in the NPs inner structure under degradation were also eval-
uated by SAXS (Figure 4). The scattering curves were modeled using a combination of
core-shell and Gaussian coil model (see Section 2). The parameters extracted from the
SAXS curve fittings were radius of the core (R), the radius of gyration of the shell (Rgshell),
and the radius of gyration of the gaussian chains (Rggauss) for the particles and random
coils in the solution, respectively. The values found at pH ~7.4 were R = 23.4 nm and
Rgshell = 1.1 nm, resulting in a total particle radius (R + Rgshell) of 24.5 nm, which was only
slightly smaller than the Rg determined through static light scattering (RG = 28.3, Figure 2a).
However, the profile of the scattering curve changes drastically after degradation at pH
~5.0 (Figure 4a). It was observed a reduction in the scattering intensity I(q) at the zero
scattering angle I(0) and an increase in the scattering intensity in the high-q region (blue
circles, Figure 4a), which indicated a decrease in the particle’s molecular weight and the
appearance of a scattering population of free chains analogous to that observed by DLS. In
this case, the values found at pH ~5.0 were R = 19.5 nm, Rgshell = 5.6 nm, and Rggauss = 3
nm for the spherical and Gaussian coil model, respectively. The overall reduction in the
dimension of the particles after incubation at pH ~5.0 was confirmed by the shift on the
distribution function p(R) from the sphere model to lower values (Figure 4b). Furthermore,
the increasing of Rgshell value, as well as the appearance of the free gaussian chains in
solution, indicates, respectively, the increased swelling of the NPs shell and the release of
MPEG from the NPs surface.
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Figure 4. SAXS patterns of NPs after 48 h of incubation at pH ~7.4 (•) and pH ~5.0 (•) along to the fitting results—olid red
lines (a) and the respective p(R) vs. R profiles (b).

The overall scattering changes observed confirmed the sensitivity of the NPs to
degradation under acidic conditions [29] and provide important information concerning
the degradation process (Table 2). The appearance of distinct populations of particles along
the time at pH ~5.0 seemed to be related to a continuous disassembly and aggregation
process of the NPs after the hydrolysis of the ketal group [18]. Taking into consideration
that the ketal group was preferentially localized at the NPs interface, between the PCL
core and the PEO shell, the hydrolysis of the ketal group released the PEO chains from
the NPs surfaces, increasing the NPs hydrophobicity, which induced its disassembly and
aggregation. Therefore, the results obtained by DLS showed an increase in the NPs size
from ~64 to ~116 nm, as well as the appearance of the scattering population at the smaller
sizes between ~4 to ~30 nm. This is probably due to disasembled/aggregated NPs and the
released of free PEO chains, respectively. (Figure 3). Likewise, this was observed by SAXS
by the decrease in size and scattering component that describes the NPs and the increase
in concentration of the free PEO chains. Similarly, the TEM images (Figure 5) showed a
comparable increase in the size of the MPEO44-b-PCL17 block copolymer NPs at pH ~5.0
(Figure 5b) when compared to the NPs at pH ~7.4 (Figure 5a) after 24 h, which confirms
that after degradation only undefined aggregates and disassembled NPs with free MPEO
chains coexisted in solution.

Table 2. Structural features of the prepared MPEO44-b-PCL17 block copolymer nanoparticles before
(pH ~7.4) and after (pH ~5.0) degradation.

NPs RH
a RG

b R c Rgshell
c Rggauss

c

MPEO44-b-PCL17 (pH ~7.4) 32.1 28.3 23.4 1.1 -

MPEO44-b-PCL17 (pH ~5.0) 15 and 58 - 19.5 5.6 3.0
a DLS; b SLS; c SAXS; Values are given in nm.
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Figure 5. TEM images of MPEO44-b-PCL17 at pH ~7.4 (a) and pH ~5.0 (b) after 48 h incubation.

The release profile of the chemotherapeutic PTX was explored towards mimicking
the target acidic environment in endosomal and lysosomal compartments (pH ~5.0, 37 ◦C)
(Figure 6). Furthermore, to simulate physico-chemical conditions during transport in the
blood and in normal healthy tissues, the release experiments at pH ~7.4 and 37 ◦C were also
performed, as well (Figure 5). The obtained results suggest that the acid pH accelerates the
release of the drug from the NPs, most likely due to the NPs physical destabilization (pH-
triggered disassembly-aggregation, Figure 3). The drug cargo was released almost twice as
efficiently (~70% released) within 48 h at pH ~5.0 (mimicking intracellular environment)
than at physiological conditions of pH ~7.4. On the other hand, at pH ~7.4, only ~36% of
the drug-loaded into the NPs cores was released.
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The drug-release profile was considered not optimal; however, a yet faster release
was expected in contact with more complex media such as the serum-supplied cell culture
medium. To investigate the inhibitory effect on tumor cells, the MPEO44-b-PCL17 NPs were
loaded with the antitumor drug PTX with an overall cargo rate of around 2.0 wt% (loading
efficiency of 92%, see Section 2). Given the hydrophobicity of the NPs core and the PTX
(negligible free PTX was observed), no additional purification step was carried out. The cell
viability assay was used to document in vitro cytotoxicity as a classical approach to evaluate
the direct effect of the drug carrier NPs on target cancer cells. The HeLa cell line was selected
as a widely used and well-studied cancer cell model system [47]. The drug-loaded NPs
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were incubated with the HeLa cells, and the in vitro cytotoxicity after 24 h and 48 h of
incubation was assessed by alamarBlue® assay (Figure 7). After 48 h incubation with the
cells, the PTX-loaded MPEO44-b-PCL17 NPs exhibited significantly stronger toxicity than
the free drug (Figure 7b). In contrast, the drug-free NPs showed only negligible cytotoxicity
to the cancer cells (Supplementary Materials, Figure S5). This increased cytotoxicity of
the drug-carrying NPs compared to the free drug was supposedly owed to endocytotic
uptake [48]; at low drug concentrations (below 1 µg·mL−1, see Figure 7b), the endocytotic
uptake of the drug-loaded nanocarriers would be more efficient than the uptake of the free
drug into the cells. With increasing drug concentration, this effect became less prominent
(see Figure 7b). Once internalized via endocytosis, the PTX-loaded nanocarriers swiftly
and efficiently released their cargo when the enzymes and acidic conditions in endosomes
triggered the cleavage of the pH-sensitive acyclic ketal bond [43,44]. Drug-free MPEO44-b-
PCL17 NPs were also tested up to the applied maximal concentration (0.67 mg·mL−1) with
no significant cytotoxic activity (Figure S5). Last but not least, the negligible toxicity of
the unloaded-MPEO44-b-PCL17 NPs emphasized that the presented nanocarrier system
produced no toxic degradation products, and at any rate, the products (PCL and PEO) are
well-known and FDA-approved as environmentally friendly blocks.
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4. Conclusions

In summary, well-defined nanoparticles prepared by the self-assembly of the new
amphiphilic MPEO44-b-PCL17 block copolymer in an aqueous solution were presented.
The NPs structure was characterized in detail by DLS, SLS, SAXS, and TEM. On decreasing
pH the acid-labile ketal linker enabled the disassembly of the nanoparticles in a buffer that
simulated the acidic environment in endosomal and lysosomal compartments. As a result,
the chemotherapeutic paclitaxel was released, and the polymer particles disintegrated into
neutral degradation products as confirmed by SEC, 13C NMR, and by in vitro cell viability
tests, as well. In addition, the in vitro cell viability experiments demonstrated the great
potential of the pH-triggered NPs as a drug-delivery system in cancer therapy; the in vitro
cytotoxicity studies showed an important increase in activity of the NP-loaded with drug
and the free-drug NPs are degraded into well-known, and FDA-approved by-products and
itself introduced no toxicity to cells. The particle’s hydrophilic surface coat and size below
the cut-off size of the leaky pathological vasculature (NPs < 100 nm) predetermined the
NPs for long circulation and efficient accumulation in solid tumors due to the EPR effect
and together with the ability to release a drug at the endosomal pH with concomitant high
cytotoxicity makes them suitable candidates for cancer therapy.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091465/s1, Figure S1: Synthetic route for the preparation of MPEO-b-PCL diblock
copolymers, Figure S2: 1H (left) and 13C (right) NMR spectra of the MPEO44-b-PCL17 diblock
copolymer in CDCl3, Figure S3: SEC chromatograms in THF of MPEO44-b-PCL17 diblock copolymer
(black line), α-methoxy-ω-hydroxy-poly(ethylene oxide) macromer containing a ketal group (blue
line) and the MPEO44-b-PCL17 diblock copolymer after degradation (phosphate buffer saline) at
pH ~5.0 for 48h (red line). Figure S4: 13C NMR spectra of MPEO44-b-PCL17 diblock copolymer
(top) before degradation and (bottom) after degradation, Figure S5: Cell viability of HeLa cell line
after 24 h (black squares) and 48 h (red circles) incubation with different concentrations of drug-free
MPEO44-b-PCL17 diblock copolymer NPs.
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