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COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. It has six

open reading frames (orf1ab, orf3a, orf6, orf7a, orf8, and orf10), a spike protein,

a membrane protein, an envelope small membrane protein, and a nucleocapsid

protein, out of which, orf1ab is the largest ORF coding different important non-

structural proteins. In this study, an effort was made to evaluate the

susceptibility of different animals against SARS-CoV-2 by analyzing the

interactions of Spike and ACE2 proteins of the animals and propose a list of

potential natural compounds binding to orf1ab of SARS-CoV-2. Here, we

analyzed structural interactions between spike proteins of SARS-CoV-2 and

the ACE2 receptor of 16 different hosts. A simulation for 50 ns was performed

on these complexes. Based on post-simulation analysis, Chelonia mydas was

found to have a more stable complex, while Bubalus bubalis, Aquila chrysaetos

chrysaetos, Crocodylus porosus, and Loxodonta africana were found to have

the least stable complexes with more fluctuations than all other organisms.

Apart from that, we performed domain assignment of orf1ab of SARS-CoV-

2 and identified 14 distinct domains. Out of these, Domain 3 (DNA/RNA

polymerases) was selected as a target, as it showed no similarities with host

proteomes and was validated in silico. Then, the top 10 molecules were

selected from the virtual screening of ~1.8 lakh molecules from the ZINC

database, based on binding energy, and validated for ADME and

toxicological properties. Three molecules were selected and analyzed

further. The structural analysis showed that these molecules were residing

within the pocket of the receptor. Finally, a simulation for 200 nswas performed
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on complexeswith three selectedmolecules. Based on post-simulation analysis

(RMSD, RMSF, Rg, SASA, and energies), the molecule ZINC000103666966 was

found as the most suitable inhibitory compound against Domain 3. As this is an

in silico prediction, further experimental studies could unravel the potential of

the proposed molecule against SARS-CoV-2.

KEYWORDS

SARS-CoV-2, natural compound screening, toxicity analysis, molecular dynamics
simulation, RMSD, MMPBSA

1 Introduction

Coronaviruses (CoVs) are responsible for various respiratory

and intestinal infections. They affect a diverse group of livestock

hosts and cause a wide number of diseases like acute and chronic

hepatitis, gastroenteritis, progressive peritonitis, nephritis, etc. In

humans, CoVs cause respiratory tract complications with varying

degrees of severity (Berry et al., 2015). CoVs are single-stranded,

positive-sense, enveloped RNA viruses. These viruses are not

only widely spread in bats but are also reported in many other

species, including cats, pigs, horses, birds, and humans (Zaki

et al., 2012). They have been considered highly pathogenic to

humans since the outbreak of severe acute respiratory syndrome

(SARS) in 2002 and 2003 in China (Cui et al., 2019). After ten

years, another virus—MERS-CoV—has emerged in the Middle

Eastern countries (Berry et al., 2015). Both these viruses were

directly transmitted from market civets and dromedary camels

and were thought to have originated in bats. Many genetically

diverse CoVs related to these viruses were also discovered in bats

across the world (Cui et al., 2019). Most of these viruses were

genetically similar to known human CoVs but were never

reported in humans (Letko et al., 2020). Coronaviruses are

classified into four genera: Beta-CoV, Alpha-CoV, Gamma-

CoV, and Delta-CoV (Li, 2016). The β-CoVs are divided into

four lineages–A, B, C, and D, where SARS-CoV and the newly

emerging SARS-CoV-2 are included in lineage B, and lineage C

includes MERS-CoV. All CoVs encode a surface glycoprotein

called Spike protein, which binds to the host–cell receptor and

mediates viral entry (Li, 2016; Letko et al., 2020). The spike

proteins of SARS-CoV and SARS-CoV-2 share a high degree of

homology and about 76.5% identity in amino acid sequences

(Zhang et al., 2020a). Several poly proteins are expressed by

SARS-CoV-2, including 15 non-structural proteins and four

structural proteins [spike (S) protein, envelope (E) protein,

membrane (M) protein, and nucleocapsid (N) protein] (Wu

et al., 2020). Orf1ab is the longest in size and encodes the

non-structural proteins which are essential for viral

pathogenicity and have roles distinct from or in addition to

those directly related to viral replication (Graham et al., 2008),

while ORF2-10 encodes structural proteins and other auxiliary

proteins. The S, M, and E proteins regulate the viral coat

formation, while the N protein regulates the RNA genome

packaging. Apart from that, S protein also promotes the host

attachment and viral cell membrane fusion during the infection,

thus determining the host range to some extent (Wu et al., 2020).

ACE2, a key enzyme in RAAS activation functions, acts as a

receptor for SARS-CoV-2 (Vaduganathan et al., 2020). The

binding of the spike protein to the host ACE2 receptors and

its priming by TMPRSS2 protease plays a vital role in cell entry of

the virus (Hoffmann et al., 2020). ACE2 is the surface protein of

cells in various organs like the heart, lungs, kidney, arteries, and

intestines. Thus, these are all susceptible to being infected by

SARS-CoV-2 (Fu et al., 2020). However, the organ at the highest

risk of damage is the lung due to abundance of ACE2 in lung

alveolar epithelial cells (Behl et al., 2020).

Apart from humans, Beta-CoVs include many viruses that

infect bats and domestic and wild animals. The SARS-CoV-

2 outbreak was linked to the Wuhan animal market, which

includes many species like seafood, birds, snakes, marmots, and

bats. Some studies report that pangolins (Manis javanica) could be a

potential intermediary host for SARS-CoV-2, with putative

recombination signals found between pangolin, bat, and human

coronavirus sequences (Jaimes et al., 2020). Thus, there is a need to

study different animals for their susceptibility against SARS-CoV-2.

Along with this, many drugs are effective in in vitro activity

against different CoVs, and no clinical evidence currently

supports their usage in humans (Kalil, 2020). Previous

research reports that natural compounds possess multiple

biological activities, including antiviral properties (Xian et al.,

2020). Thus, we wanted to identify a natural compound that

binds and inhibits the proteins of SARS-CoV-2 and thereby

prevents the virus. There are several in silico studies which

propose potential inhibitors from diverse sources against

distinct proteins of SARS-CoV-2 by using docking and

simulations (Bhardwaj et al., 2021; Sharma et al., 2021; Singh

et al., 2022). In this study, we screened a set of ~1.8 lakh natural

compounds to target Orf1ab of SARS-CoV-2. Furthermore, these

selected natural molecules were compared on different

computational parameters like docking, ADMET analysis, MD

simulations (RMSD, RMSF, radius of gyration, SASA, and MM-

PBSA binding energy), and a potential molecule was selected.

The objective of the current research was to identify powerful

inhibitor compounds that might effectively bind to Orf1ab of

SARS-CoV-2. As this is an in silico study, further experimental

studies could unravel the potential of the proposed molecule

against SARS-CoV-2.
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2 Material and methods

2.1 Predicting the animal susceptibility

2.1.1 Protein structure modeling and validation
The sequences of ACE2 proteins of 16 different hosts (six

livestock, nine wild animals, and humans) were downloaded

from the NCBI. These animals were from the mammalian,

reptilian, and avian classes. This study focused on the orders

from the mammalian class, including Artiodactyla,

Perrisodactyla, Chiroptera, Rodentia, Carnivora, Primates,

Pholidota, and Proboscidea; orders from the reptilian class,

including Testudines and Crocodilia; and orders from the

avian class, including Acciptriformes and Galliformes

(Table 1). The structures of 16 ACE2 were modeled by

homology modeling using SWISSMODEL, which was accessed

through the ExPASy online web server (Waterhouse et al., 2018).

In SWISSMODEL, homology modeling comprises four main

steps: identification of structural templates, alignment of the

target sequence and template structures, model-building, and

model quality evaluation. The spike protein of SARS-CoV-2 was

obtained from the Zhanglab COVID-19 database with ID

QHD43416 (Zhang et al., 2020b). Furthermore, the

16 ACE2 models were validated using the SAVES 6.0 web

server (SAVES, 2022). SAVES is a set of different validating

tools like VERIFY 3D, ERRAT2, PROVE, and PROCHECK. In

Verify 3D, the models are assigned “PASS” if more than 80% of

the amino acids have scored > = 0.2 in the 3D/1D profile. In

ERRAT2, models with score more than 95% are considered to

have good resolution. In PROVE, based on the percentage of

buried atoms, the models are assigned: error (> 5%), warning

(1%–5%), or pass (< 1%). In PROCHECK, models with over 85%

of the residues in the core regions of the Ramachandran plot are

considered to be good models.

2.1.2 Docking
The GRAMM-X (Tovchigrechko and Vakser, 2006)

webserver was used for docking the spike protein with the

modeled structures of ACE2 of host organisms. UCSF

Chimera (Pettersen et al., 2004) was used for visualization of

complex structures.

2.1.3 Molecular dynamics simulations of
ACE2 and spike

GROMACS is an open-source suite which is primarily

designed for dynamical simulations of biomolecules. We used

the standalone version 2021.1 of GROMACS (Abraham et al.,

2015) for the molecular dynamics simulations (MDS) of spike

and ACE2 complexes. CHARMM27 (Vanommeslaeghe et al.,

2010), an atom force field, was assigned to the complexes using

the TIP3P water model. All hydrogens in the input coordinate file

were discarded and reassigned according to the force field.

Furthermore, the complexes were then placed in the center of

a solvated, dodecahedron box with a 1-nm box edge. The system

was solvated using the spc216 water model, and to neutralize the

system, sodium counter ions were added. The energy of the

system was minimized by using the steepest descent

minimization algorithm, and this step was required to sort out

any clashes in starting structures that may have been caused

during the generation of the system. Along with that, the Particle

Mesh Ewald (PME) method (Essmann et al., 1995) with a cutoff

of 1.2 nm was used to calculate the long-range electrostatic

TABLE 1 Table showing the list of 16 different organisms with their taxonomy IDs and their orders.

Order Organism (Common name) Taxonomy ID

Artiodactyla Bos taurus (exotic cattle) taxid:9913

Bubalus bubalis (buffalo) taxid:89462

Capra hircus (goat) taxid:9925

Ovis aries (sheep) taxid:9940

Sus scrofa (pig) taxid:9823

Perissodactyla Equus asinus (donkey) taxid:9,793

Chiroptera Rhinolophus ferrumequinum (greater horseshoe bat) taxid:59479

Pholidota Manis javanica (Sunda pangolin) taxid:9974

Carnivora Panthera tigris altaica (Siberian tiger) taxid:74533

Rodentia Cricetulus griseus (hamster) taxid:10029

Primates Homo sapiens (human) taxid:9606

Proboscidea Loxodonta Africana (African elephant) taxid:9785

Galliformes Gallus gallus (chicken) taxid:9031

Accipitriformes Aquila chrysaetos chrysaetos (golden eagle) taxid:8,962

Crocodilia Crocodylus porosus (salt water alligator) taxid:8,502

Testudines Chelonia mydas (green sea turtle) taxid:8,469
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interactions of the system. Both the equilibration steps (NVT and

NPT) and the production molecular dynamics simulation step

were performed using a leap-frog integrator algorithm for 50 ns.

Coordinates, velocities, and energies were saved every 2 fs. The

short-range electrostatic and van der Waals cutoffs of the system

were 1.2 nm, and all other parameters were used at default. Then,

the trajectory files (tpr and trr) were obtained and used further to

calculate the RMSD (root mean square deviation) value and

analyze the potential energy, kinetic energy, and total energy of

the complex.

2.2 Identification of natural compounds
against SARS-CoV-2

2.2.1 Domain assignment and target selection
The proteome information of SARS-CoV-2 shows that there

are six open reading frames (orf1ab, orf3a, orf6, orf7a, orf8, and

orf10), a spike protein, a membrane protein, an envelope small

membrane protein, and a nucleocapsid protein (Zhang et al.,

2020c). In terms of size, orf1ab is the largest, having 7,096 amino

acids. Since the outbreak of COVID-19, orf1ab and spike protein

were the widely studied proteins of SARS-CoV-2 (Angeletti et al.,

2020; Zolfaghari Emameh et al., 2020). We downloaded the

orf1ab sequence from the NCBI (QIB84672.1) and performed

domain assignment using the SUPERFAMILY database (Gough

et al., 2001) to predict the structural and functional domains of

orf1ab.

Then, the sequence analysis study was performed to identify

the similarities between the proteomes of the 16 different host

organisms and the obtained domains of orf1ab using BLASTp

(Altschul et al., 1990) search at default parameters. Then, based

on the similarities with the host proteome and annotation, the

domains containing no similarities with all the 16 organisms

were selected as target domains.

2.2.2 Protein structure modeling and validation
of the modeled structures

The 3D structures of the selected domain sequences were

modeled using the trRosetta online web server (Yang et al., 2020).

It builds the 3D structure based on direct energy minimization

with a restrained Rosetta. The restraints are predicted by a deep

neural network and include inter-residue distance and

orientation distributions. Furthermore, these modeled

structures were validated using SAVES 6.0 as mentioned

above in Section 2.1.1 and the Prosa web server (Wiederstein

and Sippl, 2007). The stereochemical accuracy of the modeled

structure of selected target domains and their overall structural

geometry was confirmed by using the Procheck online server

(Laskowski et al., 1993). To assess the stability of the model and

validate the residues, Ramachandran plot statistics were

examined. The ProsaWeb online server was used to evaluate

the model’s overall quality (Wiederstein and Sippl, 2007). We

also performed Z-score analyses for the modeled structure of the

selected target domains.

2.2.3 Virtual screening of natural compounds
We downloaded publicly available ~1.8 lakh NCs from the

ZINC database (Sterling and Irwin, 2015) and virtually screened

against modeled structures of selected domains by using

Autodock4 (Morris et al., 2009) on default parameters. First,

we prepared the coordinate file by including the atomic partial

charges and atom types (PDBQT), followed by the Autogrid

generation by embedding the protein in a three-dimensional

grid, and a probe atom was placed at each grid point. Finally,

AutoDock was run several times to provide 10 docked

conformations for each ligand, and analysis of the Estimated

Free Energy of Binding (kcal/mol), Inhibition Constant, Ki (nM)

and the consistency of results was combined to identify the best

pose. As there are a large number of molecules being screened, we

have used the in-house python script for automation. Then, the

top 10 NCs were selected based on the binding energy of the

complex and were further studied.

2.2.4 Ligand-based ADME prediction
The pharmacokinetic properties such as absorption,

distribution, metabolism, and excretion of the selected

10 natural compounds were evaluated using Lipinski’s rule of

five (Lipinski et al., 2001). According to this rule, a compound

which satisfies at least four characteristics out of the five, such as

molecular weight between 150 to 500 Daltons, hydrogen bond

donors less than or equal to 5, hydrogen bond acceptors less than

or equal to 10, lipophilicity less than 5, and molar refractivity

between 40 and 130, can be considered to have optimal drug-like

behavior. In this study, the SwissADME (Daina et al., 2017) web

server was used to analyze the pharmacokinetic properties of the

top 10 selected natural compounds. The molecules that satisfy

Lipinski’s condition were considered the ideal drug candidates.

2.2.5 Prediction of toxicological properties
Due to the fact that toxicity is a primary concern when

administering any medication, the toxicological characteristics of

the chosen natural compounds were also predicted. The

admetSAR web server (Cheng et al., 2012) and pkCSM web

server (Pires et al., 2015) were used for prediction of toxicological

properties of the molecules. Ames toxicity, maximum tolerated

dose (human), carcinogenicity, inhibitory effects on human

ether-a-go-go-related gene (hERG), and Oral Rat Acute

Toxicity (LD50) were predicted. The canonical smiles of the

NCs were used as the input to the web servers.

2.2.6 Protein–ligand interaction analysis
Internal structural characteristics of the ligand-binding

pockets and cavities are essential for drug discovery because

they involve drug molecule and protein interactions, which are

critical for the protein function mechanism. Two different
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algorithms—D3Pockets (Chen et al., 2019) and Fpocket (Le

Guilloux et al., 2009)—were applied to study the ligand

binding pockets in depth. D3Pockets were used to detect and

analyze the dynamic properties of ligand binding pockets on

targeted proteins. Fpocket was used for detection of protein

pockets (cavity) based on the Voronoi tessellation algorithm.

The results of D3Pockets and Fpockets were visualized by using

Pymol (Yuan et al., 2017) and UCSF Chimera (Pettersen et al.,

2004). Apart from this, we plotted 2D interaction patterns,

including H-bonds and hydrophobic interactions between the

receptor and ligand, using LigPlot plus v2.2 (Laskowski and

Swindells, 2011).

2.2.7 Molecular dynamics simulations of natural
compounds and selected domains

The molecular dynamics simulations (MDS) of the selected

natural compounds and domains of orf1ab were performed for

200 ns by using GROMACS standalone version 2021.1. In

CHARMM27 (Vanommeslaeghe et al., 2010), all atom force

fields were assigned to receptor structures using the TIP3P

water model. All hydrogens in the input coordinate file were

discarded and reassigned according to the force field. The

selected ligands of the selected target domains of orf1ab were

prepared for MDS by using the SwissParam (Zoete et al., 2011)

web server. The solvation, neutralization, and energy

minimization steps were performed using the same

parameters as mentioned above in Section 2.1.2. Then, both

the equilibration steps (NVT and NPT) and the production

molecular dynamics simulation step were performed using a

leap-frog integrator algorithm for 200 ns. Finally, the trajectory

files were used to calculate the RMSD, RMSF, radius of gyration,

SASA, and H-bonds and analyze the potential energy, kinetic

energy, and total energy of the complex.

2.2.8 Binding free energy calculation (Molecular
Mechanics Poisson-Boltzmann Surface Area)

The Molecular Mechanics Poisson-Boltzmann Surface Area

(MM-PBSA) approach was utilized to evaluate the binding free

energies of all the three natural compounds with Domain 3 of

Orf1ab to determine complex stability (Kumari and Dalal, 2021).

The gmx_MMPBSA (Valdés-Tresanco et al., 2021) is a tool based

on AMBER’s MMPBSA.py which is used to perform binding free

energy calculations using AMBERTOOLS (Case et al., 2022). We

have calculated the binding free energy using the C2 entropy and

a nonlinear PB model. As per the manual, when running a

nonlinear PB solver, the polar solvation energy term EPB in the

output file is set to zero, while the electrostatic energy term

includes both the reaction field energy (EPB) and the Coulombic

energy (EEL) (Valdés-Tresanco et al., 2021). Evaluation of

binding free energy implicates enumeration of van der Waals,

electrostatic + polar, and solvent-accessible surface area energies.

The binding energy was computed by using the following

equation:

ΔGbinding� Gcomplex − (Greceptor+Gligand).

The term “Gcomplex” refers to the total binding energy of the

complex, “Greceptor” to the binding energy of the free receptor,

and “Gligand” to the binding energy of the unbound ligand.

3 Results

3.1 Predicting the animal susceptibility

3.1.1 Protein structure modeling and validation
The 3D structures of the ACE2 receptors of the 16 different

hosts were modeled with the 6LZG ACE2 model from the PDB

database as a template using SWISSMODEL (Waterhouse et al.,

2018), which was accessed through the ExPASy web server. The

modeled structures were saved as PDB files, and the information

of sequence identity, sequence similarity, and coverage is

mentioned in Supplementary Table S1. After homology

modeling using SWISSMODEL, the 16 ACE2 models were

validated using SAVES (SAVES, 2022). The homology

modeled structures analyzed in this study revealed no “error”

in PROVE. The majority of the homology modeled structures

had scores of > 90% in PROCHECK and > 95% in ERRAT2,

indicating that the models were adequate for future investigation.

Verify 3D has assigned “PASS” to all the models (Supplementary

Table S2).

3.1.2 Docking
Then, these structures were docked with spike protein using

GRAMM-X (Tovchigrechko and Vakser, 2006). The

16 ACE2–spike complexes were divided into three categories:

first with six livestock animals, second with nine wild animals,

and third with human complexes. The docked complexes of six

livestock animals are shown in Figure 1A, of nine wild animals

are shown in Figure 1B and those of humans are shown in

Figure 1C.

3.1.3 Molecular dynamics simulations of
ACE2 and spike

The molecular dynamics simulations of 16 ACE2 and spike

complexes were performed separately using a GPU accelerated

system for 50 ns. The energy minimization of these complexes

was performed successfully, and it was observed that the

complexes had no steric hindrance. The Epot was found to be

negative and Fmax was found to be less than emtol (1,000.0) for

all the complexes. After the two equilibration phases, the system

was found to be well-equilibrated at 300 K temperature and 1 bar

pressure. The trajectory files of the production MD step were

used for further analysis. Based on the RMSD plot (Figure 2),

Chelonia mydas was found to have a more stable ACE2-spike

complex than other organisms in the study, in a range of

0.4 nm–0.6 nm, followed by Capra hircus in a range of
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0.5 nm–0.7 nm andManis javanica in a range of 0.6 nm–0.8 nm.

In other organisms, after 25 ns, Gallus and Rhinolophus

ferrumequinum were found to show stable RMSD between

0.9 nm and 1.0 nm. After 30 ns, Ovis aries showed RMSD

between 0.6 nm and 0.8 nm and Bos taurus showed RMSD

between 1.0 nm and 1.1 nm, while Bubalus bubalis, Aquila

chrysaetos chrysaetos, Crocodylus porosus, and Loxodonta

africana were found to be the least stable complexes with

more fluctuations than all other organisms.

Different energies during the entire dynamics simulation

were obtained, and it was found that the potential energy

remained negative, kinetic energy remained positive, and total

energy was observed to be negative throughout the simulation.

This showed that Chelonia mydas was found to have a more

stable ACE2-spike complex than all other organisms in the study.

Thus, we assume Chelonia mydas to be more susceptible to

SARS-CoV-2 infection, as reported in previous studies (Liu et al.,

2020; Zhao et al., 2020).

3.2 Identification of natural compounds
against SARS-CoV-2

3.2.1 Domain assignment and target selection
By virtue of its size, orf1ab had the majority of the functional

domains in the SARS-CoV-2 proteome. A total of 14 domains

FIGURE 1
Figure showing the 3D models of the ACE2 receptor with spike protein of (A) six Livestock animals, (B) nine wild animals, and (C) human.
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were obtained by using the SUPERFAMILY database. Details

showing domains with boundaries, length, and annotation are

mentioned in Table 2. Proteases, polymerases, NSPs, hydrolases,

and methyltransferases were the major functional domains of

orf1ab. These domains covered 31.17% (2,212 aa) of orf1ab,

ranging from 13 to 6,793 amino acids.

A BLASTp (Altschul et al., 1990) search of 14 domain

sequences was launched at default parameters against the

proteomes of 16 different hosts from mammalian, reptilian,

and avian classes. Supplementary Table S3 shows the

complete BLASTp results with annotations. Domains 1, 3, 5,

and 10 had no similarity with all 16 species. On the other hand,

Macro domain-like (domain 12) and P-loop-containing

nucleoside triphosphate hydrolases (domain 13) had similar

proteins in all 16 species. All the other domains have

similarities with some of the host organisms. Supplementary

Figure S1 shows the number of similarities between domains and

proteomes of 16 hosts.

Out of the four domains (1, 3, 5, and 10) with no

similarities, domain 3 with annotation DNA/RNA

polymerases (RdRp) was chosen as the target as it plays a

vital role in viral replication (Table 2). It should also be noted

FIGURE 2
Figure showing Root Mean Square Deviation (RMSD) fluctuations of the spike–ACE2 receptor complexes of 16 host organisms for the MD
simulations of 50 ns.

TABLE 2 Table representing the 14 domains of orf1ab sequence (QIB84672.1) which is assigned by Superfamily database.

Domain number Region Length Superfamily (annotation)

Domain Number 1 3,264–3,568 304 Trypsin-like serine proteases

Domain Number 2 4,889–5,090 201 DNA/RNA polymerases

Domain Number 3 5,119–5,282 163 DNA/RNA polymerases (RdRp)

Domain Number 4 6,453–6,641 188 S-adenosyl-L-methionine-dependent methyltransferases

Domain Number 5 3,980–4,133 153 Coronavirus NSP8-like

Domain Number 6 6,641–6,793 152 EndoU-like

Domain Number 7 4,149–4,250 101 Replicase NSP9

Domain Number 8 13–127 114 SARS Nsp1-like

Domain Number 9 4,259–4,381 122 Coronavirus NSP10-like

Domain Number 10 3,860–3,941 81 Coronavirus NSP7-like

Domain Number 11 819–929 110 NSP3A-like

Domain Number 12 1,031–1,187 156 Macro domain-like

Domain Number 13 5,600–5,914 314 P-loop containing nucleoside triphosphate hydrolases

Domain Number 14 1,567–1,620 53 NA
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that the RdRp domain was used as a target for the widely

known drug remdesivir (Lo et al., 2020; Nguyen et al., 2020).

Additionally, previous experiments have shown that blocking

viral RNA polymerases might considerably reduce viral loads

in the lung tissue of mouse infected with MERS-CoV,

increasing lung function and lessening the pathological

harm to lung tissue (Rakib et al., 2021).

3.2.2 Protein structure modeling and validation
of the modeled structures

The 3D structure of selected domain 3 predicted by the trRosetta

online web server (Yang et al., 2020) is shown in Figure 3. After

homology modeling using trRosetta, the 3D model of the selected

domain 3 was validated using SAVES. The homology modeled

structure that was used in this study showed no “error” in PROVE.

The homology modeled structure had a > 97% score in ERRAT2,

showing themodel was good enough for further analysis. Themodel

was assigned “PASS” by Verify 3D (Supplementary Table S2). Along

with that, the modeled structure of domain 3 was validated using

PROCHECK by geometrical conformations and stereochemical

quality assessments. The Ramachandran plot of the modeled

structure of domain 3 indicated that 87.2% of residues were in

the most favorable region, 11.4% were in the allowed region, 1.3%

were in the generously allowed region, and 0.0% were in the

disallowed region (Figure 4A). In addition, the ProsaWeb online

tool predicted the Z-score of the modeled structure of domain

3 was −4.14, which indicates that the model exemplifies the quality

of a nuclear magnetic resonance (NMR) structure (Figure 4B).

3.2.3 Virtual screening of natural compounds
Autodock4 (Morris et al., 2009) was used to virtually screen

natural compounds against Domain 3 at default parameters with

10 conformations for each ligand. Out of them, we selected the

best conformation based on the estimated free energy of binding

FIGURE 3
Figure showing the 3D structure of domain 3 of orf1ab
predicted by the trRosetta online web server.

FIGURE 4
Figure showing the (A) Ramachandran plot and (B) Z score plot of domain 3 of orf1ab.
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and inhibition constant. Then, we selected 10 ligands based on

the binding energy with the receptor using in-house python

scripts and obtained structures of the receptor separately with the

selected top 10 natural compounds in PDB format. The

protein–ligand interaction details like Estimated Free Energy

of Binding (kcal/mol), Estimated Inhibition Constant (nM),

Final Intermolecular Energy (kcal/mol), Torsional Free Energy

(kcal/mol), Residues with H-Bonds, and Torsional Degree of

freedom of ten confirmations of the top 10 ligands are mentioned

in Supplementary Table S4.

3.2.4 Ligand-based ADME prediction
Out of top 10 NCs, only three molecules satisfied both

Lipinski’s rule of five and Veber’s rule. The Absorption,

Distribution, Metabolism, and Excretion (ADME) properties

are shown in Table 3. The molecules ZINC000020413317,

ZINC000103666966, and ZINC000030883119 fulfilled four out

of the five characteristics, such as molecular weight between

150 to 500 Daltons, hydrogen bond donors less than or equal to 5,

hydrogen bond acceptors less than or equal to 10, and

lipophilicity less than 5 except molar refractivity, which was

found to be more than 130.

3.2.5 Prediction of toxicological properties
The toxicological properties of the ligand need to be assessed

to ensure the efficacy level and safety of the top 10 natural

molecules. The toxicological characteristics of the top 10 natural

compounds of Domain 3 were predicted using the online web

servers – admetSAR and pkCSM (Table 4). The results showed

that all the top 10 natural compounds were likely non-

carcinogenic. Moreover, the Ames toxicity test was positive

for only one molecule, i.e., ZINC000085489869, proving that

the majority of the substances did not present a mutagenic

concern. The acute oral toxicity values for all the compounds

fall into Class III, which includes compounds with LD50 values

greater than 500 mg/kg but less than 5000 mg/kg and were

typically thought to be suitable for use as drugs (Chander

et al., 2016). All the compounds showed marginal rat acute

toxicity, with a median lethal dose (LD50) ranging from

1.976 to 3.267 mol/kg. Apart from this, the maximum

recommended tolerated dose (MRTD) that estimates the

threshold of dose producing an “acceptable level of toxicity”

was found to be higher than the cut-off (0.477 log mg/kg/day) for

ZINC000008382440, i.e., 0.998 and lower than the cut-off for the

other nine compounds. Thus, out of the 10 examined natural

compounds, except two molecules, i.e., ZINC000085489869 and

ZINC000008382440, all others satisfied the selected toxicological

parameters. Finally, based on the ADME and toxicity parameters,

three molecules, i.e., ZINC000020413317, ZINC000103666966,

and ZINC000030883119 were selected and analyzed further.

3.2.6 Protein–ligand interaction analysis
With D3Pockets and Fpocket webservers, pockets were

predicted for the complex of domain 3 and selected three NCs.

TABLE 3 Table showing the ADME result by using SwissADME.

Molecule Lipinski’s filter Veber’s filter

Molecular
weight (g/mol)a

Num.
of H-bond
acceptorb

Num.
of H-bond
donorc

MlogPd Molar
refractivitye

Lipinski’s
rule of
five
violationf

Num.
of rotatable
bondg

TPSA
(Å2)h

ZINC000085550032 504.79 3 3 5.66 159.57 3 3 44.29

ZINC000085550048 475.75 2 2 6.36 151.96 2 2 32.26

ZINC000020413317 468.63 5 2 2.98 139.41 1 6 74.94

ZINC000106920451 539.66 5 1 4.14 162.73 2 7 79.98

ZINC000008382440 540.73 4 0 5.49 159.55 3 7 60.44

ZINC000103666966 468.63 5 2 2.98 139.41 1 6 74.94

ZINC000253502470 574.71 9 5 1.33 152.83 2 9 165.75

ZINC000085489869 536.87 0 0 8.96 184.43 3 10 0

ZINC000030883119 422.61 5 0 4.04 135.5 1 6 45.4

ZINC000085550027 502.77 3 3 5.57 159.09 3 3 44.29

aMolecular weight less than 500 Dalton.
bLess than or equal 10 hydrogen bond acceptors.
cLess than or equal 5 hydrogen bond donors.
dHigh lipophilicity (expressed as LogP) less than 5.
eMolar refractivity should be between 40 and 130.
fLipinski’s rule of five violations less than or equal 1.
gLess than or equal 10 rotatable bonds.
hTopological polar surface area (TPSA) less than or equal 140 Å2.
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It was observed that all the three molecules were harbored inside

the pocket of the receptor, which is shown in Supplementary

Figure S2. Apart from this, we analyzed the interaction patterns of

the selectedmolecules with the receptor using the LigPlot + tool. In

these molecules (ZINC000103666966, ZINC000020413317, and

ZINC000030883119), Asp 34, Ala 35, Trp 73, and His 83 were

involved in protein–ligand binding. These are same as reported

previously (Aftab et al., 2020), and the amino acids Asp761,

Ala762, Trp800, and His810 were involved in ligand binding.

The positions of amino acids were different as we considered only

the domain part of RdRp as annotated by the Superfamily

database. The complex of receptor with

ZINC000103666966 showed H-bonds with three amino acids

(Ala35, Trp73, and His83) and hydrophobic interactions with

12 amino acids (Asp34, Val36, Val37, Lys71, Cys72, Thr74, Glu75,

Leu78, Gly81, Pro82, Glu84, and Phe85), while the complex with

ZINC000020413317 showed H-bonds with four amino acids

(Asp34, Ala35, Val37 and Trp73) and hydrophobic interactions

with 10 amino acids (Val36, Lys71, Cys72, Glu75, Gly81, Pro82,

His83, Glu84, Phe85, and Cys86). The complex with

ZINC000030883119 showed an H-bond with one amino acid

(Asp34) and hydrophobic interactions with 10 amino acids

(Ala35, Val36, Val37, Trp73, Glu75, Gly81, Pro82, His83,

Glu84, and Phe85) as mentioned in Figure 5.

TABLE 4 Table showing the toxicological properties of top 10 ncs by using admetSAR and pkCSM web servers.

Molecule AMES toxicity Carcinogen Acute oral
toxicity

Oral Rat
acute toxicity
(LD50) mol/kg

Max. tolerated
dose (human)
mg/kg/day

ZINC000085550032 Non-Ames toxic Non-carcinogens III 3.267 −0.156

ZINC000085550048 Non-Ames toxic Non-carcinogens III 2.934 −0.234

ZINC000020413317 Non-Ames toxic Non-carcinogens III 2.656 −1.025

ZINC000106920451 Non-Ames toxic Non-carcinogens III 2.797 0.308

ZINC000008382440 Non-Ames toxic Non-carcinogens III 2.627 0.998

ZINC000103666966 Non-Ames toxic Non-carcinogens III 2.656 −1.025

ZINC000253502470 Non-Ames toxic Non-carcinogens III 3.039 −0.485

ZINC000085489869 Ames toxic Non-carcinogens III 1.976 −0.071

ZINC000030883119 Non-Ames toxic Non-carcinogens III 3.126 −0.113

ZINC000085550027 Non-Ames toxic Non-carcinogens III 3.261 −0.229

FIGURE 5
Figure showing the 2D interaction patterns (hydrogen bonds and hydrophobic interactions) of three selected complexes–molecules (A)
ZINC000103666966, (B) ZINC000020413317 and (C) ZINC000030883119.
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3.2.7 Molecular dynamics simulations of natural
compounds and selected domains

The Molecular Dynamics Simulations (MDS) of domain 3 of

orf1ab and selected NCs were performed using the Standalone

version of GROMACS (Abraham et al., 2015) following standard

parameters of equilibration and energy minimization for 200 ns.

The energy minimization of these complexes was performed

successfully for 1,078, 1,030, and 702 steps for the complexes with

ZINC000103666966, ZINC000020413317, and ZINC000030883119,

respectively, and potential energy was found to

be −752995.625, −752292.3125 and −719172.125, respectively. It

was observed that the complexes had no steric hindrance and Fmax

was found to be less than 1,000.0 for all the complexes. After the

equilibration phase -I (nvt), the temperature of the system was found

to be well-equilibrated at approximately 300 K, and then the

equilibration phase -II (npt) pressure of the system was found to

be equilibrated at approximately 1 bar. The trajectory files of the

production MD step were used for further analysis.

3.2.7.1 RMSD

By monitoring the RMSD during the molecular simulation,

the dynamics variation in Cα backbone of the complexes was

detected (Kumari and Dalal, 2021). Based on the RMSD plot

(Figure 6), all the three complexes attained stability after 50 ns till

200 ns. The RMSD of native protein was in the range of

0.8–1.5 nm, with an average RMSD of 1.266 nm and a

maximum fluctuation of up to 1.544 nm. After 100 ns, there

were very few fluctuations in RMSD. The RMSD of the complex

with ZINC000103666966 was in the range of 1–1.9 nm, with an

average RMSD of 1.37 nm and a maximum of 1.95 nm. While in

the case of the ZINC000020413317 complex, RMSDwas found in

the range1.3–1.7 nm, with an average RMSD of 1.538 nm and a

maximum of 1.737 nm. The complex with

ZINC000030883119 showed an initial spike of RMSD up to

5.05 nm, but after 50 ns, RMSD was found in the range of

1.73–2.83 nm, with an average of 2.04 nm and maximum up to

5.049 nm. Overall, RMSD results suggest that the complex with

ZINC000103666966 had RMSD close to the native protein. Thus,

the complex of domain 3 with molecule ZINC000103666966 was

found to be comparatively more stable than the complex with

molecules ZINC000020413317 and ZINC000030883119.

3.2.7.2 RMSF

RMSF analysis shows the flexibility and fluctuations of the

protein in complex compared to the native protein. The higher

RMSF values indicate that there are loosely organized loops and

turns, while lower flexibility shows the secondary structures like

helixes and sheets (Kumari and Dalal, 2021). The RMSF plot

(Supplementary Figure S3) showed that most of the residues in

native protein had higher fluctuations than those in the

complexes, showing that binding of ligands had decreased the

fluctuations in the protein, were well-fitted, and formed a stable

complex. Apart from that, the residues involved in the binding

were also found to be less fluctuant in the complex than the native

protein.

3.2.7.3 Radius of gyration

The radius of gyration (Rg) analysis shows the overall

compactness of the protein during the simulation. Rg

demonstrates the moment of inertia of the atoms in the

protein from their center of mass during a particular time

interval (Kumari and Dalal, 2021). The Rg plot

FIGURE 6
Figure showing the graphs of Root Mean Square Deviation (RMSD) of native protein (apoform) and complexes with molecules
ZINC000103666966, ZINC000020413317, and ZINC000030883119 for the MD simulations of 200 ns.
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(Supplementary Figure S4) showed that, initially, the Rg of all the

complexes and native protein was in the range of 2–2.2 nm. After

70–75 ns, the Rg of native protein decreased to an average of

1.66 nm, while complexes were found to be higher at

approximately 2 nm. This shows that the ligand binding has

decreased the compactness of the protein.

3.2.7.4 Solvent Accessible Surface Area

The polar and non-polar interactions of the protein

determine its surface area, which is known as the Solvent

Accessible Surface Area (SASA). SASA of a protein decreases

when there is an increase in compactness of a protein (Kumari

and Dalal, 2021). The SASA plot (Supplementary Figure S5)

showed that, after 100 ns, the complexes had slightly higher

values than the native protein. The complex with

ZINC000103666966 was found to have slightly less SASA

than the other complexes. This clearly affirms that the

complexes are less compact than the native protein.

3.2.7.5 H-bonds

In order to determine the stability of the complexes,

hydrogen bond numbers and distribution were examined

during the molecular simulation of 200 ns. It was observed

that the number of H-bonds was very low in the complexes,

showing that the binding is based on interactions other than

H-bonds like hydrophobic, van der Waals, electrostatic

interactions etc.

3.2.7.6 Energy

Different energies during complete dynamics were obtained,

and it was found that potential energy remained negative, kinetic

energy remained positive, and total energy was observed to be

negative throughout the dynamics. Out of the three, the

complexes with molecules ZINC000103666966 and

ZINC000020413317 were found to have less potential energy,

more kinetic energy, and less overall total energy compared to the

complex with molecule ZINC000030883119. In comparison with

the complex with molecule ZINC000020413317, the complex

with molecule ZINC000103666966 was found to have less

potential energy, more kinetic energy, and less overall total

energy. This indicates the stability of the complex with

molecule ZINC000103666966 during MD simulations.

3.2.7.7 MMPBSA

The interaction energy indicates the strength of a

protein–ligand complex. This was validated by estimating the

binding free energy using the MM-PBSA approach (Singh et al.,

2022). The MD trajectories of the 10-ns range were used to

predict the binding free energy of complexes. It should be noted

that the lower the binding energy, the better the interaction

between the ligand and protein. In our analysis, the complex with

molecule ZINC000103666966 was found to have least binding

energy (−55.4 ± 5.46 kcal/mol) followed by ZINC000020413317

(−45.29 ± 7.88 Kcal/mol) and ZINC000030883119 (−34.44 ±

4.52 Kcal/mol) as shown in Table 5. This indicates that the

molecule ZINC000103666966 was tightly bound to the receptor.

4 Discussion

As there are reports suggesting the occurrence of SARS-CoV-

2 interaction in different animals along with humans, our study is

mainly focused on the identification of the susceptibility of

SARS-CoV-2 infection in animals and the identification of a

potential inhibitory natural compound against the virus. Here,

we modeled the ACE2 receptors of sixteen different organisms

belonging to 12 orders of mammalian (Artiodactyla,

Perrisodactyla, Chiroptera, Rodentia, Carnivora, Primates,

Pholidota, and Proboscidea), reptilian (Testudines and

Crocodilia), and avian (Acciptriformes and Galliformes)

classes. The 16 modeled 3D structures of ACE2 were validated

in silico by the SAVES web server. The results showed that the

modeled structures qualified in all the parameters. Then, we

docked these structures separately to spike of SARS-CoV-2. MD

simulations were performed on these complexes, and RMSD,

potential energy, kinetic energy, and total energy were predicted.

Based on the RMSD plot, Chelonia mydas was found to have a

more stable ACE2–spike complex than other organisms in the

study, followed by Capra hircus and Manis javanica. In other

organisms, after 25 ns, Gallus gallus and Rhinolophus

ferrumequinum were found to show stable RMSD between

0.9 and 1 nm. After 30 ns, Ovis aries showed RMSD between

0.6 and 0.8 nm and Bos taurus showed RMSD between 1 and

1.1 nm, while Bubalus bubalis, Aquila chrysaetos chrysaetos,

Crocodylus porosus, and Loxodonta africana were found to be

TABLE 5 Table showing the van der Waal, electrostatic + polar solvation, SASA, and binding energy in Kcal/mol of the complexes generated by
MMPBSA.

Complex Δ VDW WAALS Δ EEL + Δ
EPB

Δ ENPOLAR Δ G

Domain3-ZINC000103666966 −34.38 ± 2.81 2.54 ± 0.90 −26.52 ± 3.17 −55.4 ± 5.46

Domain3-ZINC000020413317 −35.9+/3.56 2.91 ± 1.77 −27.92 ± 2.20 −45.29 ± 7.88

Domain3-ZINC000030883119 −20.27 ± 2.14 0.88 ± 1.44 −19.16 ± 1.72 −34.44 ± 4.52

Δ VDW WAALS = Δ Van der Waals energy; Δ EEL + Δ EPB = Δ Electrostatic energy + Δ Polar Energy; Δ ENPOLAR = Δ SASA energy; Δ G = Δ Binding Energy
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the least stable complexes with more fluctuations than all other

organisms. Along with that, potential and total energies were

found to be negative, and kinetic energy was found to be positive

for all the organisms.

Apart from that, we predicted 14 domains in the orf1ab of

SARS-CoV-2 and performed a sequence analysis study to identify

the similarities with 16 different host organisms. On the basis of the

similarities with the host proteome and annotation of the domains,

Domain 3 ((DNA/RNA polymerases domain) was selected and

modeled for further analysis. The modeled 3D structure of domain

3 was validated in silico by geometrical conformations and

stereochemical quality assessments. The Ramachandran plot of

the modeled structure of domain 3 indicated that all the residues

were in the allowed region. Validation results from SAVES showed

that the modeled structure has qualified in all the parameters and

thus, Domain 3 was proceeded further for Docking.

The domain 3 was then docked with ~1.8 lakh natural

compounds from the ZINC database, and the top

10 molecules, based on binding energy, were selected. Along

with this, ADME and toxicity analysis were performed on the top

10 natural compounds. Based on the ADME results, three

molecules, ZINC000020413317, ZINC000103666966, and

ZINC000030883119, were selected. Also, these three selected

molecules were non-toxic. Structural analysis was performed,

and the complex with molecules ZINC000020413317,

ZINC000103666966, and ZINC000030883119 was predicted to

be harbored inside the pocket. MD simulations explored the

stability of the three selected molecules with domain 3 of orf1ab

of SARS-CoV-2. In post-simulation analysis, the RMSD plot

showed that all the three complexes attained stability after 50 ns

till 200 ns. Of them, the complex with molecule

ZINC000103666966 was found to have fewer fluctuations in

RMSD than the complexes with the other two molecules and was

close to the RMSD of the native protein. This shows that the

molecule binds properly to Domain 3 with fewer RMSD

fluctuations, which specifies the overall integrity of the

complex. The RMSF plot showed that most of the residues in

native protein had higher fluctuations than those in the

complexes, showing that binding of ligands had decreased the

fluctuations in the protein, were well-fitted, and formed a stable

complex. Apart from that, the residues involved in the binding

were also found to be less fluctuant in the complex than in the

native protein. The Rg analysis showed that the ligand binding

has decreased the compactness of the protein and the SASA

analysis clearly affirms that the complexes are less compact than

the native protein. The complex with ZINC000103666966 was

found to be having slightly lower Rg and SASA values than the

other complexes, which shows that this complex is more stable

than the other complexes. In addition, the complex with

molecule ZINC000103666966 was also found to be having less

potential energy, more kinetic energy, and less overall total

energy in comparison to others two complexes. The binding

free energy calculations (MMPBSA) also affirm the stability of

the complex of Domain 3 with the ZINC000103666966 molecule

as it showed the least binding energy of all the three complexes.

This shows the stability of the complex of Domain 3 and the

ZINC000103666966 molecule. Thus, the molecule

ZINC000103666966 was predicted to be the most suitable

inhibitory compound against Domain 3 (DNA/RNA

polymerases domain) of SARS-CoV-2. We hypothesize that

inhibiting Domain 3 could impact the replication of the virus,

leading to a control of the viral load. This in silico work may be

useful for creating potential treatments for SARS-CoV-

2 infection, which requires additional in vitro and in vivo

research before using anti-COVID-19 medications.

5 Conclusion

Our study is mainly focused on SARS-CoV-2 infection in

animals and humans and the identification of a potential

inhibitory natural compound against the virus. This study

explored ACE2 receptors—spike protein complex interactions

and hidden structural insights of orf1ab. From this analysis, we

observed that Chelonia mydas was more susceptible to SARS-CoV-

2 than other host organisms in the study, including humans, while

Bubalus bubalis, Aquila chrysaetos chrysaetos, Crocodylus porosus,

and Loxodonta africana were found to be the least stable complexes

withmore fluctuations than all other organisms. Apart from that, we

observed that the molecule “ZINC000103666966” has a stable

complex with domain 3 of orf1ab of SARS-CoV-2. The domain

3 (RNA/DNA polymerase) plays a vital role in viral replication.

Thus, we hypothesize that this molecule potentially inhibits RNA/

DNA polymerase, thus inhibiting viral replication. This clearly

opened a new dimension in selecting a drug target from orf1ab

for SARS-CoV-2. The outcomes additionally demonstrated the

potential of bioinformatic technology for the analysis and

forecasting of SARS-CoV-2 therapeutic candidates. Future

in vitro and in vivo experimental studies need to be carried out

to unravel the potential and confirm the efficacy of the proposed

natural molecule against SARS-CoV-2. This study could be helpful

for future researchers to work with precise target molecules.
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SUPPLEMENTARY FIGURE S1
Figure showing the similarity of the proteome of 16 organisms
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