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Introduction
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacte-
rium responsible for a variety of acute and chronic infections 
worldwide. It is a major contributor to almost all hospital infec-
tions, primarily among patients with burn wounds, severe leuke-
mia, urinary tract, and bloodstream infections, and plays a 
significant role in targeting immunocompromised patients with 
cystic fibrosis, neutropenic cancer, or infected by human immu-
nodeficiency virus (HIV).1-4 Thus, the World Health 
Organization (WHO) has placed P. aeruginosa at the top of the 
list of critical pathogens for which new antibiotics are urgently 
required.5

The biofilm mode of growth of P. aeruginosa and expression 
of virulence factors, such as pyocyanin, pyoveridine, rham-
nolipid, exopolysaccharide, and elastase, reportedly make it 
more resistant to a large number of important antibiotics, 
thereby increase its pathogenicity.6-9 This ability of biofilm 
formation induces 20% to 30% resistance to fluoroquinolones, 
including ciprofloxacin and levofloxacin, as well as 13% to 22% to 
gentamicin.10,11 The control or inhibition of virulence 

and biofilm mode of growth may be a promising therapeutic 
strategy to reduce the pathogenicity of infections caused by P. 
aeruginosa and improve or boost the efficiency of the available 
antibiotics.12-14

The biofilm production in P. aeruginosa is governed by a 
mechanism called quorum sensing (QS).8,9 The QS is a cell-
to-cell communication mechanism that implies producing, 
releasing, sensing, and responding to extracellular signaling 
molecules known as autoinducers (AIs) which control and reg-
ulate the collective behavior of bacteria.15

P. aeruginosa has four interconnected hierarchies of QS 
namely las, iqs, pqs, and rhl, with a significant dominance for las 
(LasR-LasI) and rhl (RhlR-RhlI) systems which regulate the 
majority of physiological and virulence factors.16 These two 
pathways use two AI molecules, namely N-(3-oxododecanoyl) 
acyl homoserine lactone (3O-C12-HSL) and N-butanoyl acyl 
homoserine lactone (C4-HSL) that interact with their cognate 
receptors LasR and RhlR, respectively.17 The las system is con-
sidered to be at the top of the QS hierarchy where the activa-
tion of LasR can trigger the cascade which subsequently 
activates other pathways and regulates the expression of a set of 
genes responsible for virulence and biofilm production.18
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Given its position in the P. aeruginosa QS hierarchy, the 
LasR receptor has become a potential target for anti-microbial 
therapy.19 There is a considerable amount of literature describ-
ing inhibitors for LasR from the past 15 years, and these can be 
classified into four categories: AHL-like antagonists, non-
AHL-like antagonists, covalent binders, and natural-product-
based inhibitors.20 However, to the best of our knowledge, no 
candidate has further been pushed into clinical trials or 
approved by the Food and Drug Administration.

The current study aimed to identify new active food com-
pounds targeting the ligand-binding pocket of the LasR recep-
tor of P. aeruginosa. In this regard, we performed a virtual 
screening (VS) of a natural food compounds database which 
contains 10 997 purchasable food constituents against the 
ligand-binding domain LasR crystal structure (PDB code: 
3IX4), followed by molecular dynamics (MD) simulations for 
the four top-scoring hits.

Material and Methods
Protein structure preparation

The crystal structure of the ligand-binding domain of the 
LasR receptor was retrieved from the PDB database (PDB ID: 
3IX4)21 and prepared in AutoDockTools22 by removal of water 
and solvent molecules, removal of the bound TP-1 ligand, 
addition of polar hydrogens, and partial charge assignment.

Structure-based virtual screening

The structure-based VS was performed at the MTi-OpenScreen 
webserver (https://bioserv.rpbs.univ-paris-diderot.fr/services/
MTiOpenScreen/) against the natural food compound data-
base (which contains 10 997 purchasable food constituents).23 
The MTi-OpenScreen integrates AutoDock Vina tools and 
provides five electronic drug-like chemical libraries, and among 
them, the food database contains suitable compounds for dock-
ing and purchasability according to the Zinc15 database after 
physicochemical and toxicophore filtration.23 The grid box was 
created around the TP-1 binding site with a grid center of x, y, 
and z dimensions of 1.5, 14.92, and 5.86, respectively, and its 
size has been set to 20 × 20 × 20 Å. The results of the VS were 
ranked according to the binding energy of their best scoring 
conformation. The top-ranked molecules as well as the TP-1 
were then subjected to re-docking using an installed AutoDock 
Vina. The docking results were visualized and analyzed using 
Pymol, with the ligand interaction diagram implemented in 
Maestro and PLIP web tool.24

Molecular dynamics

MD simulation was used to study the stability of the top-four-
ranked hits in complex with LasR over time. MD was carried out 
for 150 ns with a recording interval of 75 ps using Desmond 
module. In the system builder, the OPLS3e force field was 

selected, TIP3 P was used as a solvent model with a 10 Å 
orthorhombic box, and then the system charge was neutralized by 
adding 0.15 M of sodium (Na+) and chloride ions (Cl−). The 
generated model system was subjected to energy minimization 
and equilibrated via an NPT ensemble at a constant temperature 
of 310 K and 1.01325 bar pressure. All other Desmond parame-
ters were kept at their default values. Once MD simulation was 
done, simulation trajectories were analyzed using the simulation 
interaction diagram included in the Desmond module. The prin-
cipal component analysis (PCA) was performed using the Bio3D 
package implemented in R.25

In silico prediction of pharmacokinetic properties

The SwissADME webserver was used for computing the phys-
icochemical, pharmacokinetic, and druglikeness properties of top-
scoring compounds (ZINC000001580795, ZINC000014819517, 
ZINC000014708292, and ZINC000004098719).26 The canoni-
cal simplified molecular-input line-entry system (SMILES) of 
these compounds was used and submitted to SwissADME 
webserver.

Results and Discussion
Structure-based virtual screening analysis

The identification and screening of natural food compounds 
against a particular disease target can offer a promising avenue 
for the discovery of potent inhibitors with improved binding 
affinity and reduced toxicity. These compounds can potentially 
serve as lead ligands in drug discovery, providing a foundation 
for the development of effective therapeutics. To streamline the 
research process and minimize unnecessary experiments, VS 
has emerged as a valuable computational technique. By employ-
ing VS, researchers can efficiently identify a focused set of 
small molecules that exhibit significant affinity for the active 
pocket of the targeted receptor.

In the current study, we performed VS against a food library 
(contains 10 997 purchasable food constituents), which is imple-
mented in MTi-OpenScreen webserver in order to identify new 
hits targeting the LasR receptor, therefore inhibiting the pro-
duction of P. aeruginosa virulence factors. First, to validate our 
used VS protocol, we re-docked TP-1 (2,4-Dibromo-6-({[(2-
nitrophenyl)carbonyl]amino}methyl)phenyl 2-chlorobenzoate) 
against the crystal structure of the LasR receptor (PDB ID: 
3IX4). TP-1 is a triphenyl (TP) scaffold-based compound that 
has the potential to activate the LasR receptor, even though it 
does not have significant chemical similarities to the 3O-C12-
HSL. In fact, TP-1 and its derivatives TP-2, TP-3, and TP-4 
were found to directly activate LasR with binding affinities that 
are several orders of magnitude lower than any other class of 
inhibitors. In addition, TP-1 and its derivatives do not cross-
react with related signaling receptors such as QscR, LuxR, and 
RhlR. In this study, TP-1 was used as the reference molecule, 
and its docking score as the threshold value.

https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
https://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/
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As a result, we found that the re-docked TP-1 has a similar 
conformation and occupies a similar position within the 
ligand-binding pocket as compared to the bound TP-1 from 
the original structure (root mean square deviation [RMSD] 
was significantly lower with a value of 1.8 Å) (Figure 1). It 
should be noted that for a prediction of ligand-target confor-
mations, an RMSD cutoff value less than 2 Å is considered 
good.27 The VS results revealed that one molecule with a bind-
ing affinity score of −14.5 kcal/mol, 3 molecules with −13 kcal/
mol, 18 molecules with −12 kcal/mol, 65 molecules with −11 
kcal/mol, and 50 molecules with −10.5 kcal/mol (Supplemental 
Table S1). Among our identified hits, some molecules have 
already been found to be potential inhibitors, such as narin-
genin (e.g. ZINC000000001785 [−11.6 kcal/mol]),28 benza-
mide compounds (e.g. ZINC000012343956 [−10.5 kcal/
mol]),29 resveratrol compounds (e.g. ZINC000004098633 
(−10.8 kcal/mol), ZINC000108555676 (−10.8 kcal/mol), and 
ZINC000253615309 (−10.6 kcal/mol).19,30

In this study, we focused only on molecules with a binding 
affinity score of −14 and −13 kcal/mol, given that the re-docking 
of TP-1 (used as a reference) showed a binding affinity of −14.2 
kcal/mol (Table 1). These molecules are 3,3’-Dihydroxy-4,5-
dimethoxybibenzyl (ZINC000001580795), Lupiwighteone 
(ZINC000014819517), Shinpterocarpin (ZINC000014708292), 
and R_Glabridin (ZINC000004098719).

To the best of our knowledge, none of these molecules 
have previously been identified as inhibitors of LasR, nor 
have they demonstrated any activity against P. aeruginosa. 
However, these molecules have shown other potential medic-
inal activities. The R_Glabridin, an isoflavonoid isolated 
from the roots of Glycyrrhiza glabra L, possesses diverse 
potential properties including antioxidant, anti-inflamma-
tory, estrogenic, and antiproliferative properties in human 
breast cancer cells, neuroprotective effects, as well as its 
application in skin-whitening and anti-obesity effects.31-33 It 
was reported as well that this molecule exhibited 

considerable anti-staphylococcal activity against various 
clinical isolates of methicillin-resistant strain of Staphylococcus 
aureus with a minimum inhibitory concentration of 12.5 μg 
ml−1.34 Lupiwighteone, a prenylated flavonoid isolated from 
various Lupinus plants, has potential activities such as anti-
inflammatory and anticancer properties,35 and studies have 
revealed that lupiwighteone induces apoptotic cell death in 
breast cancer by effectively inhibiting the PI3 K/Akt/mTOR 
pathway.36 Moreover, in prostate cancer cells (DU-145) and 
neuroblastoma cells (SH-SY5Y), lupiwighteone exhibited 
cytotoxic, apoptotic, and antiangiogenic activities.37 Beyond 
its anticancer properties, lupiwighteone has also demon-
strated antifungal activities against Phytophthora infestans.38 
Shinpterocarpin, an isoflavonoid compound extracted from 
the root of Glycyrrhiza glabra L. (Leguminosae), the stem 
bark of Erythrina sacleuxii, and the root bark of Erythrina 
abyssinica39 showed moderate antitumor effects against vari-
ous tested cancer lines with IC50 values spanning from 15 to 
53 μM.40 In addition, 3,3’-dihydroxy-4,5-dimethoxybiben-
zyl derived from Dendrobium williamsonii has exhibited 
cytotoxic effects against KB and MCF-7 cancer cells.41

The analysis of the co-crystallized agonist (TP-1) revealed 
that it interacts mainly with LasR through hydrogen bonds 
with residues Tyr 56, Trp 60, Asp 73, and Ser 129 (Table 1 and 
Figure 2). On the other hand, the docking mode of the four 
studied molecules showed that ZINC000001580795 interacts 
through H-bond with Tyr 56 and Ser 129, ZINC000014819517 
interacts through H-bond with Trp 60 and Leu 110, and 
ZINC000014708292 interacts through H-bond with Leu 110 
while ZINC000004098719 has not made any H-bond interac-
tion and interacted mainly through Pi-Pi stacking interaction 
(Table 1 and Figure 2). The difference in the interaction modes 
between TP-1, which is an agonist molecule, and the identified 
molecules may induce a variation in the modulation of the 
LasR receptor by generating an antagonistic conformation.

Molecular dynamic analysis.  Molecular docking can predict and 
provide insight into the interaction mode between the ligand 
and the protein in a static state. To validate the predicted inter-
action mode of the four hits under dynamic conditions and to 
monitor the conformations changes of the receptor induced by 
these ligands, we performed 150 ns of MD simulation. The 
MD results were analyzed using different parameters such as 
(1) protein RMSD that measures the conformational changes 
of a given complex over time and describes whether the simula-
tion is in equilibrium42 (Figure 3A), (2) protein root mean 
square fluctuation (RMSF) that characterizes local changes 
along the protein chain (Figure 3B), (3) PCA analysis that 
determines the total motions of the Cα atoms in the protein 
indicated by eigenvectors of the covariance matrix to investi-
gate the complexes’ stability (Figure 4), and (4) protein–ligand 
contact analysis that presents the fraction of the active residues 
implicated in the ligand interaction43 (Figure 5).

Figure 1.  Superposition of crystallographic (gray) and re-docked 

(orange) triphenyl (TP)-1.
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Figure 2.  The potential binding poses for TP-1, ZINC000004098719, ZINC000001580795, ZINC000014708292, and ZINC000014819517 in complex with 

LasR. TP indicates triphenyl.

Figure 3.  Protein RMSD (A) and protein RMSF (B) analyses of C-alpha atoms of TP-1, ZINC000001580795, ZINC000014708292, ZINC000004098719, 

and ZINC000014819517 in complex with LasR. The letter H indicates alpha-helix, and β indicates beta-sheet. RMSD indicates root mean square 

deviation; RMSF, root mean square fluctuation; TP, triphenyl.
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The RMSD analysis of C-alpha atoms showed that the 
complexes of LasR with ZINC000014819517 (1.80 ± 0.30 Å), 
ZINC000004098719 (1.85 ± 0.14 Å), and ZINC000001580795 
(1.69 ± 0.18 Å) have a similar RMSD value compared to that 
of the LasR-TP-1 complex (1.65 ± 0.21 Å), indicating that 
these molecules form stable complexes with LasR throughout 
the simulation. The RMSD values were higher in LasR-
ZINC000014708292 (2.89 ± 0.41 Å) complex, indicating that 
ZINC000014708292 may induce significant conformational 
changes within the LasR structure upon binding. Further 
examination of the RMSF plots revealed effectively that the 
binding of ZINC000014708292 induces significant fluctua-
tions across all the LasR structures with an average value of 
1.54 ± 0.64 Å. The same effects but with a lesser extent were 
observed in the RMSF of LasR-ZINC000014819517 
(1.12 ± 0.61 Å) which induced localized conformational fluc-
tuations in the Loops connecting H1 H2, β1-β2, and β3-β4. 
On the other hand, the complexes of LasR with 
ZINC000001580795 (0.92 ± 0.40 Å) and ZINC000004098719 
(0.82 ± 0.44 Å) showed lower overall RMSF fluctuations than 
that of TP-1 (0.95 ± 0.40 Å).

The PCA results align consistently with the RMSF 
results. By analyzing the first three principal components 
(PC1, PC2, and PC3) that account for the most variance in 
the original data (i.e. the largest uncorrelated motion in the 
trajectory)44 of tp1 and the four other systems, we observed 

that ZINC000014708292 accounted for higher variances of 
56.2% for the total of the first three PCs, indicating that this 
ligand increased the motion of the protein’s Cα-atoms,45 
followed by ZINC000014819517, which showed a variance 
of 48.7%. ZINC000001580795 and ZINC000004098719 
exhibited a variance of 36.1% and 36.7%, respectively, mean-
ing that these two ligands induced more stable movement of 
the protein’s Cα atoms than TP1, which showed a variance 
of 33.9% for the total of the first three PCs.

Monitoring of protein–ligand contacts throughout the sim-
ulation showed that each molecule exhibits a different interac-
tion mode with the LasR ligand-binding pocket compared to 
TP-1 (Figure 4). Despite this difference in terms of residues 
and type of interactions involved (eg, hydrogen bonds, hydro-
phobic, ionic, and water bridge), all ligands were maintained 
stable within the LasR binding pocket through a network of 
favorable and persistent interactions. This may indicate that 
each ligand may modulate the LasR activity differently through 
specific interactions which are dependent on the chemical 
structure of each molecule, as each one has a different 
scaffold.

In silico prediction of pharmacokinetic properties.  The molecular, 
physicochemical, pharmacokinetic, and druglikeness properties 
of the four selected compounds were predicted using Swis-
sADME26 and summarized in Table 2. In general, 

Figure 4.  PCA of TP-1 (A), ZINC000001580795 (B), ZINC000014819517 (C), ZINC000014708292 (D), and ZINC000004098719 (E) in complex with LasR. 

PCA results which include graphs of PC2 vs PC1, PC2 vs PC3, and PC3 vs PC1 colored from blue to red in order of time (the blue specifies initial 

timestep, white specifies intermediate, and the final timestep is represented by red color), and an eigenvalue rank plot (scree plot). In the eigenvalue plot, 

the cumulative variance is labeled for each data point. PCA indicates principal component analysis; TP, triphenyl.
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these compounds did not violate the druglikeness properties, 
specifically Lipinski et al,46 Ghose et al,47 Veber et al,48 Mue-
gge et al,49 and Egan et al50 rules, and have characteristics simi-
lar to those of oral drugs with an oral bioavailability probability 
of 0.55%.

All compounds had optimal lipophilicity (MLogP < 5) and 
showed adequate values in terms of their molecular weight 
(<500 g/mol) and polar surface area (20 < TPSA < 130 Å), 
which is essential for good penetration through biological 
membranes. Furthermore, all compounds were within the nor-
mal range of the number of hydrogen bond acceptors (⩽10), 
bond donors (⩽5), and rotatable bonds (⩽10) according to 
Lipinski’s rule of five and Veber’s rule.26

All four analyzed compounds showed high gastrointestinal 
(GI) absorption and good skin permeation (log Kp). Except for 
ZINC000014819517, all compounds exhibited blood–brain 
barrier (BBB) permeability, indicating that remaining three 
compounds are able to cross into the brain.

Conclusion
The current study attempts to identify new LasR antagonists 
from the food compounds database to inhibit biofilm produc-
tion and consequently attenuate P. aeruginosa virulence and 
antibiotic resistance. By combining structure-based VS and 
MD simulation approaches, we were able to identify four mol-
ecules, namely ZINC000004098719, ZINC000001580795, 

Table 2.  Physicochemical, pharmacokinetics, and druglikeness properties of ZINC000001580795, ZINC000014819517, ZINC000014708292, and 
ZINC000004098719.

ZINC000001580795 ZINC000014819517 ZINC000014708292 ZINC000004098719

Physicochemical properties

  Formula C19H14N2O C20H18O5 C20H18O4 C20H20O4

  Molecular weight (g/mol) 286.33 338.35 322.35 324.37

  #Rotatable bonds 2 3 0 1

  #H-bond acceptors 3 5 4 4

  #H-bond donors 0 3 1 2

  TPSA (Å) 38.92 90.9 47.92 58.92

  Lipophilicity in MlogP 4.14 1.64 2.73 2.73

Pharmacokinetics

 G I absorption High High High High

  BBB permeant Yes No Yes Yes

  log Kp (cm/s) –4.72 –5.11 –5.74 –5.52

Druglikeness

  Lipinski #violations 0 0 0 0

 G hose #violations 0 0 0 0

  Veber #violations 0 0 0 0

  Egan #violations 0 0 0 0

  Muegge #violations 0 0 0 0

  Bioavailability score 0.55 0.55 0.55 0.55

Abbreviations: BBB, blood–brain barrier; GI, gastrointestinal; Log Kp, skin permeability; TPSA, topological polar surface area in Å.

Figure 5.  Protein–ligand contact monitoring of triphenyl (TP)-1 (A), ZINC000001580795 (B), ZINC000014819517 (C), ZINC000014708292 (D), and 

ZINC000004098719 (E) in complex with LasR. The left histograms show interaction fraction with active amino acid residues. The x-axis presents the 

residues involved in the interactions, and the y-axis presents the normalized value of the temporal length of the interactions during the simulation. The 

stacked bar charts are normalized over the course of the trajectory: For example, a value of 0.7 suggests that 70% of the simulation time, the specific 

interaction is maintained. Values over 1 indicate that the protein residue could make multiple contacts of the same subtype with the ligand. The middle 

schematic representation (2D simulation interaction diagram) of ligands indicates the percentage of interactions with the protein residues. The right plot 

indicates the timeline of protein–ligand contacts during the simulation for the five complexes. Some residues made more than one specific contact with 

the ligand, which is represented by a darker shade of orange, according to the scale to the right of the plot.
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ZINC000014708292, and ZINC000014819517, that have a 
favorable binding affinity to LasR and exhibit a significant sta-
bility throughout 150 ns of the MD simulation. This computa-
tional study provides confidence that these four molecules can 
be proposed as potential biofilm-lowering candidates targeting 
the LasR receptor. Further experimental validations are needed, 
such as assessing the impact of these molecules on biofilm for-
mation, quantifying pyocyanin and rhamnolipid, and perform-
ing competition binding assays between 3O-C12-HSL and 
the identified ligands for their binding to LasR, as well as ana-
lyzing mRNA expression of genes regulated by lasR (ie, rhl and 
pqs genes). Once experimentally and clinically validated, these 
molecules could potentially serve as dietary supplements in the 
case of infections caused by P. aeruginosa to boost the efficiency 
of the clinically used antibiotics.

Supplemental Material
Supplemental material for this article is available online.
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