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ABSTRACT

This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae
infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial
pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research
has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system
and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively
modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal
virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such
experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered
by the high research and development costs versus the relatively low revenues for the pharmaceutical industry.
Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development
of novel molecules to effectively treat this life-threatening pathogen.
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Key Points

1. Analogues of already marketed antibiotics are in develop-
ment to overcome increasing pneumococcal resistance. Sev-
eral of these are currently undergoing clinical trials.

2. Antibacterial targets, consisting of pneumococcal enzymes
essential for viability and survival, are being identified.
Target-specific rational drug design, including high-
throughput screening (HTS) against a major enzyme
followed by elucidation of the structure-activity relationship
(SAR) and subsequent lead optimization, shows promise
in creating novel antibacterials. Contrarily, discovery of
natural antibacterials is being hampered by the difficult
growth conditions for microbes producing antibacterials.

Furthermore, due to potentially low revenues the pharma-
ceutical sector is showing less interest in the development
of novel antibacterials. Therefore, alternative strategies
including modulating the host immune system or inhibiting
pneumococcal virulence are gaining scientific attention.
However, none of these therapies have currently evolved to
clinical trials.

INTRODUCTION

Streptococcus pneumoniae, also called the pneumococcus, is a
major human pathogen. It is the leading cause of community-
acquired bacterial pneumonia (CABP) and can cause otitis media
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(OM) and meningitis in children, the elderly and immunocom-
promised patients (Lundbo and Benfield 2017; Peyrani et al. 2019).
In the USA, pneumonia was the eight leading cause of death
in 2015 (Jindal et al. 2015). While incidence rates of CABP vary
worldwide, overall incidences between 20 and 100 per 10 000
person-years have been observed, with outliers up to 164.3 per
10 000 person-years in patients older than 80 in the USA and
up to 294 per 10 000 person-years in Latin-America (Ferreira-
Coimbra, Sarda and Rello 2020). For acute OM, 300 million cases
are estimated to be caused by S. pneumoniae every year (Monasta
et al. 2012; Bergenfelz and Hakansson 2017).

In the USA, current therapy for pneumococcal infections in
infants and children typically consists of amoxicillin or, in case
of non-IgE-mediated allergy, a cephalosporin. Alternatively, lev-
ofloxacin, linezolid, clindamycin or vancomycin can be used
(Bradley et al. 2011). Treatment of CABP in adults is generally
done with amoxicillin, doxycycline or a macrolide. In case of
comorbidities, a fluoroquinolone or combination therapies such
as amoxicillin and a cephalosporin or a macrolide and doxycy-
cline are advised by the America Thoracic Society and Infectious
Diseases Society of America (Metlay et al. 2019). A similar therapy
schedule is proposed for patients with pneumococcal meningi-
tis (van de Beek et al. 2016). In Europe, amoxicillin or a tetracy-
cline is primarily advised in patients with lower respiratory tract
infections, while macrolides can only be used in countries with
low resistance rates. Alternatively, levofloxacin or moxifloxacin
may be considered for general use, while cephalosporins are
reserved for hospital use only (Woodhead et al. 2011; Wiersinga
et al. 2018). While therapy is in general successful, antibiotic
resistance is increasingly observed. According to the United
States Centre for Disease Control (CDC), resistance to one or
more antibiotics is observed in 30% of pneumococcal infections,
and it is estimated that 1.2 million infections per year are caused
by resistant pneumococcal strains (Centre for Disease Control
(CDC) 2013; Cherazard et al. 2017). Similarly in Europe, 10% of
invasive S. pneumoniae isolates reported in 2008 were not sus-
ceptible to penicillin, and large regional differences in pneumo-
coccus prevalence have been observed, from less than 5% in
Northern Europe to over 40% in some Southern European coun-
tries (Woodhead et al. 2011). In 2018, these numbers were con-
firmed. Resistance occurred in 2.5%–32.3% of all cases in Europe
for treatment with macrolides (European Centre for Disease Pre-
vention and Control (ECDC) 2019). Also recently, country-wide
resistance rates over 25% have been observed in the USA for
macrolides. In Europe, variation is higher, ranging from less than
10% in the northern parts to over 25% in parts of Eastern and
Southern Europe (Peyrani et al. 2019). So far, resistance to fluoro-
quinolones remains low in the USA and European Union (Wood-
head et al. 2011; Kim et al. 2016).

Pneumococci asymptomatically colonize the nasopharynx,
from where they can migrate to other parts of the airway,
thereby generating inflammatory responses and disease. They
possess a variety of virulence factors, both bound to the cell wall
and excreted, that modulate their virulence. A general overview
on the importance of virulence factors is described in detail else-
where and will not be discussed here (Kadioglu et al. 2008; Brooks
and Mias 2018).

The polysaccharide (PS) capsule is considered the most
important pneumococcal virulence factor, as it is part of the first
recognition by the immune system. This capsule is known to be
diverse, giving rise to over 90 different pneumococcal serotypes.
Current vaccines consist of PS fragments of a selection of these
serotypes to induce an immune response (Kim, Seon and Rhee

2017). The first PS capsule vaccine to be licensed was a 14-
valent PS vaccine in 1977. This vaccine was quickly expanded
to include 23 serotypes, and it is still in use today (Briles et al.
2019). Unfortunately, immunogenicity of this vaccine is rather
poor (Westerink, Schroeder and Nahm 2012). To overcome this
issue, the heptavalent pneumococcal conjugate vaccine (PCV7)
was the first conjugate vaccine to be licensed in the USA in
2000. Since then, it has been followed by a 13-valent conju-
gate vaccine (Briles et al. 2019). Currently, a 15-valent and a 20-
valent conjugate vaccine are in development (Lee et al. 2019; Hur-
ley et al. 2020). The introduction of conjugate vaccines dramat-
ically reduced the rates of pneumococcal meningitis through
direct and indirect (herd) protection (van de Beek et al. 2016;
Kwambana-Adams et al. 2020). However, replacement of vaccine
serotypes by non-vaccine serotypes is occurring, thereby lower-
ing vaccine effectiveness. While in the USA this effect is lim-
ited, in the UK non-PCV13 serotypes were responsible for over
40% of invasive pneumococcal diseases in 2017 (Deng et al. 2013;
Kwambana-Adams et al. 2020). Still, global vaccination programs
are considered essential in the battle against pneumococcal
diseases (World Health Organisation (WHO) 2019; Kwambana-
Adams et al. 2020).

A recent review by Koulenti et al. describes in depth all
antibacterial agents against Gram-positive bacteria currently in
clinical trials (phase I to phase III) (Koulenti et al. 2020). Table 1
lists all evaluated compound libraries based on in-use antibi-
otics since 2010. Such an approach leads to a better under-
standing of the structure-activity relationship (SAR) of current
antibiotics and can therefore lead to the identification of a
novel antibiotic-analogue. As such, Table 2 lists a comprehen-
sive overview of the more extensively studied novel antibiotic-
analogues since 2010. Their mechanism of action is similar
to that of an already marketed antibiotic, but in most cases
resistance mechanisms differ and/or increased activity towards
resistant strains is observed. Several of these analogues are cur-
rently undergoing clinical trials.

While evaluating derivatives of known antibiotics can be use-
ful, evaluation of new antibacterial targets may also help to
overcome resistance mechanisms. As such, targeting bacterial
virulence instead of bacterial physiology should be considered
(Rasko and Sperandio 2010). Identifying these novel targets is
often done using computational screening, in which bacterial
and human genome sequences are screened to identify essen-
tial bacterial proteins, without affecting the human host and/or
its microbiome (Wadood et al. 2018; Nayak et al. 2019).

Clearly, with antibiotic resistance still increasing worldwide,
the search for novel antibacterials remains of utmost impor-
tance with several ingoing discovery and development pro-
grams. In this review, we will provide a comprehensive overview
of the current pneumococcal drug pipeline, hereby excluding
known antibiotic analogues and focusing on the discovery of
novel drug targets. Overall, novel therapies can be divided into
three main categories: (i) modulating the host immune system
to lower pneumococcal disease, (ii) interference with pneumo-
coccal virulence and (iii) development of novel antibiotics.

Modulating the host immune system

Several recently investigated anti-pneumococcal drug targets
focus on enhancing host immune responses after infection.
Interfering with these responses is challenging, as this might
provoke an unwanted immune cascade leading to an increase in
inflammatory damage on the one hand or it might overly inhibit
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Table 1. Overview of known antibiotics for which derivatives have been constructed and evaluated against S. pneumoniae since 2010.

Library derived from Antibiotic class
Number of tested

molecules in library References

Vancomycin Glycopeptides 22 (Chang et al. 2013)
31 (Shao et al. 2011)

Lincomycin Lincosamides 14 (Kumura et al. 2016)
13 (Umemura et al. 2013)

Azithromycin Macrolides 23 (Fajdetić et al. 2011)
17 (Pavlović and Mutak 2016 )
30 (Ma et al. 2011b)
28 (Li et al. 2013)
36 (Wang et al. 2017b )
8 (Wang et al. 2017a )
13 (Čipčić Paljetak et al. 2016)

Clarithromycin Macrolides 10 (Čipčić Paljetak et al. 2016)
18 (Jia et al. 2018)
24 (Jia et al. 2017)
26 (Qin et al. 2018)
14 (Liang et al. 2012)
67 (Kumar et al. 2012)
18 (Cong et al. 2011)
33 (Ma et al. 2011a)

Erythromycin A Macrolides 11 (Qi et al. 2010)
8 (Zheng et al. 2016)
26 (Sugimoto et al. 2012)
11 (Bukvić Krajačić et al. 2011)

Ketolide Macrolides 10 (Pereira and Fernandes 2011)
3 (Chen et al. 2012)
36 (Ma et al. 2019)

Table 2. Overview of novel antibiotic-analogues against S. pneumoniae discovered since 2010. NDA: New drug application; FDA: US Food and
Drug Administration.

Name
Year of discovery of

anti-pneumococcal activity Antibiotic class Clinical trials References

Avarofloxacin (JNJ-Q2,
acorafloxacin)

2010 Fluoroquinolones Phase I (Morrow et al. 2010; Fernandez
et al. 2011; Covington et al. 2013)

Solithromycin (CEM-101) 2010 Ketolides (Macrolides) Phase III (McGhee et al. 2010; Rodgers,
Frazier and Champney 2013;
Farrell, Mendes and Jones 2015;
Zhanel et al. 2016; Kato et al. 2019)

MX-2401 2011 Lipopeptides None (Dugourd et al. 2011; Rubinchik
et al. 2011)

Cefilavancin (TD-1792) 2012 Glycopeptide-
cephalosporin

conjugate

Phase III (Hegde et al. 2012)

Lefamulin 2013 Pleuromutilins FDA approved (Ross et al. 2012; Paukner et al.
2013; Mendes et al. 2016; Paukner
and Riedl 2017)

Contezolid (MRX-1) 2014 Oxazolidinones Phase III (Shinabarger 1999; Li et al. 2014)
Omadacycline (PTK 0796) 2014 Tetracyclines FDA approved (Draper et al. 2014; Macone et al.

2014)
RBx 14 255 2014 Ketolides (Macrolides) Preclinical (Raj et al. 2014; Barman et al. 2019)
Eravacycline (TP-434) 2015 Tetracyclines NDA filed (Grossman et al. 2012, 2015)
Lascufloxacin 2017 Fluoroquinolones NDA filed (Kishii, Yamaguchi and Takei 2017)
Nafithromycin (WCK 4873) 2017 Ketolides (Macrolides) Phase II (Zhanel et al. 2002; Flamm,

Rhomberg and Sader 2017)
TP-271 2017 Fluorocyclines

(Tetracyclines)
Phase I (Grossman et al. 2017)

KBP-7072 2019 Tetracyclines Phase I (Lepak et al. 2019)
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Figure 1. Overview of drug targets and novel therapies focusing on modulating the host immune system at different locations of the body. (A), Drug targets present
at air-blood interface. (B), Drug targets present at blood-brain barrier. Drug targets in and on macrophages, on epithelial and endothelial cells, in the blood and in

the brain are labeled in green. pGSN: plasma gelsolin, GM-CSF: granulocyte/macrophage-colony stimulating factor, iNOS: inducible nitric oxide synthase, NOS3: nitric
oxide synthase-3, PsaA: pneumococcal surface antigen A, MIF: macrophage inhibitory factor, IFN-γ : interferon-γ , pIgR: polymeric immunoglobulin receptor, mAb:
monoclonal antibody, MASP-2: mannose-binding lectin-associated serine protease, PECAM-1: platelet endothelial cell adhesion molecule.

the immune system leading to an uncontrolled growth and inva-
sion of pathogens. Figure 1 shows a schematic overview of all
discussed therapies. Detailed results regarding the in vivo data
of these therapies are listed in Table 3.

Induction of nitric oxide synthase (NOS) activity

After macrophage activation by a variety of pro-inflammatory
cytokines, constitutively expressed nitric oxide synthase-3
(NOS3) and inducible NOS (iNOS) expression are increased.
These synthases show bactericidal activity through the produc-
tion of nitric oxide (NO) (Hernansanz-Agustı́n et al. 2013). NO is
used as a signaling molecule in low concentrations, while in high
concentrations (e.g. during the oxidative burst in neutrophils) it
shows direct antimicrobial properties by binding to DNA, pro-
teins and lipids (Schairer et al. 2012). Although an excess pro-
duction of NO can lead to immunosuppression, NOS inhibitors
have previously been reported to reduce tissue injury and mor-
tality in pneumococcal meningitis models. (Fang 2004) It is clear
that a strict regulation of the amount of NO is needed to bat-
tle an infection. NOS3 expression is mediated by estrogen (Yang
et al. 2014b, 2015). This estrogen-dependency leads to a greater
risk of developing pneumonia for males than females (Casimir
et al. 2013; Yang et al. 2014b). Statins, known to boost NOS3
activity, have been shown to improve bacterial clearance and
survival from secondary pneumococcal pneumonia (Yang et al.
2014b). Furthermore, the use of statins has proven to be ben-
eficial to patients suffering from pneumonia and is associated
with a lower risk of hospitalization and mortality (Nielsen et al.
2012; Nishimoto, Rosch and Tuomanen 2020). Administration of

sub-cutaneous plasma gelsolin (pGSN), a human blood protein,
has also been shown to activate NOS3 and improve outcome
of secondary bacterial pneumonia in mice, with reduced acute
inflammation and improved bacterial clearance after 24 hours
(Yang et al. 2015). The positive effects of pGSN treatment were
confirmed in a more clinically relevant murine treatment model
using an antibiotic-resistant pneumococcal strain (Yang et al.
2019b). Furthermore, in a 2019 study, patients suffering from
community-acquired pneumonia (CAP) admitted to the hospi-
tal with low pGSN concentrations were more at risk for devel-
oping severe, short-term clinical outcomes such as higher risk
of death, septic shock and respiratory failure (Self et al. 2019).
Recently, a phase 1 clinical trial was finalized showing recom-
binant pGSN was generally safe and well tolerated in patients
with mild CAP symptoms and a clinical trial studying the use
of recombinant pGSN for the treatment of Covid-19 patients
is currently recruiting (Tannous et al. 2020). Apart from NOS3,
increased levels of iNOS are also known to contribute to the
antibacterial activity of alveolar macrophages against pneumo-
cocci. It has also been shown that granulocyte/macrophage-
colony stimulating factor (GM-CSF), used in the treatment of
leukemia, is able to induce iNOS induction in response to infec-
tion, leading to a reduction in bacterial load and inflammation
in the lungs of mice (Steinwede et al. 2011).

Macrophage inhibitory factor (MIF) inhibitors

MIF is a component of the innate immune system and
constitutively expressed by immune and epithelial cells.
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It is released rapidly after exposure to bacteria and pro-
inflammatory cytokines, promotes expression of numerous
other pro-inflammatory molecules and thereby amplifies the
response. Apart from its role in inflammation and immunity, it is
also important in cell proliferation and oncogenesis (Roger et al.
2007; Bewersdorf et al. 2018). While MIF is essential for pneu-
mococcal clearance after nasopharyngeal colonization (Das et al.
2014), high MIF levels in cerebrospinal fluid (CSF) are associated
with poor patient outcome. Moreover, mice treated with MIF-
neutralizing antibodies show lower bacterial burdens in lungs
and a higher survival in a lethal pneumococcal sepsis model
(Savva et al. 2016). Similarly, in another study using a murine
lung infection model, treatment with the small-molecule recep-
tor antagonist MIF098 improved survival, decreased bacterial
burdens by 2 logs and reduced inflammation (Weiser et al. 2015).

Blocking of brain endothelial receptors

Adhesion to and invasion of endothelial and epithelial cells,
mediated by several cellular receptors, is an important aspect
of invasive pneumococcal disease, such as meningitis. First, the
platelet-activating factor (PAF) receptor on activated epithelial
and endothelial cells enables the bacteria to enter the basal
membrane of the host epithelial cell. Secondly, the pneumo-
coccal choline-binding protein PspC can bind to the epithelial
polymeric immunoglobulin receptor (pIgR). Analogous to the
PAF receptor pathway, bacteria are transported into the cell.
Concordantly, when crossing the blood-brain barrier (BBB), the
PAF receptor is used again (Koedel, Scheld and Pfister 2002;
Mook-Kanamori et al. 2011). Furthermore, also pIgR is expressed
by brain endothelial cells and can be used by pneumococci
to adhere. Lastly, platelet endothelial cell adhesion molecule
(PECAM-1), one of the major endothelial adhesion molecules,
can mediate adhesion of pneumococci to the BBB endothelium
(Iovino et al. 2017). Using an in vivo meningitis model, treatment
of infected mice with anti-pIgR and anti-PECAM-1 antibodies 1
hour post infection increased survival time and lowered bacte-
rial brain burden, yet all mice eventually still succumbed. A co-
treatment strategy with ceftriaxone was however more success-
ful. Ceftriaxone was capable of clearing the blood infection while
the anti-pIgR and anti-PECAM-1 antibodies prevented most bac-
teria from passing the BBB, leading to a decrease in bacterial
burdens and an increase in survival. Moreover, neuroinflamma-
tion was significantly lower in the combination therapy group
compared to untreated mice or mice treated with ceftriaxone
alone (Bewersdorf et al. 2018; Iovino, Thorsdottir and Henriques-
Normark 2018).

Modulation of complement activity

The complement system is important in human immunity and
comprises several recognition proteins activated in response
to pathogens. Activation is triggered by a proteolytic cleavage
amplification cascade, which generates fragments capable of
binding to microbial surfaces as opsonins and bacterial cell
destructions. Opsonins can also promote pathogen phagocy-
tosis and induce inflammatory responses (Andre et al. 2017).
In pneumococcal meningitis, complement however has a dual
role. While it is needed to initiate complement-mediated bac-
terial killing, uncontrolled activation can occur and often leads
to a worse disease outcome (Bewersdorf et al. 2018). High levels
of complement component 5 (C5) have been shown to worsen
patient outcome for bacterial meningitis. Furthermore, adjuvant

therapy with C5 antibodies showed beneficial effects on sur-
vival rates, brain damage and clinical severity in several murine
in vivo studies (Woehrl et al. 2011; Kasanmoentalib et al. 2015).
Similar results have been found using mannose-binding lectin-
associated serine protease (MASP-2), an important activator in
the lectin pathway. While MASP-2 has proven to be important
in avoiding nasopharyngeal carriage of pneumococci, it is also
associated with worsened meningitis outcomes. As with C5,
treatment with MASP-2 antibodies after pneumococcal infection
increased in vivo murine survival (Kasanmoentalib et al. 2017).
Complement factor H (FH), a regulatory protein inhibiting com-
plement component 3 (C3), is known to be important in moder-
ating pneumococcal disease. However, in several mouse mod-
els, combination therapy of recombinant FH with ceftriaxone
showed no beneficial effects (Van Der Maten et al. 2016; Kasan-
moentalib et al. 2019). Lastly and contradictorily to aforemen-
tioned therapies, Ali et al. showed increased in vitro opsoniza-
tion of pneumococci after properdin treatment, i.e. a known
positive regulator of complement activation naturally present
in humans. Furthermore, animals infected with pneumococci
and treated with properdin show a higher chance of survival and
lower bacterial blood burden compared to non-treated animals
(Ali et al. 2014). Clearly, functions of complement in pneumococ-
cal pathogenesis are diverse. Interfering with its working mech-
anism might result in major and unforeseen changes in immune
responses, and therefore, this interference should be done in a
controlled and temporarily manner. Currently, one anti-C5 anti-
body, eculizumab, is on the market. However, side effects to this
drug include increased risk of severe meningococcal meningi-
tis, demonstrating the delicate role of the complement system
in bacterial infections. Two other antibodies are currently under-
going clinical trials (Koelman, Brouwer and Van De Beek 2019).

Interferon-gamma (IFN-γ ) inhibitors

Similarly to the aforementioned molecules, IFN-γ also plays a
dual role in pneumococcal disease. As a powerful mediator of
different innate and adaptive immune pathways during inflam-
mation and infection, it is required for generating an effective
response upon bacterial invasion. However, it is also involved
in long-term neurological sequelae after pneumococcal menin-
gitis and interfering with IFN-γ responses can lead to a higher
survival rate of patients (Too et al. 2014; Yau et al. 2017; Bew-
ersdorf et al. 2018). IFN-γ antibody treatment improved survival
after pneumococcal meningitis and overall clinical symptoms
were less compared to non-treated animals. Interestingly, bac-
terial burdens were unaffected by this treatment (Pettini et al.
2015).

Death receptor (DR) agonists

Tumor necrosis factor-related inducing ligand (TRAIL) is a mem-
ber of the TNF superfamily. There are five human TRAIL recep-
tors known, of which receptors DR4 and DR5 are involved in
apoptosis of neutrophils, amongst other effects (Sag et al. 2019).
It has been shown that TRAIL deficiency leads to increased
inflammation following pneumococcal challenge (Hoffmann
et al. 2007). In a murine pneumonia model, treatment with ago-
nistic anti-DR5 antibodies led to a small but significant decrease
in lung burden 72 h p.i. and an increase in survival from 30%
to 70% 8 days p.i (Steinwede et al. 2012). However, TRAIL is also
considered important in protection against viral lung infection,
which often precede pneumococcal infections. Therefore, inter-
ference with this molecule is considered difficult, making it less
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favorable as therapeutic target (Braithwaite, Marriott and Lawrie
2018).

Danger-associated molecular pattern (DAMP) inhibitors

Meningitis is triggered after recognition of pathogen-associated
molecular patterns (PAMPs). As a result, neutrophils are
recruited and release toxins in order to kill the pathogens
present. However, these neutrophil-derived toxins can, in turn,
cause stress and damage to host cells. These injured cells sub-
sequently release DAMPs, responsible for tissue damage (Wache
et al. 2015; Masouris et al. 2017). HMGB1 and MRP14 are DAMPs
known to be secreted in large amounts in de CSF of meningi-
tis patients and could thus be a therapeutic target. Recently, the
MRP14 inhibitor paquinimod that could be used in autoimmune
diseases has been shown to reduce inflammation in a pneu-
mococcal meningitis model, further supporting its potential for
meningitis therapy (Wache et al. 2015; Bewersdorf et al. 2018).
Similarly, HMGB1 antibodies were also shown to lower inflam-
mation, and improve the outcome of pneumococcal infection
(Masouris et al. 2017). As for other immunomodulatory thera-
pies, inhibiting DAMPs can only be done in a very tightly con-
trolled and balanced manner to assure controlled inflammation
and subsequent elimination of bacteria (Land 2020).

Pneumococcal surface antigen A (PsaA) and
pneumococcal surface protein A (PspA) as targets for
therapy

PsaA and PspA are well-known pneumococcal virulence fac-
tors and have been studied as potential vaccine candidates.
PsaA is an indispensable protein for Mn2+ transport, protect-
ing against oxidative stress and for adherence to endothelial
cells. PspA is important in evasion of the host immune sys-
tem by interfering with the complement C3 cascade (Tai 2006).
Mutants lacking PsaA are significantly less virulent compared to
their parent strains, which could be attributed to growth impair-
ment, reduced adherence capacity or hypersensitivity to oxida-
tive stress (Rajam et al. 2008a). PsaA however, seems also essen-
tial in the induction of a protective host immune response, since
peptide P4, a short amino acid fragment of PsaA, was capable
of binding to nasopharyngeal epithelial cells and eliciting an
inflammatory response (Rajam et al. 2008b). Furthermore, ex vivo
human alveolar macrophages and neutrophils demonstrated
improved bacterial killing after P4 exposure and treatment of
intranasal infected mice with P4 was shown to increase survival
(Rajam et al. 2009, 2010; Bangert et al. 2013; Morton et al. 2016). No
follow-up studies involving P4 have been reported so far. Mon-
oclonal antibodies (mAbs) against PspA have also been studied
for therapeutic use. Several mAbs against PspA were produced
in mice, and their in vitro opsonization capacity to pneumo-
cocci was evaluated. One selected mAb (mAb 140H1) was eval-
uated in vivo, and administration after infection with pneumo-
cocci reduced bacterial lung and blood burden and improved sur-
vival rate. Furthermore, combination therapy with the standard
antibiotic ceftriaxone showed a synergistic effect (Kristian et al.
2016). Currently, PspA is studied as a vaccine candidate rather
than a therapeutic target (Wagner-Muñiz et al. 2018; Akbari et al.
2019).

Interfering with pneumococcal virulence

Next to modulating host immunity, research focusing on reduc-
ing pneumococcal virulence to enable the immune system to

overcome the infection shows growing interest. Most proposed
targets are based on virulence factors specific to pneumococci
and thus potential novel therapies will be pathogen-specific. A
schematic overview of the drug targets is shown in Fig. 2. Table 5
lists detailed results regarding the current in vivo data of these
therapies.

PS capsule formation inhibitors

As mentioned earlier, the PS capsule is the most important vir-
ulence factor. It inhibits macrophage phagocytosis, which forms
the first line of defense to pneumococcal invasion (Dockrell et al.
2003; Dockrell, Whyte and Mitchell 2012). Deletion of the capsule
increases phagocytosis rates in vitro and decreases virulence in
vivo (Preston and Dockrell 2008). However, downregulation of the
capsule is needed to initiate nasopharyngeal colonization (Gilley
and Orihuela 2014). Also during pneumonia and OM, downreg-
ulation of the capsule and subsequent formation of a biofilm
is considered part of the pneumococcal immune evasion strat-
egy (Moscoso, Garcia and Lopez 2006; Domenech et al. 2013). In
contrast, when the change from a commensal to a pathogenic
lifestyle occurs, pneumococci upregulate their PS capsule pro-
duction (Gilley and Orihuela 2014). The pneumococcal capsule
is formed through two pathways, the Wzy-dependent pathway
used by most, and the synthase-dependent pathway, only used
in serotypes 3 and 37 (Geno et al. 2015). The capsule of serotype
3 consists of glucose (Glc) and glucuronic acid (GlcA) and is the
result of 3 genes (cps3D, cps3S and cps3U), of which only the first
two are essential genes for capsule production. Serotype 37 only
requires one gene, tts, to form its capsule, consisting solely of
Glc chains. The Wzy-dependent pathway is more complex. In
general, sugar-1-phosphate is transferred to a lipid carrier on
the cytoplasmic side of the cell membrane by a glycosyltrans-
fersase. From there, the repeat unit is built and translocated
to the extracellular side by flippase Wzx before being polymer-
ized by Wzy. Lastly, the final sugar (usually Glc) is covalently
bound to N-acetylglucosamine residue of the cell wall peptido-
glycan (Geno et al. 2015; Paton and Trappetti 2019). While these
pathways differ, they both use the cps gene locus to build the
correct sugar conformation. As the loci slightly differ for each
serotype, interfering with them or their products is difficult.
Thus far, only CpsB, a tyrosine phosphatase encoded by cpsB,
has been suggested to be a potential novel anti-virulence drug
target, as cpsB mutants are avirulent in several animal models
of infection (Morona et al. 2004; Standish et al. 2012; Monteiro
Pedroso et al. 2017). Furthermore, the molecule fascioquinol E—
an extract derived from the marine sponge Fasciospongia spp.—
inhibited CpsB phosphatase activity and increased macrophage
attachment in vitro (Standish et al. 2012).

Lastly, regardless of the pneumococcal serotype or capsule
pathway, uridine diphosphate glucose (UDP:Glc) is generally
considered a key component in the formation of PS capsule.
UDP:Glc is part of the Glc and galactose (Gal) metabolism and
is made through the interconversion of glucose-1-phosphate
(Glc-1-P) by uridine diphosphate glucose pyrophosphorylase
(UDPG:PP) (Mollerach, López and Garcı́a 1998). It has been
described that mutants lacking a functional galU gene form a
lower amount of PS capsule, are more prone to macrophage
phagocytosis in vitro and are less virulent in a Galleria mellonella in
vivo model. (Mollerach, López and Garcı́a 1998; Cools et al. 2018)
As the pneumococcal UDPG:PP crystal structure is unknown,
modeling of new molecules is challenging. However, recently,
two attempts have been made, either using the purified enzyme
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Figure 2. Novel therapies interfering with pneumococcal virulence. (A), Drug targets involved in biofilm formation are targeting quorum-sensing mechanisms. (B),
Drug targets present on/in individual pneumococci. Drugs specific for these targets aim at inhibition of polysaccharide capsule, pneumolysin and LytA and modifi-
cation of the pneumococcal cell wall. QS: quorum sensing, LMIP: linear molecularly imprinted polymer, PS: polysaccharide, UDPG:PP: uridine diphosphate glucose
pyrophosphorylase, PgdA: peptidoglycan N-acetylglycosamine deacetylase A, AMPs: antimicrobial peptides, PLY: pneumolysin.

in an enzymatic assay or using a computational molecular dock-
ing model based on other bacterial UDPG:PP’s (Zavala et al. 2017;
Cools et al. 2020).

Bacterial cell wall modifiers

The cell wall of Gram-positive bacteria, such as the pneumo-
coccus, consists of a thick peptidogylycan (PG) layer, to which
teichoic acids and capsular PS are covalently attached. Due to
its importance, PG biosynthesis has always been an interesting
drug target. Currently, beta-lactam antibiotics and vancomycin
are the two most used PG inhibitors (Vollmer, Blanot and De
Pedro 2008; Rajagopal and Walker 2017; Vollmer, Massidda and
Tomasz 2019).

Lysozyme, a major bacteriolytic component of the immune
system, hydrolyses PG chains, which results in lysis of bac-
teria. Pathogens such as S. pneumoniae, however, modify their
glycan strands through deacetylation by peptidoglycan N-
acetylglycosamine deacetylase A (PgdA), thereby increasing
resistance to lysozyme. Mutant strains lacking PgdA are sig-
nificantly more susceptible to lysozyme in vitro and show a
reduction in virulence in vivo (Vollmer and Tomasz 2002). Since
then, several publications have described in vitro inhibitors of
PgdA enzymatic activity, yet no follow-up studies on the activity
towards the bacterial cell or in vivo use have been performed (Bui
et al. 2011; Ariyakumaran et al. 2015; DiFrancesco, Morrison and
Nitz 2018).

Pneumolysin (PLY) inhibitors

PLY is formed intracellularly and released in the environment
through bacterial lysis. It is known to be cytolytic to all human
cell types through the formation of pores. Furthermore, it pro-
motes pro-inflammatory immune responses through activation
of the classical and lectin pathways of complement activation
(Anderson and Feldman 2017). As PLY is known as an essential
virulence factor for bacterial survival in the respiratory tract,
inhibiting this enzyme might prove beneficial (Kadioglu et al.
2008; Kim, Seon and Rhee 2017). A variety of natural compounds
has been successfully tested for their anti-PLY activity (Table 4).
Also statins were proven to have a direct effect on PLY cytotoxic-
ity in vitro and in vivo and could be valuable as adjuvant therapy

to existing antibiotics. However, further studies are needed to
study the mechanism of action and potential place in pneumo-
coccal therapy (Nishimoto, Rosch and Tuomanen 2020).

Lastly, liposomes consisting of naturally occurring choles-
terol and sphingomyelin can be used to sequester PLY (Baum-
gartner et al. 2016). In vitro, these liposomes protect monocytes
from secreted PLY. Furthermore, mice were more prone to sur-
vive a pneumococcal lung infection after treatment with lipo-
somes. Besides a small reduction in bacterial burdens in lung
and blood, the treatment was also capable of reducing tumor
necrosis factor α (TNF-α) levels. This led to less signs of inflam-
mation in the lungs. In an in vivo sepsis model, bacterial blood
burden was reduced after treatment, leading to an increase in
murine survival. Also in this model, TNF-α levels were decreased
(Henry et al. 2015). CAL02, a mixture of liposomes, has under-
gone clinical trials to verify its safety and activity. While a
dosage effect could not be established, the safety and tolerabil-
ity of CAL02 was promising, with no adverse effects that could
be linked to local tolerability events. Furthermore, all patients
receiving CAL02 treatment were cured 15 to 22 days after the
start of the trial (Laterre et al. 2019).

Antimicrobial peptides (AMPs)

AMPs are a large and diverse group of molecules, produced by
both pro- and eukaryotes. In humans, they are important in
innate immunity, while in bacteria AMPs are produced as a way
to compete with and kill other bacteria (Mahlapuu et al. 2016).
In a 2015 study, analogues of indolicidin and ranalexin, two nat-
ural peptides with known antibacterial activity against Gram-
positive bacteria, showed in vitro bactericidal activity towards
antibiotic susceptible and resistant pneumococcal strains, with-
out cytotoxicity for eukaryotic cells (Jindal et al. 2015). In silico
molecular docking pointed towards interactions with autolysin
and/or PLY, two known pneumococcal virulence factors as a
mechanism of action, while a later study revealed that cell mem-
brane integrity is highly impacted by these AMPs in vitro (Jindal
et al. 2015, 2017). This study also confirmed the in vivo effect of
these compounds in a murine bacteremia model, leading to an
increase in survival, decrease in bacterial burden and decrease
in tissue damage in lungs and spleen (Jindal et al. 2017).
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Table 4. Natural compounds tested for their anti-PLY activity since 2010. PLY: pneumolysin.

Natural compound Source Activity on PLY References

Allicin Active component of garlic Inhibition of hemolytic activity in vitro. (Arzanlou et al. 2011)
β-sitosterol Inhibition of hemolytic activity and protection of

human lung cells in vitro; decrease in mortality,
bacterial burden and pulmonary inflammation in
vivo.

(Li et al. 2015)

Verbascoside Glycoside present in plants
used in Chinese medicine

Inhibition of hemolytic activity. (Zhao et al. 2016)

Shikonin Component of traditional
Chinese herb

Inhibition of hemolytic activity and protection of
human alveolar epithelial cells against cell death
in vitro; reduction of mortality, inflammatory cell
infiltration and cell damage in a murine in vivo
model.

(Zhao et al. 2017)

Juglone Roots, leaves, woods and
fruits of Juglandaeae walnut
trees

Inhibition of PLY oligomerization, needed for
pore formation.

(Song et al. 2017a)

Epigallocathechin
gallate

Major component of green
tea catechins

Inhibition of PLY oligomerization, needed for
pore formation; inhibition of sortase A (SrtA)
leading to an in vitro decrease in biofilm
formation; reduction of mortality, lung burden
and overall inflammatory reactions a murine in
vivo model.

(Song et al. 2017b)

Quorum sensing (QS) inhibitors

Biofilm formation is known to play an important role in OM and
cochlear implant infections (Cevizci et al. 2015). QS systems are
known to control the maturation stage of these biofilms, as they
allow communication between bacteria in a cell-density depen-
dent manner (Brackman and Coenye 2014). Targeting this sys-
tem, rather than targeting the bacteria itself, has been gaining
scientific attention and S. pneumoniae uses several QS systems
that have the potential for intervention. First, the ComABCDE
pathway is regulated by competence-stimulating peptide (CSP).
This system allows for induction of competence and controlling
genetic transformation, when a biofilm has matured and pneu-
mococcal density is high enough. Bacteriocins, which inhibit the
growth of competing bacteria, are produced as a response to the
BlpABCSRF pathway, which operates similarly to ComABCDE.
Also, autoinducer-2 (AI-2) is known as a common QS system
of Gram-positive bacteria and is also present in pneumococci.
The enzyme LuxS activates AI-2, which, in turn, facilitates ini-
tial attachment of bacteria to a surface (Galante et al. 2014).
Apart from LuxS, DNA adenine methyltransferase (DAM) plays
an important role in the biosynthesis of AI-2, as it is part of
the activated methyl cycle. It catalyzes a methyl transfer from
S-adenosyl-L-methionine (SAM) to adenine, a feature unique in
bacteria (Yadav et al. 2015). Lastly, in 2015, Dimarchi et al. discov-
ered a novel QS system, TprA/PhrA, that controls the expression
of bacteriocins called lantibiotics (Hoover et al. 2015). This sys-
tem has been shown to be crucial for pneumococcal virulence
in pneumonia, meningitis and OM models (Motib et al. 2017).

Several biofilm disruption strategies have been studied.
Cevizci et al. tested the possibility of analogues of N-acyl
homoserine lactone (AHL), a signaling molecule known to play
a role in QS systems, to prevent pneumococcal biofilm forma-
tion in an in vivo cochlear implant model. While these results
are preliminary, prolonged treatment with the AHL analogue
benzoxazolone after cochlear implant surgery prevented biofilm
formation on these implants (Cevizci et al. 2015). However, it
should be noted that AHL is a molecule solely attributed to

Gram-negative bacteria, leaving the exact mechanism of these
inhibitors against pneumococci unknown. More recently, a lin-
ear molecularly imprinted polymer (LMIP) targeting the TprA
receptor and its signaling peptide PhrA was evaluated. Addition
of LMIP-PhrA to in vitro cultures reduced growth rate and neu-
raminidase activity, which is important in pneumococcal colo-
nization and invasiveness. In a pneumonia mouse model, dis-
semination from lungs to blood was prevented by LMIP-PhrA,
resulting in longer survival of animals (Motib et al. 2017, 2019).
Lastly, Yadav et al. studied the effect of interfering with DAM
or SAM. In 2012, the effect of 5-azacytidine (5-aza) on in vitro
planktonic and biofilm growth and the effect on gene expres-
sion was assessed. 5-aza is a hypomethylating drug used in
leukemia treatment. Only a minor effect on planktonic growth
was observed, while biofilm formation was adequately and
dose-dependently inhibited in vitro. Using scanning electron
microscopy (SEM), 5-aza-treated biofilms were visualized and
observed to be thinner, more scattered in clumps and disorga-
nized compared to non-treated biofilms. Also genes involved
in AI-2 synthesis were downregulated after 5-aza treatment
(Yadav, Chae and Song 2012). In a very similar study, sine-
fungin, a natural nucleoside and analogue of SAM known for
its inhibitory effects on transmethylation reactions and over-
all antifungal, antiviral and antiprotozoal activities, was evalu-
ated. Also in this study, in vitro biofilm formation was inhibited,
and AI-2 synthesis genes were downregulated. Furthermore, in
vivo biofilm formation in an OM rat model showed a decrease
in CFU/bulla after sinefungin treatment (Yadav et al. 2014). Inhi-
bition of DAM by the small molecule pyrimidinedione proved
equally successful in inhibiting in vitro biofilm formation and
downregulating virulence-related genes, such as ply and lytB, as
well as the competence-related gene comC (Yadav et al. 2015).

Development of novel antibiotics

Lastly, a variety of novel antibiotics is being investigated, which
in most cases work against a wider spectrum of pathogens. How-
ever, as for in-use antibiotics, mutations leading to resistance
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Table 5. In vivo results of therapies interfering with pneumococcal virulence. p.i.: post-infection.

Compound In vivo model Treatment schedule Endpoint References

B-sitosterol Murine intranasal
infection model

80 mg/kg subcutaneously,
1 h p.i., repeated every 4 h
for 48 h

Increase in murine survival from 10%
to 70% 120 h p.i., 2-log reduction in
bacterial burden 48 h p.i., decrease in
pulmonary inflammation 48 h p.i.

(Li et al. 2015)

Verbascoside Murine intranasal
infection model

100 mg/kg
subcutaneously, 2 h p.i.

Increase in murine survival from 25%
to 75% 120 h p.i., 1-log reduction in
lung burden 48 h p.i., visual
pulmonary inflammation is reduced
48 h p.i.

(Zhao et al. 2016)

Shikonin Murine intranasal
infection model

50 mg/kg orally, 2 h p.i.,
repeated once daily

Increase in murine survival from 10%
to 60% 5 days p.i., 1-log reduction in
lung burden, reduction in
inflammatory cell infiltration and cell
damage 3 days p.i.

(Zhao et al. 2017)

EGCG Murine intranasal
infection model

50 mg/kg,
subcutaneously, directly
after infection, repeated
in 8 h intervals

Increase in murine survival from 40%
to 60% 120 h p.i., 1-log reduction in
lung burden 48 h p.i., reduction in
overall inflammatory reactions in the
lung 48 h p.i.

(Song et al. 2017b)

Liposomes Murine intranasal
infection model

100 mg/kg intranasally,
30 min p.i.

Increase in murine survival from 40%
to 80%, 1-log reduction in lung and
blood burden, reduction in
inflammatory responses in the lungs
24 h p.i.

(Henry et al. 2015)

Liposomes Lethal murine sepsis
model

100 mg/kg intravenously,
6 h p.i.

Increase in murine survival from 0%
to 50–60%, 4-log reduction in
bacterial blood burden, reduction in
inflammatory responses in the lungs,
2-fold reduction in blood TNF-alpha
levels 24 h p.i.

(Henry et al. 2015)

indolicidin and
ranalexin analogues

Murine pneumonia
model

20 mg/kg
intraperitoneally, 1 h, 12 h
and 24 h p.i.

Increase in murine survival from 0%
to 30–50%, clearance of bacteria in
blood, reduction in tissue damage in
lungs and spleen 7 days p.i.

(Jindal et al. 2017)

indolicidin and
ranalexin analogues

Lethal murine sepsis
model

10 mg/kg
intraperitoneally, 1 h, 12 h
and 24 h p.i.

Increase in murine survival from 0%
to 60%, reduction in bacterial burden,
decrease in tissue damage in lungs
and spleen 7 days p.i.

(Jindal et al. 2017)

Benzoxazolone Guinea pig otitis media
model

12 mg/kg
intraperitoneally, twice
daily for 3 months

Prevention of biofilm formation on
cochlear implants after 3 months

(Cevizci et al. 2015)

LMIP-PhrA Murine intranasal
infection model

100 nM/50 μL
intranasally, at time of
infection

Increase in murine survival from 37 h
to 65 h, 2-log reduction in bacterial
blood burden 24 h p.i.

(Motib et al. 2017)

Sinefungin Rat otitis media model 1,75 μg/rat in the middle
ear, at time of infection

0.7 log reduction in burden on bulla 1
week p.i.

(Yadav et al. 2014)

are of concern. An overview of the antibiotics tested against
pneumococci is shown in Fig. 3. Detailed information regarding
the described in vivo experiments is listed in Table 6.

Bacterial topoisomerase II inhibitors

Bacterial topoisomerases (DNA gyrase and topoisomerase IV)
are targets of the well-known quinolones. However, a new class
of topoisomerase II inhibitors, called novel bacterial topoiso-
merase II inhibitors (NBTIs), has been put forward as a new
way of treating quinolone-resistant infections. These inhibitors
also bind to DNA gyrase and topoisomerase IV, yet do so on
a slightly different binding site, thereby evading existing resis-
tance mechanisms. Gepotidacin represent this new drug class.

It shows in vitro activity against a variety of Gram-positive bacte-
ria, including quinolone-resistant pneumococci (Bax et al. 2010;
Biedenbach et al. 2016; Flamm et al. 2017). Gepotidacin is cur-
rently recruiting for phase III trials, evaluating efficacy, safety
and applicability of the drug (Kolarič, Anderluh and Minovski
2020; Koulenti et al. 2020). Other classes of bacterial topoiso-
merase II inhibitors are the pyrrolamides, tetrahydropyrans, tri-
cyclics, pyrimidines and quinolines. For some of these lead com-
pounds, only in vitro efficacy has been tested, while others also
show promising effects in vivo. Regardless, none of these classes
have progressed into clinical trials for pneumococcal infections
(Zhang et al. 2011b; Eakin et al. 2012; Mitton-Fry et al. 2013; Oda-
giri et al. 2013, 2018; Uria-Nickelsen et al. 2013; Surivet et al. 2015;
Lepak et al. 2016; Miles et al. 2016).
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Figure 3. Novel therapies interfering with pneumococcal survival. These therapies often focus on the inhibition of transcription, translation and enzyme elongation.
Other strategies include inhibition of cell wall, CBP, FADS, the CoA pathway, PsaA and PiuA. NBTIs: novel bacterial topoisomerase II inhibitors, TMK: thymidylate kinase,

LigA: NAD+-dependent DNA ligase, PDF: peptide deformylase, UPPS: undecaprenyl pyrophosphate synthetase, CBP: choline binding protein, EBAs: esters of bicyclic
amines, FADS: flavin adenine dinucleotide synthetases, CoA: coenzyme A, PPAT: phosphopantetheine adenylyltransferase, PsaA: pneumococcal surface antigen A, Ru:
ruthenium, Rh: rhodium.

Thymidylate kinase (TMK) inhibitors

TMK is an essential enzyme in the DNA synthesis pathway.
It transfers phosphate from adenosine triphosphate (ATP) to
thymidine monophosphate (dTMP), which leads to the forma-
tion of thymidine diphosphate (dTDP), an essential component
of the thymidine triphosphate (dTTP) pathway (Keating et al.
2012). As such, TMK is essential for bacterial growth and has
been put forward as an interesting drug target (Petit and Koretke
2002). Structure-based drug design led to the development of
several compounds, of which TK-666 has proven to be active
in vitro against Gram-positive bacteria, while not being harm-
ful to eukaryotic cells. Furthermore, it was shown to be equally
active against antibiotic resistant and susceptible pneumococci
(Keating et al. 2012; Martı́nez-Botella et al. 2012). Currently, TMK
inhibitors are mainly evaluated for their use against Mycobac-
terium tuberculosis infections (Jian et al. 2019, 2020; Venugopala
et al. 2020).

PyrG inhibitors

PyrG, a bacterial cytidine triphosphate (CTP) synthase, pro-
duces CTP from uridine triphosphate (UTP) and glutamine and
is essential in the pyrimidine de novo biosynthetic pathway
(Endrizzi et al. 2004). Furthermore, it is required for growth of
bacteria such as Haemophilus influenzae. PyrG inhibitors were
first reported in the literature over 40 years ago as antitumor
drugs, however, thus far no PyrG inhibitors have reached the
market. After an enzyme-based HTS of PyrG inhibitors, enam-
ine proved the most interesting. However, while the IC50 value in
the enzymatic assay was low (0.091 μM), the MIC was more than
128μg/mL for pneumococci. In contrast, MICs ranging from 16 to
64 μg/mL were observed for other pathogens such as H. influen-
zae, E. coli and S. aureus. While this demonstrates the necessity

of whole-cell based assays in drug discovery, it is also a first
step towards the development of pneumococcal PyrG inhibitors
(Yoshida et al. 2012). Similarly to TMK inhibitors, PyrG inhibitors
are now primarily studied as a way to combat mycobacterial
infections (Chiarelli et al. 2018).

NAD+-dependent DNA ligase (LigA) inhibitors

LigA is an essential enzyme in viability for both Gram-positive
and Gram-negative bacteria. It is completely unrelated to
eukaryotic DNA ligases, making it an interesting drug target
(Pascal 2008; Mills et al. 2011). Selective inhibitors of LigA, sub-
stituted adenosine analogues, were reported to show a broad
spectrum of bacterial inhibition, ranging from E. coli, Mycoplasma
pneumoniae to S. pneumoniae. No binding affinity to eukaryotic
DNA ligases or cytotoxicity against human red blood cells or
alveolar epithelial cells A549 was observed. Furthermore, an
in vivo murine lung infection model showed a dose-dependent
reduction of pneumococci after treatment with one of these
adenosine analogues (Mills et al. 2011). Optimization of com-
pound classes pyridopyrimidines and naphthyridines has also
been studied in vitro, leading to LigA inhibiting molecules for
a wide range of bacteria, including pneumococci (Murphy-
Benenato et al. 2015). More recently, the mechanism of action
of the long known broad-spectrum antibiotic cordycepin was
attributed to its binding to LigA (Zhou et al. 2016). However, no
follow-up research on any of the aforementioned compounds
has been performed.

Peptide deformylase (PDF) inhibitors

PDF is a metalloenzyme used in bacterial peptide elongation.
It cleaves a formyl group from the terminal N-methionine of a
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Table 6: In vivo results of novel antibiotics. p.i.: post-infection, CSF: cerebrospinal fluid.

Compound In vivo model Treatment schedule Endpoint References

Pyrrolamides Murine pneumonia
model

320 mg/kg orally, starting 18 h
p.i., repeated twice per day

4-log reduction in lung burden
42 h p.i.

(Eakin et al. 2012)

Quinolines Murine intranasal
infection model

50 mg/kg subcutaneously,
starting 1 day p.i., repeated
twice per day

4-log reduction in lung burden
48 h p.i.

(Odagiri et al. 2013)

Quinolines Murine intranasal
infection model

40 mg/kg subcutaneously,
starting 2h p.i., repeated twice
per day

4-log reduction in lung burden
56 h p.i.

(Odagiri et al. 2018)

Tetrahydropyrans Murine thigh infection
model

80 mg/kg subcutaneously,
starting 2 h p.i., repeated every
3 hours for 24 h

4-log reduction in thigh burden
26 h p.i.

(Lepak et al. 2016)

Tricyclics Rat pneumonia model 100 mg/kg orally, 1 h, 7 h, 24 h
and 31 h p.i.

At least 4-log reduction in lung
burden 48 h p.i.

(Miles et al. 2016)

Pyrimidines Murine pneumonia
model

100 mg/kg intraperitoneally,
starting 2 h p.i., repeated 4
times per day

4-log reduction in lung burden
26 h p.i.

(Uria-Nickelsen et al.
2013)

Substituted
adenosine
analogues

Murine pneumonia
model

45 mg/kg intraperitoneally,
starting 18 h p.i., repeated four
times per day

5-log reduction in lung burden
36 h p.i.

(Mills et al. 2011)

Teixobactin Murine intranasal
infection model

10 mg/kg intraveneously, 24 h
and 36 h p.i.

6-log reduction in lung burden
48 h p.i.

(Ling et al. 2015)

Endolysins in
phages

Rat meningitis model 20 mg/kg intracisternally or
200 mg/kg intraperitoneally,
18 h p.i.

Rapid decrease in CSF burden after
intracisternal (3-log reduction
after 30 min) and after
intraperitoneal injection (2-log
reduction after 3 h)

(Grandgirard et al.
2008)

Endolysins in
phages

Lethal murine sepsis
model

25 μg/mouse intraperitoneally,
1 h p.i.

Increase in murine survival from
0% to 70% 7 days p.i.

(Diez-Martinez et al.
2015)

Combination of
phages

Adult zebrafish
infection model

3.25 mg/kg total enzyme
intraperitoneally, 1 h p.i.

Increase in murine survival from
27.8% to 77.8% 3 days p.i.

(Vázquez and Garcı́a
2019)

EBAs Embryo zebrafish
model

2 μM, starting 7 h p.i., repeated
once daily for 3 days

Increase in murine survival from
50% to 97.9% 5 days p.i.

(De Gracia Retamosa
et al. 2015)

PPAT inhibitors Murine pneumonia
model

100 mg/kg intraperitoneally,
starting 2 h p.i., repeated twice
or 4 times per day

Statis of bacterial burden 24 h p.i. (De Jonge et al. 2013)

NCL195 Murine sepsis model 50 mg/kg intraperitoneally,
starting 8 h p.i., repeated after 4
h

1-log reduction in burden 18 h p.i.,
prolonged 60% survival from
approx. 26 h p.i. to 36 h p.i.

(Pi et al. 2020)

newly synthesized polypeptide following ribosomal translation
and elongation. Removal of this formyl group is vital for bac-
terial viability. Importantly, human PDF is structurally different
from its prokaryotic counterpart, therefore bacterial PDF is con-
sidered an interesting novel drug target (Sangshetti, Khan and
Shinde 2014). In 2011, GSK1322322 was introduced as a poten-
tial novel antibiotic against multidrug resistant S. aureus and
CABP (Ross et al. 2011). It showed good in vitro activity against
pneumococci and was able to reduce pneumococcal lung bur-
dens in a murine model (Sutcliffe 2011). This molecule was
undergoing clinical trials, however trials were ended due to the
identification of potentially harmful metabolites.(United States
National Institute of Health (NIH) 2019) IDP-73 152, another PDF
inhibitor, went through a phase I clinical study in 2013, show-
ing no adverse effects after oral administration in healthy vol-
unteers. The results were published in 2019, but no follow-up
studies have been announced (Shin et al. 2019).

Inhibition of cell wall synthesis

Beta-lactams, the most widely used antibiotics, interfere with
cell wall synthesis by targeting the transpeptidase activity of

penicillin-binding proteins (PBPs). They block transpeptidation
by covalently binding to these enzymes, thereby killing the
bacteria. However, resistance is increasing for this antibiotic
class.(Macheboeuf et al. 2006) Therefore, attempts have been
made to discover novel inhibitors. One of these strategies led to
the screening of noncovalent inhibitors, as they are postulated
to be less susceptible to resistance-inducing mutations of PBPs
and production of beta-lactamases (Turk et al. 2011). In 2009, the
first virtual screening of noncovalent pneumococcal inhibitors
was performed. However, no biological assays were performed
to confirm these results (Miguet et al. 2009). Another article from
2011 reported on 2 molecules showing promising in vitro activity
against antibiotic-resistant pneumococci (Turk et al. 2011). Since
then, no results on noncovalent PBP inhibitors have been pub-
lished, suggesting this approach was unsuccessful.

Using a completely different mechanism, Lewis et al. pub-
lished the finding of the first novel natural bacterium-derived
antibiotic in decades (Durand, Raoult and Dubourg 2019).
Teixobactin inhibits peptidoglycan biosynthesis by binding to
lipid II and lipid III, precursors of peptidoglycan and teichoic
acid, respectively. In vitro, it is active against a variety of Gram-
positive bacteria, but not against Gram-negatives. Teixobactin
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showed a dose-dependent reduction in pneumococcal lung bur-
den in a murine model (Ling et al. 2015). Since its discovery,
numerous analogues have been synthesized, however still no
clinical trials involving teixobactin or one of its analogues have
been setup (McCarthy 2019; Koulenti et al. 2020).

Lastly, undecaprenyl pyrophosphate synthetase (UPPS) syn-
thesizes undecaprenyl pyrophosphate (UPP) from isopentenyl
pyrophosphate (IPP). UPP is essential in the bacterial cell wall
synthesis, as it is needed for cross membrane transport of car-
bohydrates, and as such, UPPS has been shown to be essential
for pneumococcal growth (Apfel et al. 1999). However, only few
attempts have been made to develop UPPS inhibitors against
pneumococci. In 2010, tetramic acids were evaluated as pneu-
mococcal UPPS inhibitors. While these compounds showed
interesting in vitro activity, no whole-cell based assays were per-
formed (Lee et al. 2010). Later, Danley et al. reported in vitro UPPs
inhibition by UK-106 051, a carboxamide analogue, leading to
inhibition of pneumococcal growth, yet no in vivo confirmation
has been attempted (Danley et al. 2015). Since then, few papers
on the use of UPPS inhibitors against a variety of bacteria were
published, all reporting early stage preclinical data (Concha et al.
2016; Inokoshi et al. 2016; Wang et al. 2016; Cherian et al. 2017;
Jukic et al. 2019). While these data show potential for this target,
currently there are no UPPS inhibitors in development.

Choline binding protein (CBP) interference

CBPs are a large group of proteins located on the pneumo-
coccal cell surface, involved in pneumococcal autolysis (LytA,
LytC, CbpD, CbpF), cell separation after division (LytB), inter-
ference with complement activation (PspA), adherence to host
cells (PspC, PcpA, CbpG) and modulating the amount of choline
(Pce). There are two main strategies to use CBP as a novel anti-
pneumococcal approach, (i) through direct inhibition of CBPs
and (ii) through the administration of endolysins (Maestro and
Sanz 2016).

Maestro et al. published a detailed review in 2016 on the use
of direct CPB inhibitors (Maestro and Sanz 2016). All inhibitors
were based upon choline, such as esters of bicyclic amines (EBAs)
which can be used as monomers or nanoparticle dendrimers,
consisting of several ligands. As CBPs contain several bind-
ing sites, the binding affinity increases dramatically (Mammen,
Choi and Whitesides 1998). De Gracia Retamosa et al. showed
EBAs were capable of lysing in vitro planktonic cultures in a
dose-dependent manner and increased survival in a zebrafish
model (De Gracia Retamosa et al. 2015). In a 2019 study, EBAs
were confirmed to in vitro lyse planktonic cultures using a LytA-
dependent mechanism. Furthermore, also in vitro formation of
biofilms was blocked (Roig-Molina et al. 2019). Lastly, phagocyto-
sis of bacteria by microglial cells increased in in vitro dendrimer-
treated pneumococcal cultures (Ribes et al. 2013).

Phage therapy has repeatedly been suggested in the bat-
tle against multidrug resistant bacteria. Bacteriophages have
been observed to kill antibiotic resistant bacteria. In addition,
some of their products, such as endolysins, show promising
results (Cisek et al. 2017). Interestingly, phage resistance mostly
comprises a loss of bacterial virulence (Caflisch, Suh and Patel
2019). Endolysins are produced by phage-infected bacteria to
enable the release of novel phages, thereby destroying the bac-
terial cell wall.(Stoffels et al. 2017) In pneumococci—and other
Gram-positive bacteria—these lysins belong to the CBP family.
Therefore, they recognize choline residues in the teichoic acids
of pneumococci (Vázquez and Garcı́a 2019). Administration of
purified endolysins to in vitro pneumococcal cultures led to a

rapid decrease in cell density (Diez-Martinez et al. 2015). Further-
more, mice and rats showed a greater likelihood of survival after
endolysin therapy following a pneumococcal challenge (Grand-
girard et al. 2008; Diez-Martinez et al. 2015). Synergy between dif-
ferent phages has been observed both in vitro on planktonic and
biofilm cultures and in a zebrafish model, leading to an increase
in zebrafish survival (Vázquez and Garcı́a 2019). Several clinical
trials involving phage therapy have already been done, or are
ongoing or planned (Vázquez, Garcı́a and Garcı́a 2018; Caflisch,
Suh and Patel 2019). While none of these trials have focused on
pneumococci, this does indicate phages or lysins are promising
antibacterial drug candidates.

PsaA inhibitors

Apart from enhancing the immune system through passive
immunization (see earlier), PsaA has also been proposed as a
direct drug target. Inhibitors have been studied for their anti-
pneumococcal properties. In 2015, Bajaj et al. virtually screened
a library of small molecules for their binding properties to
PsaA (Couñago et al. 2014). Hits were further optimized and
tested in an in vitro model. Two molecules showed promising
inhibitory properties against pneumococci, however the authors
stated that more optimization of these compounds was needed
(Bajaj et al. 2015). This experimental setup was later repeated by
another research group, confirming PsaA as an alternative drug
target. However, this research group also failed to identify a suf-
ficiently inhibiting molecule, as its most active compounds pos-
sessed a flexible tail, which is considered a poor development
prospect (Obaidullah et al. 2018).

Flavin adenine dinucleotide synthetase (FADS)
inhibitors

FADSs synthesize flavin mononucleotide (FMN) and flavin ade-
nine dinucleotide (FAD). As cofactors of flavoproteins, FMN and
FAD are present in all living organisms and insufficiency of
either leads to cell death. In bacteria, FADS synthesizes FMN and
FAD from riboflavin (RF) in two steps: production of FMN from
RF (RFK module) and subsequent production of FAD from FMN
(FMNAT module). While there is some similarity between pro-
and eukaryotes in the RFK module, this is not the case for the
FMNAT module, making it an interesting novel drug target (Ser-
rano et al. 2013; Sebastián et al. 2017). Using an enzyme-based
HTS approach based on the crystal structure of Corynebacterium
ammoniagenes, several lead compounds were identified. How-
ever, biological activity against pneumococci remained low, sug-
gesting they do not reach inhibitory concentrations at the intra-
cellular level (Sebastián et al. 2018). Lastly, a recent study using
virtual screening identified four FADS inhibitors inhibiting pneu-
mococcal growth in vitro (Lans et al. 2020).

Coenzyme A (CoA) pathway inhibitors

CoA is an essential cofactor in all living organisms in
the metabolism of fatty acids. It is synthesized from pan-
tothenate (vitamin B5), cysteine and ATP. First, pantothen-
ate is phosphorylated to 4’-phosphopantothenate by pan-
tothenate kinase (CoaA). This molecule is then condensated
with cysteine and subsequently decarboxylated to obtain 4’-
phosphopantetheine. Using the enzyme phosphopantetheine
adenylyltransferase (PPAT) and ATP, 4’-phosphopantetheine is
converted to dephospho-CoA, which is subsequently phospho-
rylated to yield CoA (Leonardi et al. 2005).
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PPAT is an essential enzyme within the CoA pathway.
It has been put forward as a novel drug target numerous
times, because of its structurally attractive site, high degree
of conservation among bacterial species, distinct differences
between bacterial and human PPAT, known kinetics and avail-
able purified enzyme (Miller et al. 2010). In 2013, de Jonge
et al. identified several lead compounds capable of inhibit-
ing PPAT through structure-based HTS. Moreover, these com-
pounds inhibited in vitro growth of macrolide-resistant pneu-
mococci, as well as other antibiotic-resistant Gram-positive
bacteria. In a murine lung infection model, treatment with
PPAT inhibitors led to a stasis of bacterial burden (De Jonge
et al. 2013).

Furthermore, pantothenamides, derivates of pantothen-
ate (vitamin B5), are known to possess antibiotic activity
in vitro. They are substrates of CoaA, leading to the for-
mation of inactive CoA analogues (Zhang, White and Rock
2006). In mammals, vanins—also called panthetheinases—
hydrolyze pantetheine into vitamin B5, as a way of vitamin
recycling (Jansen et al. 2013a). In 2013, studies showed that
antibiotic pantothenamides were also hydrolyzed and thus
inactivated by vanins, leading to the combination of pan-
tothenamides and vanin inhibitors as a novel antibacterial strat-
egy against Gram-positive bacteria. Vanin inhibitors were able
to protect pantothenamides from degradation by host pan-
thetheinases, making pantothenamides more stable for use
(Jansen et al. 2013b). Furthermore, pantothenamides resistant
towards vanin activity have been reported recently. However,
activity of these modified pantothenamides towards pneumo-
cocci has not been assessed yet, as they are now mainly stud-
ied for their antiplasmodial activity (Jansen et al. 2019; Spry
et al. 2020).

In turn, CoA is used in a series of reactions to produce fatty
acids. In these subsequent reactions, enoyl-acyl carrier pro-
tein reductase (ENR) catalyzes the last and rate-limiting step in
each round of chain elongation. Different isoforms of ENR exist,
however, pneumococci only possess one of them, called FabK
(Heath and Rock 1995). In silico docking revealed several poten-
tial inhibitors for FabK, however, to date, none of these have
been tested further (Zhang et al. 2011a). Some ENR inhibitors
have reached clinical trials, however, none of them are specific
to FabK (Rana et al. 2020).

Interference with iron transport systems

Iron is an essential nutrient for bacterial growth and survival. As
the concentration of free iron in the host is low, bacteria devel-
oped highly specific iron-acquisition systems on their mem-
brane surfaces. In S. pneumoniae, PiaABC, PiuABC and PitABC are
the three known iron-transport systems, respectively respon-
sible for the acquisition of heme, ferrichrome and ferric irons
(Brown et al. 2002; Cheng et al. 2013). PiaA, PiuA and PitA located
on the cell surface bind these free iron-molecules. A Ru(II) com-
plex has been tested for its inhibitory activity towards PiuA,
needed for ferrichrome transport. This complex was capable
of inhibiting pneumococcal growth without affecting an alve-
olar epithelial cell line in vitro (Yang et al. 2014a). A simi-
lar study conducted with a Rh(II) complex showed the same
effects, consolidating the use of metal complexes as poten-
tial novel anti-pneumococcal drugs (Yang et al. 2019a). Since
metal complexes only recently drew attention as potential
antibacterial agents, development is still in a very early stage
(Frei 2020).

Repurposing of existing drugs

Repurposing of existing drugs has important benefits. As these
drugs are already in use, their safety, tolerability and toxicity has
been extensively studied, reducing the costs for development
(Cragg, Grothaus and Newman 2014).

Robenidine is an anticoccidial agent used worldwide in poul-
try and rabbits. Recently, it has been evaluated for its activ-
ity on bacteria such as pneumococci and S. aureus. Robenidine,
together with two analogues, showed in vitro bactericidal activ-
ity against pneumococci by disrupting the cell membrane poten-
tial, leading to a thicker cell membrane and a wider periplasmic
space (Ogunniyi et al. 2017). Recently, treatment of septic mice
with one of these analogues, NCL195 showed a minor reduc-
tion in bacterial burden 18 h p.i. Survival was also prolonged,
as all mice died 16 h p.i. in the control group. In the treatment
group, 60% was still alive at this point, but eventually all mice
succumbed at 46 h p.i. As such, NCL195 is not suitable for further
development, but its scaffold could be used in further research
(Pi et al. 2020).

Choline kinase (ChoK) is a mediator of cell growth and divi-
sion of eukaryotic cells. As such, it is a drug target for tumor
cells. ChoK inhibitor RSM-932A is undergoing clinical trials.
However, multiple bacteria including pneumococci also express
ChoK. Human ChoK inhibitors MN58b and RSM-932A have been
shown to inhibit pneumococcal growth in vitro. However, as
these inhibitors also inhibit human ChoK and potentially other
bacterial ChoK, including those of the human microbiome, other
inhibitors need to be identified (Zimmerman, Lacal and Ibrahim
2019).

Antioxidants N-acetyl-L-cysteine and cysteamine are
mucolytics and have been proposed suitable in the treatment of
Huntington’s and Parkinson’s diseases, as well as cystic fibrosis
and malaria. In vitro, these two compounds have antibacterial
activity against pneumococci in mixed-species biofilms with
H. influenzae, killing 98% of all bacteria (Domenech and Garcı́a
2017). However, it should be noted pneumococci used in this
study were non-encapsulated to promote biofilm formation,
which might affect results.

Lastly, auranofin, a compound used in the treatment of
rheumatoid arthritis, has been tested in vitro against multiple
bacteria including multidrug resistant pneumococci. Auranofin
and derivative MH05 were subsequently tested in a murine sep-
sis model. They were shown to significantly reduce mortality
and bacterial burden of infections with several pneumococcal
strains (Aguinagalde et al. 2015). Currently, auranofin is in phase
2 clinical trials as therapy against M. tuberculosis (Butler and
Paterson 2020).

CONCLUSION

Mostly in academia, major efforts are underway to identify
potential new drug targets and to improve infection outcomes.
Currently, there are three main strategies: (i) boosting host
immunity by interfering with its immune responses, (ii) lower-
ing pneumococcal virulence and (iii) developing novel antibac-
terials with a new mechanism of action (MOA). Each of these
strategies has its own benefits and limitations. The first strategy
often leads to adjuvant therapies, which can be used in concur-
rence with current antibiotics. While some of these therapies
show highly promising results, no clinical trials have been set
up to date. Importantly, interfering with host immune responses
is a very delicate process. The biggest limitation to developing
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therapies interfering with host immunity is the risk of creat-
ing immune imbalances which can pose serious health threats
(Bewersdorf et al. 2018). Still, this strategy is gaining attention,
as publications increase and clinical trials are initiated. Sec-
ondly, lowering pneumococcal virulence can be done in mul-
tiple ways. The general idea is to inhibit important virulence
factors to enable our own immune system to overcome the
infection, without the need for bactericidal compounds. How-
ever, most of the proposed drug targets are pathogen specific.
Notwithstanding their beneficial effects on disease outcome,
use of these inhibitors requires certainty regarding the causative
agent, which cannot always be guaranteed. Lastly, the develop-
ment of novel natural antibacterials is hampered by the diffi-
cult culturing methods of soil bacteria, the primary source for
natural antibiotics. Followed by the discovery of teixobactin,
this issue was partially resolved by the development of the
iChip technology (Ng and Chan 2016). Furthermore, while ratio-
nal drug discovery (e.g. based on enzymatic screenings) shows
promising results, the pharmaceutical industry is not keen on
investing in novel antibiotics as investment costs are high, while
the profits could be small (Arias and Murray 2015; Jackson,
Czaplewski and Piddock 2018). Even when a potential hit is suc-
cessfully identified, the emergence of resistance is always on the
lure, lowering return on investments (Wright 2015). Therefore,
the Infectious Diseases Society of America (IDSA) presented the
10 x ’20 initiative ten years ago, in 2010, to develop and approve
10 novel, efficacious and safe systemically administered antibi-
otics by 2020 (Gilbert et al. 2010). While the initial goal is met, in
2019 IDSA released a publication stating that even the develop-
ment of 20 novel antibiotics might still not be sufficient to tackle
future drug resistance problems (Talbot et al. 2019). Therapies
targeting the bacteria without killing them, i.e. anti-virulence
therapies, might provide an answer to this issue. However, most
research involving these targets is still in an early stage, with
only liposomes as PLY inhibitors currently going through clini-
cal trials.

MATERIALS AND METHODS

Pubmed searches

‘Streptococcus pneumoniae pipeline’, ‘streptococcus pneumo-
niae novel drug target’, ‘streptococcus pneumoniae novel
drug’, ‘streptococcus pneumoniae novel therapy’, ‘(‘Therapeu-
tics’[Mesh] OR ‘Anti-Infective Agents’[Mesh]) AND (‘Streptococ-
cus pneumoniae’[Mesh] OR ‘Pneumococcal Infections’[Mesh])
AND novel’. The literature reporting on anti-pneumococcal
activity without explicit bacterial target (e.g. evaluation of plant
extracts) was excluded. The literature reporting on novel drug
targets older than 10 years (cut-off January 2010) was excluded.
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