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Simple Summary: Pomacea canaliculata is one of the 100 worst invasive alien species in the world,
causing significant effects and harm to native species, ecological environment, human health, and
social economy. In this study, we used species distribution modeling (SDM) methods to predict the
potential distribution of P. canaliculata in China and found that with climate change, there would be a
trend of expanding and moving northward in the future.

Abstract: Pomacea canaliculata is one of the 100 worst invasive alien species in the world, which has
significant effects and harm to native species, ecological environment, human health, and social
economy. Climate change is one of the major causes of species range shifts. With recent climate change,
the distribution of P. canaliculata has shifted northward. Understanding the potential distribution
under current and future climate conditions will aid in the management of the risk of its invasion
and spread. Here, we used species distribution modeling (SDM) methods to predict the potential
distribution of P. canaliculata in China, and the jackknife test was used to assess the importance of
environmental variables for modeling. Our study found that precipitation of the warmest quarter
and maximum temperature in the coldest months played important roles in the distribution of
P. canaliculata. With global warming, there will be a trend of expansion and northward movement in
the future. This study could provide recommendations for the management and prevention of snail
invasion and expansion.

Keywords: MaxEnt; Pomacea canaliculata; biological invasion; dispersal risk

1. Introduction

Heightened connectivity between countries brought about by globalization’s facilita-
tion has contributed to tremendous economic and social development through global trade,
international travel/tourism, etc. and also resulted in the introduction of numerous inva-
sive alien species, posing significant threats to native species, the ecological environment,
human health, and the social economy [1].
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Pomacea canaliculata (Gastropoda: Ampullariidae), commonly called the apple snail,
a freshwater snail native to tropical and temperate South America, was listed by the
International Union of Conservation of Nature (IUCN) in the “100 of the world’s worst
invasive alien species” [2], as well as among the first batch of invasive alien species in
China. The invasion of P. canaliculata severely harmed the biodiversity in China, altered the
spatial distribution of native species, caused direct harm to the production of agriculture,
forestry, animal husbandry, and fishery, and resulted in massive economic losses [3]. The
species can also lead to disease spread and pose serious threats as pathogen vectors to
China’s public health security [4].

Some species of Pomacea have characteristics that have been linked to invasiveness.
After invading the United States, Japan, the Philippines, and other countries, it caused
serious damage to the local nature and agriculture, but the control effect of various countries
was not ideal, and the population and spread area continued to increase [5,6]. P. canaliculata,
which is widely distributed in China’s south of the Yangtze River, is the most common
Pomacea spp. Found in the area [7,8]. Due to its omnivorous habits and large food intake, it
primarily harms aquatic crops such as rice [9], which is the main alimentary crop in China.
At the same time, the feeding of P. canaliculata is selective, endangering the species diversity
of the aquatic plant community [10]. Its excretory–secretory products can pollute the water
quality environment and contribute to water body eutrophication [11]. With characteristics
such as strong adaptability, rapid reproduction, and also resistance to high temperature,
hypoxia, cold, hunger, acid and alkali, water pollution, etc. [12–15], P. canaliculata more
easily becomes the local dominant population, causing varying degrees of damage to the
fish and shellfish resources in the water and endangering the local biodiversity. Meanwhile,
as an intermediate host, it carries several main parasites that are harmful to human health
and include Echinostomarevolutum, Angiostrongylus cantonensis, and Gonathostomaspinigerum,
which cause a variety of serious diseases such as echinostomiasis, eosinophilic meningitis,
gnathostomiasis, etc. [16,17]. Although A. cantonensis primarily uses Achatina fulica and
P. canaliculata as intermediate hosts [18], eosinophilic meningitis caused by P. canaliculata is
more common due to its large market sales volume, widespread distribution, and strong
adaptability. In an outbreak of A. cantonensis in Beijing during 2006, as many as 160 patients
became ill after eating undercooked P. canaliculata or related eatables, showing varying
degrees of fever, headache, neck stiffness, and skin paresthesia [19].

Quantitative risk assessment of alien invasive species is the general trend of devel-
opment. Currently, risk assessment is based on the analysis of the adaptability of alien
invasive species in the target area. Species distribution modeling (SDM) has been widely
used in assessing the risk of invasive alien species [20], as well as in simulating pest and
disease spread [21]. It estimates its potential distribution in the target area, using species
distribution data and environmental variables, and evaluates the importance of environ-
mental variables using jackknife. Due to the accuracy of prediction, particularly in the
case of few or incomplete distribution data, the maximum entropy (MaxEnt) model is one
of the most commonly used models [22]. Furthermore, the kuenm package makes use
of the flexibility of R and MaxEnt to allow for detailed model calibration and selection,
final model development and evaluation, and extrapolation risk analysis [23]. The MaxEnt
model optimized via kuenm could better predict the distribution of P. canaliculata, which
will limit the future development of the species to some extent, with corresponding policies
for prevention and control.

Since temperature is one of the most important factors that influence species diffu-
sion and distribution, global warming threatens to accelerate the spread of invasive alien
species [24–26]. In view of the restrictive effect of temperature on the expansion of P. canalic-
ulata, we used environmental variables to estimate the suitable habitats for P. canaliculata,
and the key environmental variables impacting the distribution were obtained. In this
study, we generated a model of P. canaliculata distribution using MaxEnt optimized by
kuenm, the global occurrence records of P. canaliculata and environmental variables were
used to predict the potential distribution changes in the present and under four climate
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change scenarios in the future to aid in the prevention and control of its invasion and
spread in China.

2. Materials and Methods
2.1. Environmental Variables

The environmental variables were downloaded from WorldClim version 2.1 (www.
worldclim.org/data/worldclim21.html, released in January 2020) [27], with 2.5 minutes
spatial resolutions, which include 19 bioclimatic variables, 36 climate variables (precipita-
tion, minimum temperature, and maximum temperature in every month), and elevation.
Under current and future conditions, the elevations were considered to be roughly the
same. The current climate was represented by historical climate data from 1970 to 2000,
and future environmental variables corresponding to the recent were divided into four
periods with a 20–year interval from 2021 to 2100 to predict the future potential distribution
of P. canaliculata under four shared socioeconomic pathways (SSPs): 126, 245, 370, and 585.
Here, the Beijing Climate Center Climate System Model (BCC–CSM2–MR) was used for
the global climate model (GCM) [28], which is considered to be appropriate for climate
change in China [29,30].

ArcGIS version 10.7 (ESRI, Redlands, CA, USA, www.esri.com, accessed on 3 January
2021) was used to sample the data of distribution points in all environmental variable layers,
where autocorrelation and multilinearity were inevitable and nonnegligible. To reduce
the impact of collinearity, Pearson’s correlation analysis was performed on environmental
variables. For model development, only variables with correlation coefficients less than 0.8
and eco-physiological significance were chosen. A jackknife test was used to determine
variable importance, and variables with less than a 1% contribution were also eliminated.
The results were analyzed using GraphPad Prism 8 software (San Diego, CA, USA, www.
graphpad.com, accessed on 3 January 2021).

2.2. Occurrence and Analysis of Species

We obtained occurrence records of the P. canaliculata from the Global Biodiversity
Information Facility (GBIF, www.gbif.org, accessed on 7 March 2021), and those occurrence
records were deleted for which the values of the predictor variables were absent. To reduce
spatial autocorrelation, the ENMTools package was used to delete duplicate occurrences in
the same grid cell [31]. After filtering, this study compiled 405 occurrences of P. canaliculata
(Supplementary Table S1).

Maximum training sensitivity plus specificity logistic threshold (MTSS) was used to
convert the continuous MaxEnt predictions to presence/absence map, which was generally
accepted as a promising method when only presence data were available [32,33]. The
habitat of P. canaliculata was divided into four categories according to this value: Unsuitable
habitat (0–MTSS), low suitable habitat (MTSS–0.4), moderately suitable habitat (0.4–0.6),
and highly suitable habitat (0.6–1.0).

2.3. Change in Potential Distribution and Centroids

The tool “distribution changes between binary SDMs” of SDM toolbox version 2.4 [34]
for ArcGIS was used to visualize the change of potential distribution and centroids in the
present and under four climate change scenarios in the future. The binary map was carried
out with MTSS as the boundary. For the distribution changes between binary SDMs, all
binary maps under four climate change scenarios in 2021–2100 were compared with binary
maps under the current climate, respectively. For the centroid changes, they were compared
every 20 years in chronological order.

2.4. Optimization and Evaluation of Model

MaxEnt software (version 3.4.1) was used in this study to generate a model for the
potential distribution of P. canaliculata since it has a better modeling effect even when there
are fewer occurrence records [22]. We used a bootstrap with 10 repetitions to evaluate

www.worldclim.org/data/worldclim21.html
www.worldclim.org/data/worldclim21.html
www.esri.com
www.graphpad.com
www.graphpad.com
www.gbif.org
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the predictive performance of annual models, with 75% data used as training and the
remaining 25% used for testing.

To reduce the overfitting and complexity of the model, the kuenm R package was used
to optimize feature combination (FC) and regularization multiplier (RM) [23], which are
the most important MaxEnt settings that affect the model generation [35]. The model was
tested with RM varying from 0.5 to 4 (0.5 increasing once), and all 31 possible combinations
of five feature classes, including Linear (L), Quadratic (Q), Product (P), Threshold (T), Hinge
(H). Model performance was assessed using statistical significance (partial ROC), omission
rates (ORs), and the Akaike information criterion corrected (AICc) for small sample sizes.

The model’s prediction effect was also assessed using the receiver operating character-
istic (ROC) of the area under the curve (AUC), which would have a higher value when the
species distribution deviates more from random distribution [36]. The evaluation criteria
are as follows: AUC > 0.9 is considered excellent, 0.7 < AUC < 0.9 is considered good,
0.5 < AUC < 0.5 is considered acceptable, and AUC < 0.5 is considered invalid.

3. Results
3.1. Environmental Variables and Model Optimization

Among 248 candidates, only one statistically significant model met the omission rate
and AICc criteria. In this candidate model (RM = 0.5 FC = LQP), the mean AUC ratio was
1.782, the partial ROC was 0, the omission rate was 0.05, and the AICc was 10991.12, which
represents the lowest delta AICc after adjusting (Supplementary Table S2).

Pearson’s correlation coefficients among 11 main contribution variables are shown in
Figure 1 and Supplementary Table S3. The relative contributions of the environmental vari-
ables to the MaxEnt model were estimated, and seven environmental variables, including
Bio8, bio12, bio18, bio19, elev, prec3, and tmax11, were ultimately chosen for generating
the model (Table 1).
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average AUC value of repeated operation was 0.962, and the standard deviation (SD) was 

Figure 1. Pearson’s correlation matrix heatmap of environmental variables with contribution per-
centage greater than 1%. The variables include bio12 (annual precipitation), bio18 (precipitation of
warmest quarter), bio19 (precipitation of coldest quarter), bio4 (temperature Seasonality (standard
deviation × 100)), bio8 (mean temperature of wettest quarter), prec3 (precipitation of March), prec5
(precipitation of May), prec6 (precipitation of June), elev (elevation), tmin1 (minimum temperature of
January), tmax11 (maximum temperature of November).
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Table 1. Percent contribution and permutation importance of the environmental variables in the
MaxEnt model.

Code Environmental Variables Percent
Contribution

Permutation
Importance

Bio18 Precipitation of warmest quarter 42.4 9.6
Tmax11 Maximum temperature of November 29.6 53.4

Elev Elevation 17.6 19.2
Bio8 Mean temperature of wettest quarter 5.5 15.1

Bio12 Annual precipitation 1.9 0.5
Prec3 Precipitation of March 1.5 0.8
Bio19 Precipitation of coldest quarter 1.4 1.3

3.2. Current Prediction of P. canaliculata

The potential distribution was predicted based on the above models and current
environmental variables, which occurred in the south of the Yangtze River, as well as in the
most southeastern part of China (Figure 2). The highly suitable, moderately suitable, and
low-suitable habitats accounted for 5.62%, 8.486%, and 7.50%, respectively. The average
AUC value of repeated operation was 0.962, and the standard deviation (SD) was 0.002,
indicating that the model is highly reliable for the potential habitat of P. canaliculata and
can effectively reflect its distribution in China (Figure 3).
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Figure 3. The receiver operating characteristic (ROC) curve and average area under curve (AUC)
values for the optimized model over 10 replicate runs were shown in red, while blue margins show
± standard deviation (SD) calculated for 10 replicates.

According to the results of the jackknife test of variable importance (Figure 4), bio18
had the greatest influence on the distribution of P. canaliculata, followed by tamx11. The
cumulative contribution of the two variables was more than 70%, which were major factors
that contributed to the MaxEnt model.
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Figure 4. Jackknife test of variable importance in the P. canaliculata suitability distribution.

The response curves showed how the predicted probability of presence changes as
each environmental variable was varied (Figure 5). A probability value greater than MTSS
indicated that the environment was suitable for the growth of P. canaliculata. As a result,
the suitable range for the precipitation of the warmest quarter was 230.89~2044.43 mm, the
suitable range for a maximum temperature of November was 7.86~33.17 ◦C, the suitable
range for elevation was less than 607.44 m, the suitable range for a mean temperature of
the wettest quarter was more than 13.96 ◦C, the suitable range for annual precipitation was
574.41~3803.38 mm, the suitable range for precipitation of March was 5.94~359.50 mm, and
the suitable range for precipitation of the coldest quarter were less than 1076.88 mm.
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Figure 5. Response curves of environmental variables in the potential distribution model of P. canalic-
ulata. The red curves represent average value over 10 replicate runs, while blue margins repre-
sented ± SD calculated for 10 replicates: (A) Bio18, (B) Tmax11, (C) Elev, (D) Bio8, (E) Bio12, (F) Prec3,
and (G) Bio19.

3.3. Future Prediction of P. canaliculata

The change of P. canaliculata potential distribution from 2021 to 2100 in four SSPs of
CMIP6 is shown in Figure 6 (Supplementary Table S4). This model predicted that global
warming would promote the expansion of the potentially suitable habitats of P. canaliculata,
with the total suitable habitats increasing (Supplementary Table S5 and Figure 7). Further-
more, the centroid would move from south to north, particularly in SSP585 (Figure 8).
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4. Discussion

In this study, the MaxEnt model was used to predict the potential distribution of
P. canaliculata under current and future climatic conditions in China by using the worldwide
distribution data. Despite the fact that P. canaliculata has invaded and colonized in China,
the suitable habitat may be better predicted using global distribution data, especially
given its strong invasiveness. The prediction was found to be reliable when compared
with the current distribution of P. canaliculata in China [7] and the predicted AUC results
(Figure 3). Our results showed that the suitable habitat range in China was wide, and it
would continue to expand and move northward in the future.

P. canaliculata is one of numerous Pomacea spp. that are morphologically similar, and
several of them have been brought to non-native regions and misidentified as P. canalicu-
lata [37,38]. According to the results of sampling and sequencing, in China, these include
primarily two species—P. canaliculata and P. maculata [7]. Indeed, we predicted the potential
habitats of several other Pomacea spp. distributed in Asia such as P. maculate, P. diffusa,
etc., none of which was as widely distributed in China as P. canaliculata. Therefore, it was
considered that, while many species may be included, our result can still be illustrated.

When considering the transferability and prediction accuracy of the model, over–
fitting and parameters selection were particularly important [39]. In this case, the kuenm R
package was used to optimize the FC and RM in MaxEnt, reducing the model complexity
while maintaining the model accuracy [23]. The background samples were generated
by default, which may lead to inaccurate models for occurrence records clustering in
better–surveyed areas [40,41]. Although we reduced the sampling bias using spatial
filtering, it still should be mentioned and optimized in the next step of work. In addition to
environmental variables, other characteristics such as the type and composition of water
bodies, demographic data, and vegetation coverage played important roles in affecting the
habitat suitability of species [42,43], which were insufficient in our research and require
further investigation.

A previous study has found that low temperatures in winter play significant roles in
limiting the growth of P. canaliculata [44]. While no eggs can overwinter, adults and juveniles
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may survive and contribute to the next reproductive season [45]. Meanwhile, P. canaliculata
could boost the energy supply, tolerance ability, and supercooling to improve the cold
resistance [46]. This could well explain why P. canaliculata has been found numerous
times in Beijing, Shandong Province, and other northern Chinese cities in recent years.
Therefore, it is critical to predict and prevent the northward movement of P. canaliculata.
Consistent with the results of Byers et al. [47], the temperature in the coldest months and the
amount of precipitation in the warmest months are the most important variables of all the
environmental variables. However, because the research objects are different species of the
same genus, and we used more environmental variables for screening, such as precipitation,
minimum temperature, and maximum temperature for each month, the final variables
differed. Although different SDM and GCM used in prediction, our results are basically
consistent with Lv et al. [25] and Lei et al. [48], that is, P. canaliculata would continue to
expand and move northward in the future, and temperature in the coldest months is critical
climate variable. Given the high correlation among Tmax11, Tmin1, and Bio4, we chose
Tmax11 for its high percent contribution and highest gain in the jackknife test. Tmax11 may
also alter its overwintering ability due to the maximum temperature in the coldest months.
Furthermore, we used the elevation variable in the model generation, and based on the
jackknife test results, it decreased the gain the most when it was omitted, which therefore
appeared to have the most information that is not present in the other variables. In addition,
the results of the jackknife test showed that the environmental variable with highest gain
when used in isolation is Bio18, which appeared to have the most useful information by
itself. In general, our predicted results indicated that P. canaliculata grew in warm, humid
and low–altitude environments, which was consistent with its growth habits.

Under the background of climate change, suitable habitats for P. canaliculata would
shift to the high latitudes in the northwest, while suitable areas in the lower latitudes of
the southeast would shrink, as high temperatures and global warming change the spread
of this species [49]. The results of our response curve also revealed that an increase in
mean temperature in the wettest areas will increase the risk of invasion and expansion, and
with global temperature increase, some current humid areas could be transformed into
arid areas [50], which may also be one of the reasons for its northward shift. Our potential
distribution results in the future showed that under the condition of global warming,
the low and moderately suitable habitats remained basically unchanged, and the highly
suitable habitats noticeably increased, which was more obvious as the SSP grade increased.
According to the results based on binary maps (Supplementary Table S4), the expansion
area of suitable habitats increased with time in each scenario, and the contraction area
increased at first and then decreased in SSP1 and SSP2 but kept raising in SSP3 and SSP5.
The suitable distribution area differed under different SSPs, indicating that climate change
has increased uncertainty about the suitable distribution of P. canaliculata. The difference
among different SSPs was mainly due to the changes in greenhouse gas concentrations,
especially the effect of CO2 concentration on temperature [51]. Taking a sustainable green
road (SSP1) or middle of the road (SSP2) is the most effective way to slow down the invasion
and expansion of P. canaliculata. On the other hand, the development of the use of high
fossil fuel consumption will result in the obvious expansion and northward migration
of suitable areas of P. canaliculata. Therefore, sustainable development will protect our
environment, but it will also limit the colonization and spread of invasive organisms.

Physical, chemical, biological, and other methods are currently used to prevent and
control invasive snails. Among them, chemical control is the most commonly used, and
while side effects are obvious, it has the greatest impact on the original ecosystem, and
there are issues such as drug resistance that limit its effectiveness [52]. Physical control
necessitates a large amount of manpower, but the result is frequently insignificant, so it is
frequently used as an auxiliary measure [53]. Biological control using natural enemies to
reduce its species density is low cost and has strong sustainability, in addition to having
little impact on the environment and species on the local level, which is the focus of research
on how to prevent and control invasive snails [54]. Although there are still many problems
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to be solved in the research and application of biological control, it remains as one of
the best long-term options for the prevention and control of invasive species in the long
run, including research and application of natural enemies, parasitic natural enemies and
microorganisms, plants, and local economic animals, and achieves better results through
cooperative control by multiple means. Furthermore, many invasive snails are highly
resistant to adverse conditions, such as pH and harsh environments [47], which may allow
them to maintain a species advantage in the face of environmental deterioration, as well as
having a greater impact on species diversity. Nevertheless, more comprehensive quarantine
measures, as well as more effective biochemical control measures, should be implemented
to prevent the further spread of P. canaliculata in China.

5. Conclusions

In this study, we used the optimized MaxEnt model to establish the current and future
niche model of P. canaliculata in China. It was found that humidity in the warmest quarter
and temperature in the coldest month play key roles in its growth, which was primarily
related to its overwinter ability. With global warming, the invasive habitat of P. canaliculata
could further expand and move northward in China. This study served as a resource for
the management and prevention of P. canaliculata invasion. In addition, strict quarantine
measures should be implemented in areas where P. canaliculata has not been reported
according to the current research results, and appropriate biological, chemical and physical
control measures should be combined to reduce the loss caused by P. canaliculata invasion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11010110/s1, Table S1: Occurrence data of Pomacea canalic-
ulata, Table S2: Performance statistics for all candidate models, Table S3: Environmental variables
correlations, Table S4: The gain and lost proportion of P. canaliculata potential distribution from 2021
to 2100 in four SSPs, Table S5: Proportion of suitable habitats for P. canaliculata under current and
future climatic conditions in China.
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