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We propose a theoretical model consisting of coupled differential equation of membrane potential phase and temperature for
describing the neuronal signal in mammals cold receptor. Based on the results from previous work by Roper et al., we modified
a nonstochastic phase model for cold receptor neuronal signaling dynamics in mammals. We introduce a new set of temperature
adjusted functional parameters which allow saturation characteristic at high and low steady temperatures. The modified model
also accommodates the transient neuronal signaling process from high to low temperature by introducing a nonlinear differential
equation for the “effective temperature” changes which is coupled to the phase differential equation. This simple model can be
considered as a candidate for describing qualitatively the physical mechanism of the corresponding transient process.

1. Introduction

Mammals complex thermoreceptor systems consisting of
free nerve ending fibers are located in the dermis, muscle,
skeleton, liver, and hypothalamus [1]. It is a phasic receptor
which is active when there is a change in environmental tem-
perature and rapidly becomes steadywhen reaching the stable
temperature. Based on its characteristics with respect to the
temperature level, it can be classified intowarmor cold recep-
tor [2, 3], which is, respectively, sensitive to high or low tem-
perature relative to the normal body temperature, character-
ized by its way in delivering the neuronal signals. The corre-
sponding neuronal signals are delivered in the form of burst-
ing, that is, rhythmic of action potential consisting of spikes
and punctuated by periods of inactivity [4, 5]. Their charac-
teristics depend strongly on the associated temperature levels.

In this report, we focus our discussion on the dynamics
of mammals cold receptor. In a low temperature condition,
the corresponding neuronal signals produce periodic bursts

with uniformduration and slow oscillation characteristic, but
with nonuniform spike frequencies for each burst. When the
temperature is raised up by a quasistatic process, the amount
of spikes per burst tends to decrease forming a periodic single
spike or beating. At a relatively higher temperature, the spike
pattern becomes aperiodic; namely, it can also exhibit either
double spike or stochastically phase-locked spike (skipping)
phenomenon [3]. An experimental study on the static and
dynamic discharge of a specific mammals cold receptor, that
is, cat’s lingual nerve, has been comprehensively conducted by
Braun et al. [4]. In particular, they showed that the dynamical
response of the associated cold receptor is different for
various temperature transitions between 10∘C and 40∘C.

Nowadays, many models have been proposed to explain
the dynamical characteristics of mammals cold receptor.
One of the most profound models is the conductance-based
model which relies on the conductance voltage-dependent
phenomenon due to the existence of Na+ and K− ions.
For example, Braun et al. [6] in their report had discussed
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a Hodgkin-Huxley voltage-conductance type equation in
their attempt to understand the role of nonlinearity and noise
on the dynamics of nerve cell membrane through mammals
cold receptor data. Another conductance-based cold receptor
model was also discussed in different reports [7, 8].

In the meantime, there is a certain type of ion channel
called transient receptor potential melastatin 8 (TRPM8)
that plays an important role in delivering the cold receptor
neuronal signal (see [9] for review). The role of TRPM8 has
been shown experimentally in thermosensation mechanism
inmice as discussed in [10–12]. Very recently, a conductance-
based model which includes the role of TRPM8 ion channel
has been proposed byOlivares et al. and showed a good agree-
ment with the experimental data found from the cold recep-
tor of mice [13]. The corresponding Olivares model success-
fully resembled the experimental data of increasing the firing
rate for quasistatically increasing exposed temperature pro-
tocol.

Apart from those conductance-based models, a fully
ionic model has been proposed by Longtin and Hinzer [5],
which discussed the stochastic action potential phase model
specifically for a cat’s lingual cold receptor. This model was
further simplified by Roper et al. [14], namely, by introducing
a simplified phase differential equation. It was demonstrated
that the corresponding model was able to approximate the
Longtin-Hinzer model for temperature interval 17.8∘C to
40∘C. Compared to the conductance-based model, Roper’s
model [14] offered a relatively simple mathematical descrip-
tion. However, we discovered that this model did not lead to
a realistic description on phenomena that occurred in higher
or lower temperature conditions.

Based on this fact, in the present reportwe discuss a possi-
ble modification on the corresponding Roper’s model for the
nonstochastic limit by introducing a new functional form of
parameters that appeared in the corresponding model. Fur-
thermore, we also discuss an extension of the corresponding
modified model to accommodate the dynamical response of
neuronal signals during a transition process from high to
low temperature condition. This dynamical model is able to
explain the phenomenon of sudden increasing amount of
spikes per burst due to decreasing temperature, which is fol-
lowed by a gradual decreasing of the corresponding amount
of spikes per burst until the receptor reaches a steady con-
dition at the lower temperature [4, 15]. We explain this phe-
nomenon by considering an additional differential equation
to describe the temperature dynamics, which is coupled to the
associated phase differential equation.

We organize the report as follows: Section 2 discusses the
phasemodel for the case of the steady temperature condition.
The modified models for static temperature and dynamic
transient process from high to low temperature are given in
Section 3, namely, by defining a new set of functional param-
eters in the corresponding phase differential equation and
introducing a new differential equation of temperature cou-
pled to the phase differential equation and we focus our dis-
cussion on the characteristics of spike per burst, burst period,
and interspike interval. We end this report with a conclusion
in Section 4. Comprehensive discussions regarding the bio-
logical and chemical related properties of the corresponding

cold receptor have been given in detail previously [4, 5, 14],
such that in this report we only focus on the modified
mathematical model.

2. Model and Method

The corresponding nonstochastic phase differential equation
for steady condition of neuronal signaling at a specific
temperature developed previously by Roper et al. [14] is given
as follows:

𝑑𝜃

𝑑𝑡
= 𝐹 (𝑡, 𝜃) (1)

with

𝐹 (𝑡, 𝜃) = 𝑓
1
(𝑡) + 𝑓

2
(𝑡) cos 𝜃, (2)

where

𝑓
1
(𝑡) = 𝑏 − 𝐴 cos (Ω𝑡) , (3)

𝑓
2
(𝑡) = 1 + 𝐴 cos (Ω𝑡) . (4)

Here, the symbol 𝜃 represents the phase of membrane poten-
tial in the trigger region, in which its full rotation describes
the generation of an action potential [14]. The parameter 𝑏 is
related to the modulation of the mean potential of the cell,
while the term 𝐴 cos(Ω𝑡) is a zero mean periodic term that
oscillates with the frequency Ω, with 𝐴 as the corresponding
magnitude. The function 𝐹(𝑡, 𝜃), with an inverse time unit,
describes the dynamics of the corresponding neuronal signal
bursting [14].

It is seen that there are two important terms in (2),
namely, 𝑓

1
and 𝑓

2
functions, as given by (3) and (4), respec-

tively. The burst occurs when 𝑓
1
> 𝑓
2
, where the average

amount of spikes in each burst is proportional to the max-
imum width of the overlap area of both curves, denoted by
Δ, as exemplified in Figure 1(a) along with the corresponding
phase of membrane potential (𝜃), which is found by solving
(1), and neuronal signal bursting (𝐹) functions as shown
in Figures 1(b) and 1(c), respectively. It is obvious that the
amount of spikes per burst can be controlled by changing the
value of 𝑏 and𝐴 as well asΩ which also determine the period
between two consecutive bursts. It was assumed previously
[14] that these parameters are of linear functional forms of
temperature as follows:

𝑏 = 𝑏
0
− 𝑏
1
𝑇, (5)

𝐴 = 𝐴
0
+ 𝐴
1
𝑇, (6)

Ω = Ω
0
+ Ω
1
𝑇 (7)

with 𝑏
0
, 𝑏
1
, 𝐴
0
, 𝐴
1
, Ω
0
, and Ω

1
being constants to be deter-

mined. This assumption was aimed at yielding a decreasing
period between two consecutive bursts when the temperature
increases through a quasistatic process. In their work, Roper
et al. defined the value of each parameter as follows: 𝑏

0
=

0.675ms−1, 𝑏
1
= 0.007ms−1, 𝐴

0
= 0.3ms−1, 𝐴

1
=

0.001ms−1, Ω
0
= −𝜋/150ms−1, and Ω

1
= 𝜋/1500ms−1. We
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Figure 1: (a) The plot of 𝑓
1

(solid curve) and 𝑓
2

(dash curve) functions with Δ denotes the maximum width of overlap area associated with
SB along with (b) phase of membrane potential and (c) the corresponding neuronal signal. BP denotes the burst period.

used all these parameters at 𝑇 = 35∘C to depict the example
shown in Figure 1.

Based on the above formulation, it is clearly seen that
these linear assumptions will lead to an unrealistic scenario
at the high and low temperature conditions, since all those
parameters are not saturated at these limits. Therefore, it is
reasonable to assume that phenomenologically at those tem-
peratures the neuronal signals become saturated since in that
range the receptor becomes less sensitive [16]. It is interesting
to note that this model can also be further developed to
describe the transient transition from high to low tempera-
tures as previously reported byRing anddeDear [15]. For this,

we propose assuming that the corresponding temperature
should be considered as a function of time with Morse-
like characteristic described by a differential equation which
is coupled to the corresponding phase differential equation
given by (5). To study the dynamical characteristics of this
model, we numerically solve the related coupled differential
equations by means of standard Runge-Kutta method.

3. Results and Discussion

3.1. Modified Phase Model for Steady Temperature Condi-
tion. To develop a more realistic model, we consider the
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modification of 𝑏, 𝐴, and Ω parameters by introducing the
following tanh functional forms:

𝑏 = 𝑏
0
− 𝑏
1
tanh [𝐶 (𝑇eff − 𝑇)] ,

𝐴 = 𝐴
0
+ 𝐴
1
tanh [𝐶 (𝑇eff − 𝑇)] ,

Ω = Ω
0
+ Ω
1
tanh [𝐶 (𝑇eff − 𝑇)]

(8)

which exhibit sigmoidal saturation characteristic at relatively
high and low temperatures. Here, 𝐶 and 𝑇 are parameters
to be adjusted. We denote the parameter 𝑇eff as an “effective
temperature” for describing the dynamics of neuronal signal
during the transient process from high to low environmental
temperature. The meaning of this parameter will become
clear in later discussion (see Section 3). Obviously, the
functional parameter forms given by (8) will lead to saturated
behavior of neuronal signal at high and low temperatures. By
considering the same values with that used previously [14] for
a temperature interval of 40∘C to 15∘C and Ω → 0 at 𝑇eff →
−∞ we found 𝐶 = 0.055/∘C and 𝑇 = 33.75∘C, while the other
parameters are set to 𝑏

0
= 0.4475ms−1, 𝑏

1
= 0.1575ms−1,

𝐴
0
= 0.3325ms−1, 𝐴

1
= 0.0225ms−1, Ω

0
= 3𝜋/200ms−1,

andΩ
1
= 3𝜋/200ms−1.

Demonstrated in Figure 2 is the comparison between
the previous set of functional parameter forms and the new
ones. It should be realized that, for the actual cases, those
functional forms should be adjusted using experimental data
of the associated spiking and bursting neuronal signaling
phenomena in low and high temperature conditions. Indeed,
it is also important to note that one can choose different type
of functional forms. A nonsigmoidal functional form was
previously proposed in [17] which was aimed at mimicing the
bifurcation characteristics of the conductance-based Huber-
Braun model [7].

The corresponding neuronal signals at steady tempera-
tures for 𝑇eff = 40∘C to 15∘C, which are compared to the pre-
vious reported results [14], are depicted in Figure 3. Here the
function 𝐹 of (2) is calculated by solving first 𝜃 function in (1)
and then the solution is inserted into the corresponding equa-
tion. The average amount of spikes per burst (SB) for both
functional forms is given in Figure 4. It is observed that, at
low temperature condition, the tanh functional forms exhibit
a more reasonable amount of spike per burst than the linear
functional forms of Roper’s model [14] that exhibits higher
amount as demonstrated in Figure 4. Indeed, there are some
discrepancies between both linear and tanh functional forms
since both assumptions do not perfectly coincide as clearly
shown in Figure 2. But indeed, both forms share qualitatively
similar bursting and spiking characteristics. As shown by the
figures, it is important to realize that, for decreasing 𝑇eff, the
amount of spikes per burst is increasing.

The other important characteristic, namely, the interspike
interval histogram (ISIH) of the neuronal signal at the
corresponding different temperatures for the tanh functional
forms, is given in Figure 5(a) for both Roper and the present
modifiedmodel, along with its plot as a multivalued function

of 𝑇eff in Figure 5(b). The ISIH shows the existence of
beating and skipping at high temperature condition which
are indicated by the presence of large intervals. Clearly, the
modified model exhibits a bit different characteristics than
the original Roper’s model.

3.2. Model for Transient Transition Process. During a tran-
sient transition from high to low temperature, the existence
of a peak response with relatively large amount of spikes per
burst at a certain time was shown experimentally as the tran-
sition process begins as reported in [15, 18]. Based on the burst
characteristic at steady temperatures as exemplified by Fig-
ure 3, we suspect that this conditionmight be perceived by the
brain to occur at a temperature lower than the final temper-
ature. In the meantime, another experimental result demon-
strated that the period between two consecutive bursts during
the transient transition process is higher than the period at
final temperature [4]. Tomodel the corresponding dynamical
response, we consider first a conjecture that the effective
temperature𝑇eff in our formulation is a function of time in the
following Morse-like function [19]:

𝑇eff = 𝐷 {1 − exp [−𝑎 (𝑡 − 𝑡)]}
2

+ 𝑇
0,eff, (9)

where 𝑇eff and 𝑇0,eff are effective temperature at time 𝑡 and its
lowest value, respectively, whereas 𝑡 denotes the time when
𝑇eff = 𝑇0,eff. Graphically, the parameter 𝐷 determines the
depth of Morse-like curve as illustrated in Figure 6, while
𝑎 denotes its effective width. The corresponding Morse-like
function is chosen because it is amathematically well-defined
function with no singularity. Phenomenologically, it is likely
to be the best geometrical shape to describe the correspond-
ing transient response characteristics among other similar
functional forms such as the Lennard-Jones [20], the Buck-
ingham Exponential-6 [21], and the Mie potential functions
[22]. All these functions are commonly used to describe
the molecular interactions [22]. In contrast to the Morse
function, the other three functions contain a singularity.

It should be emphasized that the existence of the above-
mentioned peak response with large amount of spike per
burst during the transient transition is the reason to define the
term “effective temperature” as a tuning factor in our formu-
lation based on the following argument: as shown in Figure 3,
the amount of SB for low temperature is larger than the higher
one. At the same time, a sudden increasing amount of SB
occurs due to decreasing temperature, which is followed by a
gradual decrease of SB until the receptor reaches a steady con-
dition at the lower temperature [4, 15]. From all these facts, we
therefore propose that the 𝑇eff functional parameter, with its
curve given in Figure 6, should be considered as a dynam-
ical tuning factor that is needed to describe the dynamics
of the related neuronal signal propagation.

It is easy to prove that the function given by (9) satisfies
the following differential equation:

𝑑𝑤

𝑑𝑡
= 𝑎 (𝐷

1/2

− 𝑤) , (10)
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Figure 2: Comparison between the previous set of functional parameter forms (dash curve) with the new one (solid curve) for (a) 𝑏, (b) 𝐴,
and (c)Ω parameters.

where

𝑤
2

= 𝑇eff − 𝑇0,eff. (11)

In the ensuing discussion, we choose to solve (10) numerically
rather than using (9) in order to explain the corresponding
peak response phenomenon. It should be noted that, to
ensure the corresponding numerical solution of (10) is
the Morse-like function as given by (9), one should con-
sider a negative initial condition for 𝑤; that is, 𝑤(0) =
−√𝑇eff(0) − 𝑇0,eff.

We expect the parameters 𝑎 and 𝐷 can be determined
experimentally. However, in our calculation, we assume that
the parameter𝐷 is fixed to

𝐷 =
− (𝑇
𝑓,eff − 𝑇𝑖,eff)

4
, (12)

where𝑇
𝑓,eff and𝑇𝑖,eff denote the final and initial effective tem-

perature, respectively, such that 𝑇
0,eff in (9) and (11) is fixed to

𝑇
0,eff =
(5𝑇
𝑓,eff − 𝑇𝑖,eff)

4
. (13)
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Indeed, one can assume different values for this parameter
and it is clear that different𝑇

0,eff leads to a different 𝑡 in (9). On
the other hand, it is reasonable to assume that the parameter
𝑎 in (10) should be expressed as a function of 𝑤, that is,
𝑎 ≡ 𝑎(𝑤), because it is natural to think that the shape of the
associated Morse-like function is different in different tran-
sition process. To formulate the corresponding expression,
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model at steady conditions for 𝑇eff = 40∘C, 35∘C, 30∘C, 25∘C, 20∘C,
and 15∘C. (b) Multivalued characteristics of ISIH for Roper (red
arrow-head) and modified (black arrow-head) model as a function
of 𝑇eff.

first we plot functions 𝑓
1
and 𝑓

2
given by (3) and (4) and

adjust the value of 𝑎 in (10) to meet a matching condition,
which is indicated by the coincidence between the first
overlaps width of both functions (denoted by Δ in Figure 1)
and the lowest effective temperature 𝑇

0,eff. Exemplified in
Figure 7 is the associated matching condition for the dynam-
ical response from 𝑇

𝑖,eff = 40∘C to 𝑇
𝑓,eff = 15∘C. For this

transition, we found that the matching condition occurs at
𝑎 = 0.002ms−1. The calculation result for this parameter
from 𝑇

𝑖,eff = 40∘C to various 𝑇
𝑓,eff is given in Figure 8. Using

a standard fitting procedure, it is found that all those values
can be approximated by the following function:

𝑎 (𝑤) = 𝑎
0
exp [𝛼 (𝑤2 + 𝑇

0,eff)] (14)
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𝑑𝑤

𝑑𝑡
= 𝑎
0
exp [𝛼 (𝑤2 + 𝑇

0,eff)] (𝐷
1/2

− 𝑤) (15)

which is coupled to (1) through parameters given by (8). It is
important to note that the 𝐷 parameter and 𝑎(𝑤) function
phenomenologically correspond to the characteristics of
the burst period and amount of SB around the matching
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condition, respectively. Therefore, as mentioned previously,
it is obvious that these two parameters should be determined
experimentally by observing the spiking and bursting char-
acteristics similar to what was done in [4].

Using this newmodel, the simulation results of transition
processes from 𝑇

𝑖,eff = 40∘C to 𝑇
𝑓,eff = 35∘C, 30∘C, 25∘C,

20∘C, and 15∘C are depicted in Figure 9. Given in Figure 10
are the SB for transition to 𝑇

𝑓,eff = 35∘C and 15∘C, along
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at the end-time of a peak of burst last spike and at the midtime of two points as shown in Figure 1(c), respectively.

with the corresponding burst period (BP) as defined in
Figure 1(c), which is qualitatively similar to that given in
[4]. The parametric plot in phase-plane of 𝑇eff and 𝐹(𝑡, 𝜃) to
give a more clear description is also given in Figure 10. It is
shown that the SB and BP characteristics exhibit pronounced
transient feature for transition to 𝑇

𝑓,eff = 15∘C. In the mean-
time, the occurrence of dense patterns of bursting process
when 𝑇eff < 𝑇𝑓,eff is demonstrated, justifying the existence
of previously discussed peak response phenomenon as shown
experimentally in [4] during a transient time. In contrast, it is
interesting to note that a monotonous response characteristic
is exhibited during 𝑇eff > 𝑇𝑓,eff.

An example of the approximate Morse-like function
found from (15) is given in Figure 7, which shows the same
position of the related matching condition compared to
Morse-like function found by solving (10) numerically. It is
clearly shown that, right after the transition process begins,
namely, at the first burst, the amount of the corresponding
spikes is larger than the next bursts. As a consequence of
choosing the saturated tanh functional forms in the model
parameters as given by (8), we found that the change of the

SB at matching condition is at a reasonable level, especially in
the case of 𝑇

𝑓,eff = 15∘C, where 𝑇
0,eff < 15

∘C.
To validate this modified model with experimental data,

we focus on comparing qualitatively the SB and BP charac-
teristics with the results reported by Braun et al. [4]. Given
in Figure 11 are the spiking and bursting phenomena for the
transition similar to what was discussed in [4] along with
the associated 𝑇

𝑓,eff function. We calculate the SB of four
different𝑇

𝑓,eff transition intervals, as well as the BPparameter.
The results are shown in Figure 12. It is interesting to note
that qualitatively the corresponding SB characteristic exhibits
fairly similar trendwith the experimentally found SB figure in
Figure 5 in [4], while it is seen that graphically that BP exhibits
similar characteristics with SB. Note that the transient char-
acteristics are demonstrated significantly in the cases of
low temperature transitions, that is, 𝑇

𝑖,eff = 25∘C to 𝑇
𝑓,eff =

20∘C and 𝑇
𝑖,eff = 20∘C to 𝑇

𝑓,eff = 15∘C. This feature can be
explained as a consequence of𝑇eff function with wider profile
due to larger 𝑎 value as shown in Figure 11.

On the other hand, in comparison with Olivares’s model
[13], taking into account the role of TRPM8 ion channel
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Figure 11: The burst phenomenon (top panel) and 𝑇eff function (bottom panel) for transition from (a) 𝑇eff = 35∘C to 30∘C, (b) 𝑇eff = 30∘C to
25∘C, (c) 𝑇eff = 25∘C to 20∘C, and (d) 𝑇eff = 20∘C to 15∘C.

transient current to explain the phenomenon of increasing
firing rate (which indicates the increasing of SB) as exposed
temperature decreases, this modified model offers a dif-
ferent perspective to the transition mechanism from high
to low temperature, namely, by introducing the “effective
temperature” (𝑇eff) functional parameter as a dynamic tuning
factor that coupled to the phase of membrane potential.
As discussed previously, although the physical meaning of
this dynamical parameter is not clearly understood at this
moment, we proposed that this parameter might be inter-
preted as an actual temperature being perceived by the mam-
mal brain and it is likely reasonable to assume that the cor-
responding transient 𝑇eff function is related to the complex
role of TRPM8 ion transient channel. Indeed, this hypothesis
should be separately investigated.

Furthermore, although our model is able to describe the
existence of peak response at matching condition, however,
it should be noted that the model leads to the increasing
pause duration or the time distance between two consecutive
bursts at the corresponding condition, while in reality this is
not the case as reported previously [4]. This problem is a bit
complicated to be solved and we suggest it can be overcome
by defining new functional forms for parameters given by (8).

The other problemwith our model is related to the value of𝐷
in (11) where in our calculation it was considered to be fixed.
We expect this parameter can be determined experimentally,
and this is beyond the scope of our study.

To this end, apart from the above mentioned problems, it
is also realized that this modified model should be improved
further, since the related effective temperature differential
equation given by (15) does not take into account the influ-
ence of phase of membrane potential. We suggest that fully
coupled differential equations that accommodate this feature
will likely be able to give a good quantitative explanation of
the dynamics and characteristics of neuronal signals of the
corresponding cold receptors. This issue could be a challeng-
ing topic for future investigation.

4. Conclusion

We have discussed a modified Roper’s model for describing
the characteristics of neuronal signaling in mammals cold
receptor, especially for the temperature transition processes.
The model consists of coupled phase-temperature nonlinear
differential equations equipped with a set of functional
parameters that saturate at low and high temperature. It was
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Figure 12: (a) SB and (b) BP resulted from present modified model (solid circle) for transition (left to right panel) from 𝑇eff = 35∘C to 30∘C,
𝑇eff = 30∘C to 25∘C, 𝑇eff = 25∘C to 20∘C, and 𝑇eff = 20∘C to 15∘C. Each SB and BP are plotted at the end-time of a peak of burst last spike and
at the midtime of two points as shown in Figure 1(c), respectively.

shown that our modified model is able to describe the
experimental fact that the characteristics of neuronal signal
in a transient transition process fromhigh to low temperature
exhibit the existence of large amounts of spikes per burst right
after the process initiated, namely, by introducing the new
functional parameter “effective temperature,” which plays a
role as a dynamical tuning factor to explain the correspond-
ing phenomenon. We propose that this dynamical tuning
factor might be interpreted as a perceived temperature by the
mammal brain in which its perception of temperature at 𝑡
has the lowest value, while 𝑇

𝑖,eff and 𝑇
𝑓,eff are coincides with

the environmental temperatures. Certainly, it is intriguing to
further examine experimentallywhether this interpretation is
correct or not. For instance, by observing the relatedmammal
brain activity that corresponds to the temperature perception.
Further studies should be conducted in order to overcome a
few problems that still exist. However, this modified model
can be considered as a dynamic simple alternative candidate
to complex ionic models to describe qualitatively the tran-
sient transition fromhigh to low temperature of themammals
cold receptor.
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