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Sex differences in body fat distribution and menopause-associated shifts in regional 
adiposity suggest that sex hormones play an important role in regulating the differen-
tiation and distribution of adipocytes, but the underlying mechanisms have not been 
fully explained. The aim of this study was to determine whether ovarian hormone status 
influences the production and distribution of adipocytes in adipose tissue arising from 
bone marrow-derived cells. Nine- to ten-week-old ovariectomized (OVX), surgery naïve 
(WT), and estrogen receptor alpha knockout (αERKO) mice underwent bone marrow 
transplantation from luciferase or green fluorescent protein expressing donors. A subset 
of OVX animals had estradiol (E2) added back. Eight-weeks posttransplant, whole body 
and gonadal fat BM-derived adipocyte production was highest in OVX and αERKO mice, 
which was attenuated in OVX mice by E2 add-back. All groups demonstrated the highest 
bone marrow derived adipocyte (BMDA) production in the gonadal adipose depot, a 
visceral fat depot in mice. Taken together, the loss of ovarian hormones increases the 
production of BMDAs. If translatable across species, production of BMDA may be a 
mechanism by which visceral adiposity increases in estrogen-deficient postmenopausal 
women.

Keywords: adipocyte, estrogen receptor, bone marrow-derived cells, bone marrow transplant, ovarian hormones, 
myeloid cells

inTrODUcTiOn

Obesity is an ever-growing epidemic in the United States and around the world (1, 2). However, it is 
now clear that the disease risk conferred with obesity does not simply depend on overall adiposity, 
but on body fat distribution (3, 4). In fact, the cardiometabolic disease protection observed in 
women before the menopausal transition can be attributed, at least in part, to preferential accumu-
lation of fat in peripheral adipose depots, primarily the hips and thighs (5). Notably, even without 
weight gain, peri- and postmenopausal women experience a shift in body fat distribution toward 
both subcutaneous and visceral abdominal adipose tissue depots (6, 7). Thus, sex hormones, and 
estrogen status, in particular, are hypothesized to play a mechanistic role in determining body fat 
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distribution, although the specifics of this regulatory mechanism 
have yet to be completely described.

Depot-specific differences in gene expression and metabolic 
phenotype of adipocytes have been previously described 
(8–10). This phenotypic variation may be due to differences 
in the progenitor populations from which new adipocytes are 
developed (9, 11). Of particular interest is a subset of adipocytes 
in the white adipose tissue of mice that arise de novo from an 
unconventional progenitor source, bone marrow-derived cells 
(BMDCs). These bone marrow derived cells of the hematopoietic 
myeloid lineage traffic through the circulation to the adipose 
tissue and commit to the adipocyte lineage in mice (12–16) and 
humans (17, 18).

Mouse studies have shown that bone marrow-derived adipo-
cytes (BMDA) appear in a sex- and age-specific manner, with 
the greatest accumulation in the adipose tissue of older female 
mice (15). Interestingly, the regions that display the greatest 
accumulation of BMDA are those typically associated with 
metabolic dysfunction, the epi/pericardial and gonadal adipose 
depots (15, 16, 18). Thus, we hypothesize that the suppression 
of gonadal hormone signaling regulates the development of 
BMDAs, resulting in their specific accumulation central adipose 
tissue depots.

Rodent models are often utilized in mechanistic studies 
of obesity. In mice, ovariectomy (OVX) is used as a model of 
the postmenopausal state, recapitulating the increase in body 
weight and, more importantly, the redistribution of body fat to 
central depots (19, 20) observed in postmenopausal women. 
Furthermore, estrogen receptor knockout models have convinc-
ingly demonstrated a role for estrogen in regulating fat mass 
(21–23). The observation that estrogen receptor alpha knockout 
(αERKO) mice have a greater fat mass than WT mice suggests 
that ERα plays a protective role against fat accumulation (21).  
In fact, Pedram et al. demonstrated that ERα plays a specific role 
in suppressing adipogenesis (24).

Based upon our previous findings that BMDA accumulation 
increases with age and studies demonstrating both OVX and 
αERKO increase adiposity we utilized surgical OVX with or 
without the administration of exogenous 17β-estradiol (E2) com-
bined with lineage labeled bone marrow transplantation (BMT) 
models [e.g., green fluorescent protein (GFP) or luciferase] to 
determine the influence of gonadal hormone status on BMDA 
accumulation. We also utilized a whole-body αERKO mouse 
model to interrogate disruptions in E2 signaling through ERα as 
a mechanism by which ovarian hormones may regulate BMDA 
production. We hypothesized that OVX and αERKO would result 
in increased production of BMDAs in metabolically detrimental 
depots (e.g., gonadal), and that this increase would be attenuated 
by estrogen replacement.

MaTerials anD MeThODs

animals
All animal procedures were performed in an AAALAC-
accredited facility in accordance with the Guide for the Care 
and Use of Laboratory Animals (25) and approved by the 

University of Colorado (CU) Denver Institutional Animal 
Care and Use Committee. Wild-type C57BL/6J mice from The 
Jackson Laboratory (#000664) were used in all experiments 
unless otherwise stated. If applicable, OVX was performed 
by The Jackson Laboratory at 6 weeks of age, and all animals, 
male and female, arrived at CU at 8 weeks of age. Additional 
transgenic animals purchased from The Jackson Laboratory 
included estrogen receptor alpha null (αERKO) mice (#004744), 
adiponectin promoter driven cre-recombinase (AdipoQ-cre) 
expressing mice (#010803), adipocyte protein 2 driven cre-
recombinase (aP2-Cre) expressing mice (#005069), and mice 
expressing enhanced GFP driven by the human ubiquitin-C 
promoter (#004353). LoxP/stop/loxP (LSL) Luciferase mice 
were acquired from the National Cancer Institute’s mouse 
repository (stock #01XAC). Cre-recombinase and loxP express-
ing animals were bred in-house to create hemizygous cre and 
hemizygous lox expressing animals to use in future studies. 
Mice were maintained on a 12 h light, 12 h dark schedule at 
room temperature (22°C) with ad libitum access to water and 
standard rodent chow free of phytoestrogens, Envigo Teklad 
global soy protein-free extruded diet (#2920X), throughout all 
studies.

Bone Marrow Transplantation
Bone marrow donors were euthanized by isoflurane inhalation 
and cervical dislocation. Fresh BM cells were harvested asepti-
cally from the femurs and tibias using a 27-gauge needle/syringe 
and 2 ml phosphate-buffered saline. The cells were disaggregated 
by gentle pipetting several times and filtered to obtain the single 
cell suspension utilized in transplantation.

Male and female animals necessitating BMT for lineage 
tracing studies underwent transplantation after 1–2  weeks of 
acclimatization (at approximately 9–10 weeks of age). Recipient 
mice were irradiated with a 12 Gy total dose, split into 6 Gy doses, 
separated by 4 h, using an X-ray radiation source. Immediately 
following the second dose, recipients were injected via the retro-
orbital venous plexus with 1 × 106 BM cells suspended in 100 µl 
sterile saline.

The BM used for transplantation came from one of the fol-
lowing transgenic mouse strains: AdipoQ-cre X LSL-Luciferase, 
aP2-cre X LSL-Luciferase or Ubc-GFP donors. AdipoQ-cre and 
aP2-cre mice use the adipocyte-specific adiponectin (AdipoQ) or 
fatty acid binding protein 4 (aP2) gene promoters, respectively, 
to drive expression of cre-recombinase. The LSL-Luciferase mice 
carry a luciferase reporter gene downstream of a loxP-flanked 
stop codon. In cells expressing cre-recombinase, the stop codon 
is excised allowing expression of the luciferase reporter gene. 
Thus, BM from dual transgenic AdipoQ-cre x LSL-Luciferase 
or aP2cre x LSL-Luciferase mice has a luciferase reporter gene 
that is only expressed in mature adipocytes. When this BM is 
transplanted into WT mice, only mature adipocyte arising from 
the transplanted BM will express luciferase, identifying BMDAs. 
Ubc-GFP mice exhibit expression of GFP under control of the 
human ubiquitin-C promoter in all cell types throughout the 
body. Thus, all cells arising from BM transplanted from Ubc-GFP 
mice will be positive for GFP, including mature adipocytes of the 
BM lineage.
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hormone replacement in Female Mice
One to two weeks after BMT (at approximately 10–12 weeks of 
age, approximately 6  weeks after OVX), hormone replacement 
was initiated via implantation of subcutaneous pellets in those 
mice randomized to the E2 add-back group (Innovative Research 
of America, Estradiol: Cat. # SE-121, 0.05  mg/pellet, 60-day 
release) or a sham surgery control group. Pellets were implanted 
in the dorsal subcutaneous tissue of the mouse. One E2 pellet 
was introduced via 10-gauge trocar. Implants were expected to 
maintain circulating hormone levels in the physiological range 
with the doses previously utilized in other mouse studies of 
adipogenesis and E2 replacement after OVX (26).

Whole-Body luciferase imaging
Whole-body luciferase activity was completed with the IVIS 
Imaging System 50. Animals were lightly anesthetized and 
injected with d-luciferin (120  mg/kg, 100  µl retro-orbital). 
Measurements were initiated 3 min after luciferin injection, and 
luminescence was integrated over 5 min. In some animals, in vivo 
imaging was repeated at 2, 4, 6, 8, and 10 weeks posttransplant.

At the end of the study, mice were euthanized by CO2 
asphyxiation and cervical dislocation. Body weight of the mice 
was measured immediately before sacrifice (18  weeks of age, 
8–10 weeks posttransplant). Gonadal, inguinal, and interscapular 
(mix of white and brown fat) adipose depots and if appropriate, 
lower hind limb skeletal muscle (combined gastrocnemius and 
soleus), liver, and lung, were recovered, weighed, and processed 
for appropriate assay.

staining and Flow cytometry
Adipose tissue was minced into pieces of 1–3 mm. Tissue frag-
ments were digested at 37°C for 1 h with gentle shaking in diges-
tion buffer [Krebs–Ringer HEPES + 2.5 mM glucose + 2% fetal 
bovine serum (FBS) (Gemini Bio-products, #100–500) + 200 nM 
adenosine (Sigma Aldrich, #A4036) + 1 mg/ml collagenase (type 
VIII, Sigma Aldrich, C2139), pH 7.4] using 4  ml buffer/gram 
of fat. Samples were then passed through a 150  µm Celltrics 
filter (Sysmex Partec GmbH, Germany, #04-004-2324), and 
digestion stopped by the addition of one volume of wash buffer 
[Hanks Balanced Salt Solution (Mediatech, #21-022-CV) + 2% 
FBS +  200 nM adenosine, pH 7.4]. Adipocytes were separated 
from the stromal pellet via centrifugation at 300 g 10 min, and the 
wash step repeated to ensure sufficient separation and exclusion 
of digestion buffer. The adipocyte and stromal fractions were 
collected and prepared for appropriate experiments.

Adipocyte Preparation
Human TruStain FcX™ (Fc Receptor Blocking Solution, Cat. No. 
422301; BioLegend, San Diego, CA, USA) was added to isolated 
adipocytes at 5µl/100 µl of cell suspension, and cells incubated 
at room temperature for 10 min. LipidTOX Deep Red Neutral 
Lipid Stain (Cat. No. H34477; Life Technologies, Thermo Fisher 
Scientific Inc., Waltham, MA, USA, 1:200 dilution) and Vybrant® 
DyeCycle™ Violet stain (Invitrogen, Cat. # V35003, 1 µl/106 cells) 
were added to the cell suspension and incubated protected from 
light at 37°C for 30 min. Cells were kept at 37°C until analysis. 
Cytosolic GFP expression was assessed in intact adipocytes 

(LipidTOX RedPOS events) containing a single nucleus (DyeCycle 
VioletPOS events) by flow cytometry as detailed previously.

Stromal Cell Preparation
The stromal cell pellet was resuspended in eBioscience 1X Red 
Blood Cell Lysis Buffer (#00-4300-54) at room temperature for 
5  min. Stromal cells were pelleted by centrifugation at 500  g 
5 min and washed by resuspension in 5 ml wash buffer (HBSS 
with 1% FBS) followed by another centrifugation to pellet. 
Adipose stromal cells were stained with human TruStain FcX™ 
and antibodies to CD11b-PE (BD Biosciences, #557397), CD45-
APC (BioLegend, #103112), at 0.25 µg/106 cells. Samples were 
incubated at 4°C in the dark for 25 min. Following incubation 
samples were centrifuged to remove unbound antibodies, and 
the cells were resuspended in PBS containing 5% FBS. GFP, 
CD45, and CD11b expression were assessed in single stromal 
cells according to our previously published flow cytometry gat-
ing strategy (27).

All cells were sorted at the University of Colorado Cancer 
Center Flow Cytometry Core facility using a MoFlo XDP cell 
sorter with Summit 4.3 software. The sheath fluid was IsoFlow, 
and the sample flow rate was set to a pressure differential of less 
than 0.4 psi. Sort mode was set to Purify 1. Appropriate signal 
compensation was set using single color and fluorescent minus 
one control samples.

adipose Tissue Depot luciferase assay
At the end of the study, 10–12 weeks posttransplant, mice were 
euthanized immediately after whole-body imaging. Gonadal, 
inguinal, and interscapular fat pads along with lower hind limb 
skeletal muscle (combined gastrocnemius and soleus), liver, and 
lung were harvested and analyzed for organ-specific lumines-
cence. IVIS imaging data were processed with Living Image 3.0 
software. 100 mg of each adipose tissue depot was homogenized, 
and cytosolic extracts were assayed with the Promega Dual-
Luciferase Reporter Assay System (#E1910).

gFP Dna
Adipocytes from mice that underwent BMT from transgenic 
mice in which GFP was ubiquitously expressed were isolated 
by collagenase digestion and centrifugation as described earlier. 
The freshly isolated adipocytes were immediately processed 
with the Qiagen DNA Micro kit (#56304). Additional DNA was 
isolated from GFP transgenic or wild-type animals to be used 
for a control dilution series of known GFP DNA concentrations. 
Isolated DNA was quantified on a nano-drop ND1000 spectro-
photometer, and subsequent PCR reactions were prepared at 
a standard concentration of 5  ng genomic DNA per reaction.  
A housekeeping gene, Gapdh, was simultaneously quantified and 
used to normalize the GFP expression by ΔCt. The percentage of 
GFP DNA was calculated from regression analysis of the control 
dilution series ΔCt values. qPCR reactions were prepared using 
the Thermo DyNAmo Flash SYBR Green qPCR kit (#F415) 
according to manufacturer’s directions with primers diluted to 
a final concentration of 0.5 µM per reaction. qPCR primers were 
purchased from Integrated DNA Technologies and are as follows 
(listed as 5′–3′) Gapdh forward: TAC GCA TTA TGC CCG AGG 
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FigUre 1 | Bone marrow-derived adipocyte (BMDA) production is higher in 
female rather than age-matched male mice. (a) Eight-week-old wild-type 
male and female mice underwent bone marrow transplantation from 
sex-matched transgenic mice in which green fluorescent protein (GFP) was 
ubiquitously expressed. After 12 weeks, gonadal and inguinal fat depots 
were harvested. Cytosolic GFP expression was assessed in intact adipocytes 
(LipidTOX RedPOS events) containing a single nucleus (dyecycle violetPOS 
events) by flow cytometry. The percentage of BMDAs is denoted in green font 
in the lower right-hand corner of each scattergram. (B) Eight-week-old male 
and female wild-type mice underwent transplantation with BM from mice in 
which expression of a luciferase reporter gene was under the control of the 
adipocyte-specific adiponectin gene promoter (AdipoQ-luciferase donor 
mice). Twelve weeks posttransplant, whole-body luciferase activity (light 
emission) was measured in the recipients. Body-wide luciferase activity was 
consistently higher in female rather than male mice as shown by the 
representative images. (c) Adipose depots (gonadal, perirenal, and inguinal) 
and non-adipose depots (muscle, liver, and lung) were harvested from male 
and female AdipoQ-creLSL-Luciferase mice 12 weeks after transplant (n = 3 
for each sex). Luciferase activity in lysates from each tissue revealed higher 
luciferase activity in adipose tissue from female than male mice. *p < 0.05 vs 
female of same depot. Data presented as mean ± SEM.
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AC, Gapdh reverse: TGT AGG CCA GGT GAT GCA AG, GFP 
forward: CCA CAT GAA GCA GCA GGA CTT, GFP reverse: 
GGT GCG CTC CTG GAC GTA. qPCR reactions were run in 
triplicate on an Applied Biosystems StepOne real-time PCR 
system.

statistical analysis
Between-group comparisons were evaluated using one-way 
(body weight and circulating factors) or two-way (depot weight, 
luciferase, and GFP measurements; group  ×  depot) ANOVA. 
When indicated by a significant F-statistic, post hoc-analyses to 
determine significant mean differences between the groups were 
conducted with the Bonferroni or Dunnett multiple comparison 
tests (adjusted p-values presented). All results are presented 
as mean ± SEM unless otherwise noted, and α was set at 0.05. 
Statistical analysis was completed in GraphPad Prism v7.03.

resUlTs

sex Difference in accumulation  
of BM-Derived adipocytes
To determine whether BMDA production is higher in female 
or male mice, cytosolic GFP expression was measured in intact 
adipocytes (LipidTOX RedPOS events) con taining a single 
nucleus (DyeCycle VioletPOS events) by flow cytometry as an 
indicator that the adipocytes arose from a BM origin. The 
data show greater production of GFPPOS BMDA (green events 
enclosed in ovals) in both gonadal and inguinal adipose depots 
of female rather than male mice (Figure  1A). Measurement 
of whole-body luciferase activity (light emission) in mice 
that were transplanted with BM from which expression of a 
luciferase reporter gene was under the control of the adipo-
cyte-specific adiponectin gene promoter demonstrated the 
same sex difference in production of BMDAs as indicated by 
greater whole-body light emission in female mice (Figure 1B). 
Luciferase activity in lysates from individual adipose tissue 
depots revealed higher luciferase activity in depots from 
female compared with male mice (main effect of sex p < 0.01), 
although only the difference in the gonadal depot reached 
statistical significance (p = 0.005, Figure 1C). Luciferase activ-
ity was essentially absent in non-adipose tissues. Thus, at least 
in reproductively capable animals, female mice produce more 
BMDAs than male mice.

Body and adipose Tissue Depot Weights
To investigate how ovarian hormones regulate the production 
of BMDA only female animals were included in all studies from 
here forward. To generate groups with different ovarian hormone 
levels we used WT or OVX mice with or without exogenous E2. 
Because ERα is necessary for estrogen to suppress adipogenesis 
(24), we also utilized whole-body αERKO mice.

As expected, by 18 weeks of age (8 weeks post-BMT and after 
6 weeks of E2/P4 add-back) there was a significant difference in 
body weight between the groups (main effect of group, p = 0.0002; 
Figure 2A). OVX mice were heavier than WT (p = 0.0001). Body 
weight was not different from WT in any other group. Similarly, 

OVX mice had larger, and OVX + E2 mice smaller, gonadal fat 
pads than WT (p = 0.02 and p = 0.0001, respectively; Figure 2B). 
Estrogen replacement also resulted in a smaller interscapular fat 
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FigUre 3 | Ovariectomy increases production of bone marrow-derived 
adipocytes (BMDA) in mice as determined by aP2-cre X LoxP/stop/
loxP-Luciferase lineage quantitation. Bone marrow transplantation from 
donors in which luciferase expression was guided by the fatty acid binding 
protein 4 (also called adipocyte protein 2 or aP2) gene promoter (aP2-
luciferase donor mice) was performed at 8 weeks of age in wild-type recipient 
mice. Luciferase activity (light emission in the wild-type recipient mice) 
indicates production of BM-derived adipocytes. (a) Representative images of 
whole-body light emission. (B) In vivo whole-body light emission 
measurements were completed 4, 6, and 8 weeks posttransplant.  
*p < 0.05 and #p ≤ 0.001 vs WT at same time point (WT n = 4, all  
other groups n = 3). (c) Immediately after the last whole-body imaging 
measurement the mice were euthanized, and gonadal, interscapular and, 
inguinal fat pads harvested and analyzed for luminescence [expressed as 
relative light units (RLU)]. *p < 0.05 and #p = 0.0001 vs WT in each depot; 
WT n = 4, all other groups n = 3. Data presented as mean ± SEM.

FigUre 2 | Ovariectomy-induced increases body weight and adipose tissue 
depot weight are prevented with estradiol replacement. (a) Body weight was 
greater in OVX compared with WT mice. #p < 0.001 vs WT [WT n = 14, OVX 
n = 7, OVX + E2 n = 5, estrogen receptor alpha knockout (αERKO) n = 6]. 
(B) Gonadal depot weight was higher in OVX and lower in OVX + E2 mice 
compared with WT. Interscapular fat depot weight was lower in OVX + E2 
mice compared with WT. Inguinal depot weights were not different from WT 
in any group. *p < 0.05 or #p < 0.001 vs WT in same depot (WT n = 10,  
OVX n = 6, OVX + E2 n = 4, αERKO n = 5). Data presented as mean ± SEM.
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pad compared with WT (Figure 2B). There were no differences 
between the groups in the inguinal depot.

Production of BMDa With sex hormone 
Manipulation
We measured light emission at the whole body and adipose 
tissue depot levels to determine if increases in whole body 
and fat pad weight could be resultant to the production of new 
BMDAs. By 6-weeks post-BMT, OVX and αERKO mice had 
significantly more BMDAs compared with WT (OVX p = 0.05, 
αERKO p = 0.003) as indicated by whole-body light emission 
(Figure 3B). At eight-weeks post-BMT, OVX and αERKO mice 
still had more BMDAs (p = 0.0002 and p = 0.0013, respectively), 
but OVX + E2 mice also had fewer (p = 0.04), BMDAs compared 
with WT (Figures  3A,B). At the adipose tissue depot level, 
on average, luciferase activity was lowest in the interscapular 
depot (main effect of depot p < 0.0001, Figure 3C). Consistent 
with the whole-body luciferase results, gonadal adipose tissue 
from OVX and αERKO mice and inguinal adipose tissue from 
αERKO mice had more BMDAs than WT (all p < 0.01). Once 
again, estrogen replacement completely attenuated, and even 
decreased, production below WT levels in the gonadal depot 
(p = 0.006 vs WT).

As a complementary measurement to the adipocyte-specific 
luciferase model, we also utilized a model in which BM from 

transgenic mice in which GFP was ubiquitously expressed was 
transplanted into WT or OVX mice, some with E2 replacement. 
In this model, the GFP DNA content in isolated adipocytes from 
specific adipose tissue depots (Figure 4A) or the percentage of 
GFPPOS adipocytes measured by flow cytometry (Figure 4B) was 
indicative of BMDA production. As described in detail previ-
ously (27), BMDA progenitor cell accumulation was quantified 
by the percentage of GFPDIM cells present in the adipose tissue 
stroma (Figure 4C). Consistent with the luciferase model, BMDA 
production was the greatest in the gonadal depot (main effect 
of depot, p  <  0.0001 for GFP DNA and p  =  0.004 for GFPPOS 
adipocytes by flow; Figures 4A,B). Gonadal fat from OVX mice 
demonstrated the greatest production of BMDAs (p = 0.004 vs 
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FigUre 4 | Ovariectomy increases production of bone marrow-derived 
adipocytes (BMDAs) as determined by green fluorescent protein (GFP) 
lineage labeling. Eight-week-old WT or OVX mice underwent bone marrow 
transplantation from transgenic mice in which GFP was ubiquitously 
expressed. After 2 weeks, a subset of OVX animals was randomized to 
receive E2 replacement (all n = 3). After 8 weeks, mice were euthanized, and 
adipose tissue from gonadal, interscapular, and inguinal fat depots harvested. 
(a) The percent of floated adipocytes cells containing GFP DNA normalized 
for Gapdh was quantified in floated adipocytes from each depot. (B) 
Percentage of intact adipocytes that were GFP+ (BMDAs) as analyzed by flow 
cytometry. (c) Percentage of stromal cells that were GFPDIM (representing 
bone marrow-derived cells) as analyzed by flow cytometry. *p < 0.05 vs WT 
in same depot. Data presented as mean ± SEM.
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WT for GFP DNA and p = 0.02 for flow), which was once again 
prevented with estrogen replacement. The sex hormone interven-
tion did not appear to have a significant effect on accumulation of 
BMDA progenitor accumulation in any depot (Figure 4C).

DiscUssiOn

Here, we demonstrate for the first time that ovarian hormone sta-
tus in female mice regulates the production of BMDAs. Utilizing 
multiple transgenic fate mapping models, we observed that surgi-
cal depletion of ovarian hormones post-ovariectomy augmented 
the production of BMDAs in the gonadal depot. Furthermore, 
estradiol replacement consistently attenuated the accelerated 
production of BMDAs. In addition, genetic knockdown of ERα 
also enhanced BMDA production in both the gonadal and 
inguinal depots. Taken together, our data suggest that estradiol 
regulates BMDA production.

The mechanisms underlying the shift toward preferential 
abdominal adiposity with decreased circulating ovarian 

hormones in both women and female mice are not completely 
understood. Importantly, increased central adiposity is associated 
with elevated risk for cardiovascular disease (28), a leading cause 
of death in postmenopausal women. Thus, continued pursuit of 
uncovering the mechanisms underlying this phenomenon in 
women over the menopausal transition is critical in maintaining 
women’s health across the lifespan.

Central adiposity may be imposing detrimental health effects 
not only through mechanisms associated with increased adipose 
tissue volume but also changes in its adipocyte composition. 
Although non-adipocyte cell accumulation, local blood flow 
and neural innervation are important determinants of the local 
adipose tissue microenvironment, inherent characteristics of 
the constituent adipocytes differ by depot. Importantly, these 
depot-specific characteristics are retained even when the cells 
are studied in vitro (e.g., adiponectin secretion, insulin action, 
and signaling) (8–10, 29). Recently, alternatives to the traditional 
adipose tissue resident mesenchymal lineage origin for adipo-
cytes have been proposed (e.g., BM progenitors or BMDCs) (30). 
Thus, adipocytes arising from varying lineages of multipotent 
mesenchymal progenitors (9, 11, 31, 32) and hematopoietic 
progenitors (15) may contribute to differences in adipocyte 
characteristics and phenotypes both between and within adipose 
tissue depots. However, in adults, the initiating or limiting fac-
tors for the production of new adipocytes from varying lineages 
remain uncertain. Better understanding of these mechanisms 
may uncover new targets for novel health and weight manage-
ment strategies.

sex Differences
The BMDA is a novel “alternative lineage” adipocyte, a likely 
candidate in the regulation of adipose tissue heterogeneity. We 
previously observed a sex difference in the production of BMDAs 
in male and female mice, confirmed herein, with female mice 
producing more BMDAs compared with males (30). Although 
observed in all major fat depots, the highest production of BMDAs 
is evident in gonadal fat, considered a visceral fat depot in mice. 
Global gene expression analysis reveals a detrimental metabolic 
phenotype characterized by inflammatory and mitochondrial 
related genes divergently expressed between conventional white 
and BMDAs (15), further supporting the contribution to depot 
heterogeneity.

The greater production of BMDAs in young female compared 
with male mice appears counterintuitive. However, females have 
higher total and percent body fat compared with males. Thus, 
females may have more BMDAs throughout life resultant to their 
greater relative fat mass. In addition, the rise in plasma estradiol 
at puberty and the decline with menopause are both associated 
with increased fat mass in women. A similar dual-phase relation-
ship may exist with estradiol regulation of BMDA production 
in female mice. Whether the sex difference observed in mice 
translates to humans is unknown.

alterations in cellular composition
Animal models are ideal for exploring the relationship between 
E2 and the adipocyte. Alterations in the production of new 
adipocytes (adipogenesis) as well as adipocyte size occur with 
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the loss of circulating ovarian hormones in mice. For example, 
ovariectomy leads to an increase in adipocyte size, along with 
increases in overall body fat and visceral adiposity, which is fully 
preventable by E2 administration (20). Similarly, the aromatase 
knockout mouse, which is unable to synthesize endogenous 
estrogens, has increased body weight and visceral adiposity 
compared with WT animals (33, 34). E2 replacement prevents 
this increase in body weight and central adiposity and decreases 
adipocyte size (33, 34). Finally, αERKO mice exhibit increased 
adiposity, particularly in the visceral depots accompanied by 
increases in adipocyte volume and number (21). Importantly, 
exogenous estrogen therapy in these mice is not effective at 
reducing fat mass (23). Thus, it is clear that estrogen status, and 
signaling through ERα in particular, has an important effect on 
adipose tissue volume and cellularity. However, if the “type” 
of adipocytes primarily produced or altered in the estrogen-
deficient state are the same as those in the estrogen replete state 
is unknown.

Unlike previous studies, compared with WT we did not 
observe elevated fat mass in our αERKO mice. This could be 
due to the fact that irradiated animals and/or animals main-
tained at Aurora, CO, USA, altitude (1,600  m) eat less, gain 
less weight, and exhibit decreased adiposity compared with 
unirradiated animals maintained at lower altitudes (12). On 
the other hand, we did observe the expected OVX-induced 
increase in body weight and adiposity. This difference between 
models may have been a result of the relatively short timeline 
(8–10 weeks after transplant) over which the study was con-
ducted. Within 15 days, OVX mice already have a higher body 
weight compared with sham controls (35), while differences 
in body weight in αERKO are not reported until 12–16 weeks 
(21, 36–39). Importantly, our results suggest that weight gain 
is not a prerequisite for the production of BMDAs, at least 
resultant to disrupted estrogen signaling. Whether a prefer-
ential increase in the production of BMDAs compared with 
conventional lineage adipocytes is responsible for the observed 
OVX-induced weight gain cannot be determined from the 
methods utilized in this study. However, studies investigating 
the turnover rate of both lineages of adipocytes are critical to 
answer this question.

Both Vieira Potter et al. (40) and Rogers et al. (19) observed 
increased macrophage infiltration and activation in gonadal 
adipose tissue as early as 12 weeks post-OVX. Notably, BMDA 
appear to develop via a novel transdifferentiation of adipose tis-
sue macrophages (27), and we consistently observe their highest 
production in the gonadal fat depots (15, 18). However, we did 
not observe a difference in the percentage of BMDA progenitors 
(i.e., GFPDIM cells) in adipose stroma between WT and the OVX, 
OVX + E2 or αERKO groups. Similar results were obtained in 
mice treated with high fat diet or rosiglitazone, both of which 
exhibited more mature BMDAs without altered accumula-
tion BM-derived progenitors in the SVF (12). Of note, we did 
not quantify the proportion of different SVF cell types (i.e., 
macrophage, T and B lymphocytes, neutrophils, eosinophils, 
dendritic cells, endothelial cells, fibroblasts, and mesenchymal 
stem cells) or the activation state of resident macrophages. Either 
of those measurements could reveal alterations at the SVF level 

that were not detected with our generalized GFP quantification 
of a heterogeneous population of stromal cells.

Our findings suggest that changes in ovarian hormone status/
signaling result in alterations in the cellular composition of adi-
pose tissue that may not contribute to alterations in the size of the 
adipose tissue depot. Notably, previous research indicates that 
obesity per se is not required for the development of menopause-
associated metabolic disturbances (40, 41). Thus, future studies 
are warranted to investigate the relationship between weight 
gain/energy balance, rate of production of BMDAs and declines 
in metabolic health after OVX in female mice.

role for estradiol in BMDa Production
Our results consistently demonstrated that estradiol replace-
ment successfully attenuates the production of BMDAs as well as 
the OVX-induced increase in body weight. It appears as though 
E2 signaling through ERα is one mechanism by which estrogen 
may regulate the production of BMDAs. These studies comple-
ment existing evidence that estrogen has potentially beneficial 
effects on the adipose tissue through ERα signaling. ERα has 
been identified has having important roles in maintaining not 
only adipocyte size and number but also adipose tissue inflam-
mation and fibrosis, as demonstrated in adipose tissue knockout 
and gonadal depot-specific ERα knockdown (42). Interestingly, 
mouse models specifically knocking out ERα in hematopoietic 
or myeloid lineage cells, or transplanting ERα−/− BM into LDL 
Receptor knockout mice, all result in increased adipose tis-
sue mass (43). The additional adipose tissue in these mice is 
accompanied by increased adipocyte size, number of crown like 
structures, chemokine expression, and immune cell infiltration 
and inflammation in the gonadal adipose tissue. Increased 
accumulation of BMDCs in the adipose tissue of these mice, 
along with their observed insulin resistance, demonstrates the 
importance of myeloid cell ERα expression in the maintenance 
of adipose tissue homeostasis (43).

It is also possible that the removal of ERα in our model resulted 
in increased BMDA accumulation through greater ERβ signaling. 
Because of disrupted negative feedback regulation, circulating 
estrogen levels can be higher in αERKO than WT (22, 44), and 
the increase in fat mass observed in αERKO mice is attenuated 
with OVX, suggesting that estrogen signaling through ERβ plays 
at least some part in the elevated fat mass evident in αERKO mice 
(45). Because we did not perform OVX in our αERKO mice we 
cannot rule out a role for ERβ in the increased production of 
BMDAs. However, our consistent results between the OVX (low 
circulating estrogens and intact ERα) and αERKO (high circulat-
ing estrogens and low ERα) models suggest reduced signaling 
through ERα does play a role. Future studies designed specifi-
cally to isolate the roles of ERα, ERβ, and the G protein-coupled 
estrogen receptor (GPER or GPR30) are critical in the complete 
understanding of the role of E2 in production of BMDAs.

limitations
While OVX is often used as a rodent model of menopause, the 
surgical intervention results in a rapid decline in ovarian hor-
mones and eliminates the perimenopausal period when women 
experience fluctuations in hormone levels and irregular menstrual 
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levels within the physiological range. However, a limitation of this 
study is that we do not have the samples available to measure cir-
culating E2 in our mice to confirm the actual values. Our observa-
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cOnclUsiOn

Our results suggest that, in female mice, the loss of ovarian  
hormone results in increased production of BMDAs. In particular, 
the loss of estradiol, possibly through ERα appears to be important 
in regulating the production of de novo BMDAs. Thus, a shift in 
the adipocyte composition of adipose tissue depots toward more 
BMDA production with the loss of ovarian hormones in females 
could be related to the increased metabolic disease risk observed 
in this population. Studies to investigate the metabolic phenotype 
and physiological impact of the production of BMDAs are needed 
before a direct mechanistic link can be confirmed.
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