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Abstract
Adult sex ratio and fecundity (juveniles per female) are key population parameters in 
sustainable wildlife management, but inferring these requires abundance estimates 
of at least three age/sex classes of the population (male and female adults and ju-
veniles). Prior to harvest, we used an array of 36 wildlife camera traps during 2 and 
3 weeks in the early autumn of 2016 and 2017, respectively. We recorded white- 
tailed deer adult males, adult females, and fawns from the pictures. Simultaneously, 
we collected fecal DNA (fDNA) from 92 20 m × 20 m plots placed in 23 clusters of 
four plots between the camera traps. We identified individuals from fDNA samples 
with microsatellite markers and estimated the total sex ratio and population density 
using spatial capture– recapture (SCR). The fDNA- SCR analysis concluded equal sex 
ratio in the first year and female bias in the second year, and no difference in space 
use between sexes (fawns and adults combined). Camera information was analyzed 
in a spatial capture (SC) framework assuming an informative prior for animals’ space 
use, either (a) as estimated by fDNA- SCR (same for all age/sex classes), (b) as as-
sumed from the literature (space use of adult males larger than adult females and 
fawns), or (c) by inferring adult male space use from individually identified males from 
the camera pictures. These various SC approaches produced plausible inferences on 
fecundity, but also inferred total density to be lower than the estimate provided by 
fDNA- SCR in one of the study years. SC approaches where adult male and female 
were allowed to differ in their space use suggested the population had a female- 
biased adult sex ratio. In conclusion, SC approaches allowed estimating the prehar-
vest population parameters of interest and provided conservative density estimates.
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1  | INTRODUC TION

Sustainable management of game animals requires knowledge of 
their population densities, as well as of key markers of population 
performance such as adult sex ratio and fecundity (Caughley & 
Sinclair, 1994). When a population is harvested, its sex and age ratio 
is impacted with the extent depending on the hunting regulations 
and local practices. In Nordic countries, for example, large ungulates 
are regulated via hunting license practices aimed to harvest primar-
ily young animals and adult males, resulting in high proportion of 
females with high reproductive output (Langvatn & Loison, 1999; 
Sæther et al., 2004). Obtaining estimates of adult sex ratio and fe-
cundity from free- ranging populations is not trivial as it requires esti-
mating densities of at least three classes of animals in the population: 
adult males, adult females, and juveniles.

Wildlife cameras provide a cost- efficient approach to obtain 
encounter (i.e., detection/nondetection) information on wildlife 
(Burton et al., 2015; Sollman, 2018). In many species, adult males, fe-
males, and juveniles can be distinguished in pictures, thereby open-
ing up the possibility to infer several key demographic properties of 
a population. Furthermore, the lower cost of wildlife cameras makes 
them amenable for studies on larger spatial scales, for example, in 
citizen science projects (Steenweg et al., 2017). Whereas earlier 
studies routinely were based on the raw count data of pictures or 
videos that wildlife cameras collect, it has become clear in the last 
decade or so that proper use of information from wildlife cameras 
requires statistical analyses for which various approaches are pos-
sible (Burton et al., 2015; Dénes et al., 2015; Sollman, 2018). When 
individuals are identifiable from camera pictures, a group of cameras 
may provide spatially explicit capture– recapture information on in-
dividuals in a noninvasive manner. Such data can be analyzed using 
spatial capture– recapture (SCR) models to provide information on 
density and space use (Efford, 2004; Efford & Fewster, 2013; Royle, 
Richard, et al., 2013). The SCR approach assumes animals have a ac-
tivity center where their probability to be detected by the camera 
or other “trap” is maximal. This detection probability then declines 
with increasing distance between the activity center and the trap 

assuming a specific function that depends on the space use. Density 
is then the number of activity centers in what is termed the state 
space (area covered by the traps and a certain buffer). As the SCR 
approach is spatially explicit, its basic implementation can be ex-
tended with geographical information to provide insights in general 
ecology of the species including resource selection (Royle, Chandler, 
et al., 2013) and landscape connectivity (Sutherland et al., 2015). 
The SCR approach can furthermore readily integrate information 
obtained using complementary approaches such as GPS or radio- 
tracking location data (Royle, Richard, et al., 2013).

When individuals cannot be identified from the pictures, spatial 
capture (SC) is one possible alternative (Chandler & Royle, 2013) 
for analyzing the data. The SC method is also referred to as “un-
marked SCR” (Johnson, 2019) or “spatial correlated count” (Burgar 
et al., 2018). SC is essentially an SCR approach and hence assumes 
the same parameters as SCR, except it only requires information on 
total counts of the animals at each camera trap instead of individual- 
specific counts (Chandler & Royle, 2013). Among other alterna-
tive approaches also accounting for imperfect detection (Dénes 
et al., 2015), SC stands out by inferring the density on the basis of 
the spatial correlation expected in counts made at locations suffi-
ciently close to each other for individuals to move between them 
(Chandler & Royle, 2013; Ramsey et al., 2015). For example, when a 
group of cameras are placed such that the distance between them 
is within the home- range area of the focal species, the spatial cor-
relations arise because the same individuals are potentially recorded 
at multiple cameras. Because inferring density on the basis of count 
data alone is highly demanding, the SC approach requires prior or 
auxiliary information, typically on the space use of the target species 
(Chandler & Royle, 2013; Ramsey et al., 2015).

Other approaches to infer density from wildlife camera pictures 
that do not require individual identification include approaches 
based on animal movement characteristics (Random Encounter 
Model, Rowcliffe et al., 2008) and analyses based on distance sam-
pling (Howe et al., 2017; Rowcliffe et al., 2011) and time- to- encounter 
models (Moeller et al., 2018) that of course come with assumptions 
of their own (for an overview, see Sollman, 2018). Whereas SC 

F I G U R E  1   Two male white- tailed deer 
caught on camera during this study
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analyses require only a count of animals in each picture, the random 
encounter model and distance sampling require additional interpre-
tation of pictures. In particular, they require inferring the distance of 
the animal from the camera and, depending on the camera setting, 
analyzing series of pictures recording the same animal (e.g., to infer 
movement speed and to avoid pseudoreplication). In addition, these 
approaches are design- based (as opposed to model- based SCR/SC) 
and are less flexible incorporating model violations.

Here, we study the potential of wildlife cameras to infer prehar-
vest density of white- tailed deer (Figure 1) in southern Finland using 
an SC approach. Our objective is to infer both sex and age (juvenile 
vs. adult) classes within a “snap- shot” setting of two to three weeks 
under which the population closure assumption (no births, deaths, 
emigration, or immigration) is likely to hold. By using cameras in late 
summer, fawns (juveniles) and female and male adult white- tailed 
deer can be readily distinguished. During this time of the year, adult 
males carry antlers, and fawns are large enough to move around to 
be detected by wildlife cameras, and can be identified as juveniles as 
they typically still have a spotted pelage and are also smaller in size 
than adult females. As a consequence, the required interpretation 
of pictures is restricted to counting the animals in these three age 
and sex classes (adult males, adult females, and fawns) for each pic-
ture. This level of picture interpretation requires minimal training of 
personnel or picture analysis software for automated interpretation 
and is anticipated to scale up readily. Furthermore, by studying the 
population prior to harvest, its density is at its annual peak which 
likely facilitates obtaining sufficient detections for analysis.

Inferring density of white- tailed deer fawns and females in an SC 
setting requires additional information, for example, on the move-
ment of individuals during the study period (Ramsey et al., 2015). 
In ungulates (and many other mammals), adult males typically 
have larger home ranges than females (white- tailed deer: Lesage 
et al., 2000, Dechen Quinn et al., 2013, Honzová, 2013). Our study 
was conducted prior to the rut (which is in November); adult males 
increase their daily movements markedly during the rut (Webb et al., 
2010). Juvenile white- tailed deer in their first 2 months are still heav-
ily dependent on their mothers and are relatively inactive with very 
small home ranges during this time, but become after this period rap-
idly more semi- independent (Hiller et al., 2009). Even though home 
ranges are well described for many populations, and thus, literature 
estimates are available, space use can still differ strongly between 
sites. For this reason, application of SC benefits greatly from collect-
ing telemetry information on a subset of individuals during the study 
using, for example, GPS collars (Furnas et al., 2018). Nevertheless, 
auxiliary information on space use can be expensive to collect and 
typically require invasive methods. In this study, we explore three 
noninvasive approaches for providing information of the space use 
of the white- tailed deer.

First, to provide information on space use as well as an estimate of 
total density of white- tailed deer, we collect noninvasive fecal DNA 
samples for individual identification simultaneously with the wildlife 
camera survey. DNA- based individual identification allows SCR to be 
conducted (Royle, Richard, et al., 2013). When inferring density prior 

to harvest in early autumn, both adults and juveniles are present in 
the population, but because DNA does not allow aging of individuals, 
the approach is unable to distinguish these age groups. Hence, DNA- 
based SCR presents a kind of weighted average across fawns and 
adults for each sex in the study population. Furthermore, SCR anal-
ysis of fecal DNA provides an estimate of population density, which 
is independent from estimates derived from wildlife camera data. 
Second, we use literature- based values of space use of white- tailed 
deer in Finland. Honzová (2013) reported monthly home- range areas 
of male and female white- tailed deer that were fitted with a GPS 
collar. Collared white- tailed deer were of different age classes and 
tracked in several sites across Finland, and hence are not specific to 
our study population. It is, however, the only published statistics that 
we are aware of, that is of most relevance to our study population. 
Third, the white- tailed deer males can be individually identified on 
the basis of their antler characteristics, which allows SCR analysis. 
Thus, we can from the wildlife camera data itself infer space use and 
density of adult males in the population using SCR and combine this 
in one model with SC analysis on adult females and fawns.

Our study question is whether these SC approaches can provide 
reasonable inferences of density, adult sex ratio, and fecundity given 
what we know about these demographic parameters in white- tailed 
deer. We collected camera trap data during a short- term (2– 3 weeks) 
period repeated in two years (2016, 2017), where we simultane-
ously collected fecal sampled. We used fecal DNA- based individual 
encounter histories analyzed in a spatial capture– recapture (SCR) 
framework for comparison with inferences made using SC on cam-
era trap data.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area (60°52′7″N, 22°49′13″E (WGS84)) was situated in a 
landscape typical for southern Finland. The landscape is a mixture of 
fields and forest in approximately equal proportion. Forest patches 
consist mainly of coniferous dominated tree species (spruce Picea 
abies and pine Pinus sylvestris) or then mixed with deciduous trees 
(birch Betula spp. and aspen Populus tremula). The study area was not 
intersected by any road or larger trail.

2.2 | Fecal DNA sample collection

Fecal DNA (fDNA) was sampled in 92 sample plots in both study 
years. Each plot was 20 m × 20 m in size and marked in the field with 
ribbons. Plots were grouped in cluster following the design advocated 
by Sun et al. (2014). Earlier work on fDNA- based SCR in white- tailed 
deer in Finland (Poutanen et al., 2019) based on clustered sample 
plots included simulations that suggested that for a study period of 
2– 3 weeks, the spacing between clusters should be about 250 m. We 
here spaced clusters at about 300 m distances. We used 23 clusters of 
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four plots. The four plots in a cluster were placed in a square with their 
center coordinates 60 m apart. Legal restrictions on placing cameras 
in planted fields prohibited a strict regularity of the grid (Figure 2). 
Plots were emptied of all fecal pellets on the first visit. Setting up all 
fecal sample plots took two days. In 2016, sample plots were visited 
with weekly (7 days) interval for 2 occasions after the initial cleaning 
visit, hence covering a total period of 16 days (setting up and sampling 
the first half the plots on days 1, 8, and 15; second half on days 2, 9, 
and 16). In 2017, sample plots were visited with four- day interval for 5 
occasions after the initial cleaning, hence covering a period of 22 days 
(setting up and sampling the first half of the plots on days 1, 5, 9, 13, 
17, and 21; second half on days 2, 6, 10, 14, 18, and 22). The two 
consecutive days of sampling that it took to cover all plots was con-
sidered as one occasion and the time interval between occasions was 
hence 7 and 4 days for 2016 and 2017, respectively. In general, more 
occasions and shorter time intervals between occasions improve SCR 
model inferences (Royle, Richard, et al., 2013), but was not possible in 
both years. At each visit to a plot except the first (cleaning) visit, few 
fecal pellets were sampled from each pellet group in a resealable plas-
tic bag after which all remaining pellets were removed from the plot. 
Samples were frozen at −20°C until further analysis.

2.3 | DNA extraction and identification of 
individuals

We followed the protocol of Poutanen et al. (2019) for DNA extrac-
tion and individual identification. A minor modification for the mi-
crosatellite PCR protocol was that the final concentration of primer 
Rt5 was decreased to half (0.1 μmol/L) and BSA concentration to 

one- tenth (0.1 μg/μl) of the original concentration. Briefly, 14 mi-
crosatellites were used and at least three PCR replicates were per-
formed for each DNA sample. Based on Cervus 3.0.7 (Kalinowski 
et al., 2007), the observed probability of identity between siblings 
(PIDsib) using seven least informative loci was low (<0.005) and fol-
lows the recommendations (Waits et al., 2001). We allowed a maxi-
mum of two mismatches in different loci between the genotypes in 
order to being matched to same individual. Therefore, if 11 or more 
loci were amplified, we used the sample in identification analysis. 
The rule for constructing the final consensus genotype based on at 
least three replicate runs was that for each locus the consensus is a 
homozygous locus if the alleles of homozygous loci were amplified 
three times and the consensus is a heterozygous locus if the het-
erozygous loci amplified two times. At least one DNA sample of each 
identified individual was sexed with X and Y chromosome- specific 
primer pair ZFX/ZFY. Based on results of Poutanen et al. (2019), we 
assumed that the 11 to 14 microsatellite markers used here were 
sufficient to exclude possible roe deer DNA from further analyses.

2.4 | Camera data collection

A total of 36 trail cameras (Uovision UV595) were placed in the study 
area. This camera uses passive infra- red (PIR) detection of motion 
and has an infra- red flash for night pictures. Trail cameras were 
placed at approximately 300 m distances between adjacent cameras 
in between fecal DNA sample clusters (Figure 1). Cameras were set 
to take bursts of 3 pictures when triggered with a five- second delay 
to being potentially triggered again. Cameras were operational be-
fore the period in which fecal DNA was sampled but we here use 
pictures recorded during the same sampling period as fDNA was 
sampled (i.e., 14 days in 2016; 20 days in 2017).

All obtained pictures were interpreted by a human (JP (author 
Jenni Poutanen 2016, research assistant 2017) scoring for each 
picture the number of fawns, adult male, and adult female white- 
tailed deer. The pictures of the white- tailed deer where the sex or 
age could not be identified were categorized as white- tailed deer of 
unknown class and were discarded from further analyses (approx-
imately 7.5% of pictures containing white- tailed deer). After this 
screening, males were identified from all the pictures of males on the 
basis of their antlers (JP in 2016, JP and research assistant in 2017). 
When there were two observers (2017), male identity was only as-
signed if both were in agreement. Lastly, author JP again evaluated 
the male identity assignments of 2017 data paying special attention 
to putative male individuals that were recorded at different cameras. 
Pictures where the male individual could not be reliable identified 
were classified as “unknown adult male.”

2.5 | Encounter data

Wildlife cameras with the above- described settings produce many 
consecutive pictures that are nonindependent as it is likely that the 

F I G U R E  2   Simple plot of the spatial layout of the cameras 
(triangles, n = 36) and fDNA sample plots (dots, n = 92) in 2016. 
Locations were approximately the same in 2017, but one camera 
failed to operate. Northing and easting are provided in ETRS89- 
TM35FIN (EPSG:5048) coordinates whose unit is meters
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same individual triggers the camera multiple times. We assumed 
that pictures taken by a camera within 1 hr are all potentially from 
the same individual(s). All pictures where the time interval between 
consecutive pictures was less than 1 hr were therefore grouped 
into what we here term “encounter event.” For each encounter 
event, the numbers of adult females, adult males, and fawns were 
inferred to be the maximum number of females, males, and fawns 
that could be counted in one picture taken during each encoun-
ter event (not necessarily the same picture for each class). As the 
wildlife cameras are active over several days, we needed to group 
pictures in presumably independent occasions of recording. We 
considered each 24- hr period (from midnight to midnight) as one 
occasion.

2.6 | fDNA- SCR model in secr

We fitted a standard likelihood- based SCR model (e.g., Efford & 
Fewster, 2013) on the individuals identified from fDNA using secr 
(Efford, 2018) package implemented in R (R Core Team, 2018). We 
used the central location of each fDNA sample plot as its spatial 
coordinate. In secr terminology, fDNA sample plots are “proximity 
detectors.” The SCR model implemented estimates the detection at 
the activity center (g0) and assumed that the decline in detection 
probability with distance followed a half- normal function speci-
fied by the space- use parameter σ (Efford, 2018). The state space 
consisted of the locations of the fDNA sample plots buffered by 
2000 m. The chosen buffer was larger than the buffer suggested by 
the diagnostics of secr (such as suggest.buffer and esa.plot), 
but was used to keep the same state space in all analyses includ-
ing the SC analyses. We compared various candidate models based 
on their AICc values. Sex of the individual was included as a hybrid 
mixture in all models (Efford, 2018). Candidate models considered 
included various combinations of covariates for the detection prob-
ability parameter g0 and space- use parameter σ, where both param-
eters could be (1) constant, (2) sex- dependent, as well as that g0 
could be (3) occasion- specific, (4) show a behavioral response (i.e., 
detection in a trap changes after an individual has been encountered 
once in that trap).

We used secrdesign (Efford, 2019) to evaluate bias and preci-
sion of estimates of density and σ given our spatial layout of sampling 
plots. We used as simulation parameters secr- derived estimates 
of g0, density and σ obtained under the top model. Based on these 
parameters, secrdesign simulated 250 data sets to be analyzed 
using secr. Relative bias [the error (difference between inferred 
and simulated value) divided by the simulated value] and precision 
[computed as root mean square error (RMSE)] were computed. We 
thus performed simulation analysis to evaluate the performance of 
our specific design (i.e., location of sample plots, number of sampling 
occasions). Through simulations, we investigated how increasing the 
number of sampling occasions affected relative bias and RMSE. In 
case our sampling was insufficient, increasing the number of sam-
pling occasions causes a reduction in relative bias.

2.7 | Spatial capture analysis of camera data

Camera traps are placed at fixed points in space. The state space 
considered in the model is the boundary box of the camera traps 
surrounded by a buffer area. Each camera can record same individu-
als multiple times. Pictures of white- tailed deer were classified into 
3 groups (g): adult males (m), adult females (f), and fawns (c). We used 
data augmentation (Royle, Richard, et al., 2013), assuming there 
were a maximum of Mm, Mf, and Mc for the groups males, females, 
and fawns, respectively, in the state space. We assumed the latent 
state for individual i belonging to group g to be present in the state 
space was

where �g denotes the probability for an individual belonging to group 
g to be in the state space (zig = 1) or not (zig = 0). The abundance of ani-
mals belonging to group g, Ng, hence is obtained by summing over all zig. 
Data augmentation hence requires that M > N and in practice it is im-
portant that M is greater than the maximal posterior value of N (Royle, 
Richard, et al., 2013). If it is in the state space, individual i belonging to 
group g can be observed at camera trap j. Assuming that the number 
of observations y of individual i belonging to group g at camera trap j is 
Poisson distributed, we can model this number of observations over all 
Kj occasions that trap j was active as

where �igj is the encounter rate of individual i belonging to group g at 
camera trap j. We assumed the encounter rate was Gaussian bivariate 
distributed around individual i's activity center si, such that for trap j 
located at xj in space

where ‖‖‖xj − si
‖‖‖ denotes the Euclidean distance between activity 

center and trap location, �0g is the baseline detection probability for 
group g, and �g a group- specific parameter which scaled how rapidly 
detection drops as the trap is placed further from the activity cen-
ter of each group. The activity centers s are latent variables, which 
are, by definitions, placed in the state space considered. These equa-
tions are central to spatial capture– recapture (SCR) models (Royle, 
Richard, et al., 2013) and are hence applicable when individual i can 
be identified.

When individual identification is not possible, the total number 
of adult males (m), adult females (f), and fawns (c) can still be counted, 
because these groups can be readily distinguished on the pictures. 
Thus, without individual identification the available encounter his-
tory is trap- specific total of animals belonging to the various groups 
g encountered. These totals are, conceptually, the result of sum-
ming up over all latent observations yigj (Equation 1) (Chandler & 

(1)zig ∼ Bernoulli (�g ),

(2)yigj ∼ Poisson (Kj�igj),

(3)�igj = �0gexp

⎛
⎜⎜⎜⎝

−
���xj−si

���
2

2�2
g

⎞
⎟⎟⎟⎠
zig,
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Royle, 2013). That is, the total number of observations in trap j for 
each group g over all K occasions that trap j was active is

where Λjg represents the summed up encounter rate for every camera 
trap j over all individuals i belonging to group g which are observable in 
the state space, such that

In terms of data obtained, for each camera trap j, njc. and njf . and 
njm. are the sums of fawns, adult females, and adult males, respec-
tively, over all encounter events.

The above formulation assumes homogeneity in encounter prob-
ability and encounter rate across occasions and cameras, as well as 
homogenous density across the state space. All of these assump-
tions can be relaxed by adjustment of the above outlined basic model 
formulation as detailed in Royle, Richard, et al. (2013). However, as 
parameters in the SC model are inferred only on the basis of counts, 
which is demanding, more complicated model formulations were not 
attempted.

Inferences on the number of individuals present in the state 
space can be derived from the latent states. In particular, the total 
population size of individuals of group g in the state space was

Adult sex ratio was calculated as the ratio of adult males to the 
sum of adult males and females in the state space, Nm∕(Nm + Nf ) and 
fecundity as the ratio of fawns to females in the state space Nc∕Nf  . 
Density is the number of individuals in the state space divided by 
the size of the state space and was expressed as individuals per km2.

2.8 | SCR on camera data for males combined with 
SC on camera data for females and fawns

The above model formulation can consider two subsets of a sin-
gle population; individually identifiable animals (marked individu-
als) and those that cannot be individually identified (unmarked 
individuals). In our case, we consider a model formulation in which 
males are considered as marked (individually identified from pic-
tures by their antlers). For the model formulation in which males 
are considered marked, we calculated for each male individual i the 
total number of encounter events it was recorded in trap j over 
all K occasions, yimj (Equation 2). However, it was not always pos-
sible to identify each male on the basis of the characteristics of the 
antlers due to movement or incomplete view of the antlers, result-
ing in recordings of unidentified males. Ignoring such unidentified 

males will downward bias the encounter rate for males. We there-
fore incorporated a correction factor pID following (Royle, Richard, 
et al., 2013, p.514) and modified Equation (2) by assuming that the 
number of encounter events for individual i belonging to group m 
(male) in trap j was

where �imj denotes the encounter rate for individual i belonging to 
group m (male) in trap j (as given by Equation 3), pID is the probability 
that a male is identified individually, Kj the number of occasions trap j 
was active. The probability pID was assumed to be related to the total 
number of recorded males nTOT and the number of identified males nID 
as

That is, we assumed no spatial or temporal heterogeneity in 
this probability. More complete approaches that also use the spa-
tial information of identified and nonidentified individuals have 
been employed (Jiménez et al., 2019). The primary purpose of 
our procedure is to provide unbiased estimates of the encounter 
rate for males such that it reflects all males (both identifiable and 
nonidentifiable).

2.9 | Implementation of the SC and SC/SCR models

All SC models were implemented in JAGS (Plummer, 2003). Priors 
on s are uniformly distributed throughout the state space. We used 
beta(1,1) priors on all ψ, and uniformly distributed priors on λ (0,5). 
Priors for pID was beta(1,1). The SC model requires informative priors 
(Chandler & Royle, 2013), and we consider here three versions with 
the following acronym and description:

1. SC- fDNA. The prior for the movement parameter sigma (�) of 
adult males, adult females, and fawns is the sigma inferred in 
our analysis of fDNA- based SCR specific to the year studied. 
Thus, the prior for sigma in the SC model for 2016 is the 
sigma estimated by SCR on the basis of the 2016 fDNA data, 
and likewise for 2017.

2. SC- lit. The prior for the sigma of adult males, adult females, and 
fawns is the sigma inferred from literature. Movement data ob-
tained from GPS- collared white- tailed deer in Finland showed 
that the 95% usage of the monthly home- range area was approxi-
mately 156ha and 733ha per month for females and males, re-
spectively, in autumn (Honzová, 2013). Using an approximation 
based on the chi- square distribution and assuming the area used 
is bivariately normal (Royle, Richard, et al., 2013, p. 136),

(4)njg ∼ Poisson (KjΛjg),

(5)Λjg = �0g

Mg�
i=1

exp

⎛
⎜⎜⎜⎝

−
���xj−si

���
2

2�2
g

⎞
⎟⎟⎟⎠
zig.

(6)Ng =

Mg∑
i=1

zig.

(7)yimj ∼ Poisson(Kj�imjpID),

(8)nID ∼ Binomial(pID, nTOT).

(9)� =

√
A0.95

�2
2
(Pr = 0.95)�

=

√
A0.95

5.99�
,
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 where A0.95 is the area with 95% probability to be used around the 
activity center, �2

2
(Pr = 0.95) is the chi- square value for 2 degrees 

of freedom at 95% probability. From this approximation, it follows 
that a naïve estimate of the parameter σ in the bivariate normal de-
tection function was 287 m and 624 m for females (assumed identi-
cal for fawns) and males, respectively. This movement parameter is 
for the time period of one month (30 days) but we here implement 
these values for each of the study years despite the fact that we 
collected data during time periods shorter than one month. Hence, 
this literature- based estimate of the parameter σ may present an 
overestimate of the movement during the study period.

3. SC- SCR. The prior for adult male sigma was uninformative (uniform 
in the range of 0 m to 2,000 m) as the posteriors for male sigma were 
inferred using males identified from camera pictures in SCR analysis 
as explained above. For adult females and fawns, we assumed an 
informative prior set at fDNA- SCR inferred sigma which was con-
sidered the most relevant parameter as it was specific to the study 
area and year.Given the Gaussian distribution of sigma assumed in 
the source method (home range or fDNA- SCR), we assumed a nor-
mal distribution for the informative prior of sigma around its point 
value (as detailed above) with a variance chosen such that the dis-
tribution adhered to the source. That is, for sigma based on fDNA, 
the variance matched the confidence interval assuming the entire 
confidence interval was approximately four times the square root 
of the variance (i.e., four times the standard error under assumption 
of a Gaussian distribution). For the literature estimate, the variance 
matched the uncertainty in the estimate presented (males: 5,000; 
females: 1,000). Adapting and burn- in were 1,000 and 4,000 itera-
tions, respectively. The length of the posterior samples was adjusted 
to make sure the Monte– Carlo error was below 5% of the standard 
deviation of each parameter, and that posterior chains exhibited low 
autocorrelation and good mixing (R- hat below 1.1 for all parame-
ters). These criteria resulted in either 1,000 or 1,500 posterior sam-
ples drawn of each of 3 chains after thinning 20.

2.10 | Data and script accessibility

Data and JAGS script for the SC analyses of all three models as well 
as the data for the fecal DNA SCR are available from the Dryad data 
repository associated with this publication.

3  | RESULTS

3.1 | SCR analysis of fDNA data

In total, 32% of the samples were successfully genotyped to the level 
permitting individual assignment. In 2016, we carried out 2 sampling 
occasions with a week interval and obtained individual encounters of 
12 identified males (10 encountered once (not recaptured) and 2 three 
times) and 26 females (9 encountered once (not recaptured), 5 twice, 9 

three times, 1 four times, and 2 five times). Model comparison showed 
that the most parsimonious model for 2016 had sex- specific detec-
tion probability where the detection probability for females was about 
fivefold that of males, but there was no clear evidence for sex- specific 
space use (σ parameter) and the sex ratio was equal (Table 1).

In 2017, in the same fDNA plots sampled over 5 occasions with 
four- day interval, 41 females were identified (22 encountered once, 
6 twice, 8 three times, 4 four times, 1 seven times) and 25 males 
(15 encountered once, 5 twice, 5 three times). The most parsimoni-
ous model for 2017 fDNA data included occasion- specific detection 
probability, with support for occasion-  specific detection, but again 
no clear support for sex- specific σ (Table 1). Sex ratio in 2017 showed 
evidence of female bias. As expected for fDNA- based encounters, a 
behavioral response was not supported (Table 1). Overall, the top 
models’ parameters for both years agreed reasonably well given that 
their confidence limits were overlapping.

We conducted simulations to evaluate the bias and precision of 
our fDNA- based sampling design. Simulations were based on the 
year- specific density and σ of the top model (Table 2), and we as-
sumed a constant detection probability g0 conservatively set at 0.03 
for both study years (Table 2). Simulations suggested for 2016 that 
our design provided an unbiased estimate of σ, but that density was 
overestimated (Figure 3a,c). In particular, increasing the number of 
occasions from 2 to 5 (i.e., shortening the time between fecal sam-
ple collections from 7 days to approximately 3 days) would reduce 
relative bias in density from +8.8% to 0% (Figure 3a). In 2017, how-
ever, the relative bias in density for the used number of sampling 
occasions (5 occasions with 4 days interval) was only +3.4% and was 
largely unaffected by increasing the number of sampling occasions 
(Figure 3b) and that σ was estimated without bias.

3.2 | Wildlife camera data

Camera traps collected a high number of pictures in both years; many 
of these pictures were putative duplicated records, and the number 
of encounter events (presumably independent recordings) was at 
most 1.5 encounter event per day per camera (Table 2). Relatively 
few encounter events contained an adult male compared with adult 
female or fawn (Table 2). Adult males could be individually identi-
fied each year on the basis of antler characteristics, although their 
numbers were restricted, especially in 2016 (Table 2). Fawns were 
detected at least as often as females, and the ratio of the number of 
pictures of fawns over the number of pictures of females (which can 
be considered as a naïve estimate of reproduction) exceeded 1 in 
2016 but not in 2017 (Table 2).

3.3 | SC analysis

Because the SCR analysis based on fDNA did not find support for σ 
differing between sexes (Table 1), we implemented SC analysis with 
informative prior for σ, being identical for each class (males, females, 
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and fawns), at a year- specific value (SC- fDNA; Table 3). In addition, 
we implemented SC with priors for σ, where the estimate was spe-
cific for males and females (fawns’ identical to females’), informed by 
published estimates (SC- lit; Table 4). Lastly, we implemented SC with 
priors for σ for fawns and adult females (identical) informed at the 
year- specific values estimated by fDNA- SCR, combined with SCR for 
adult males on the basis of pictures (SC- SCR; Table 5). The latter SCR 
analysis indicated that adult males could be identified in about two- 
thirds of the encounter events (pID in Table 5) and that adult male 
encounter rate λ was low, especially in 2017 (Table 5). The adult male 
σ as estimated by camera- based SCR agreed well with the literature 
value (Table 5).

The various SC approaches estimated, in general, a lower total 
density compared with fDNA- SCR (Figure 4). In 2016, the credible 
intervals generally overlapped. In 2017, however, fecal DNA pro-
vided a higher estimate of density than the SC- based estimates 
from wildlife camera pictures, except for the SC analysis that as-
sumed male and female σ were identical to the σ estimated for fDNA 
(model “SC”) for which the credible intervals overlapped with the 
density inferred by fDNA- SCR (Figure 4). Because the various SC 
approaches all assumed that σ for adult females and fawns were 

TA B L E  1   Comparison of spatial capture– recapture (SCR) models ordered according to their AICc value, with parameter estimates of the 
most parsimonious model for white- tailed deer identified from fDNA in 2016 and 2017

Model npar logLik AICc dAICc AICcwt

Top model

par est lci uci

2016

g0(sex)σ(·) 5 −294.82 601.5 0.0 0.4

g0(t+sex)σ(·) 6 −293.83 602.4 0.8 0.3 D (km−2) 11.8 6.8 20.4

g0(sex)σ(sex) 6 −294.69 604.1 2.6 0.1 g0 (female) 0.117 0.075 0.176

g0(·)σ(sex) 5 −296.58 605.0 3.5 0.1 g0 (male) 0.024 0.008 0.066

g0(t+sex)σ(sex) 7 −293.70 605.1 3.6 0.1 σ (m) 305 245 381

g0(·)σ(·) 4 −300.69 610.6 9.1 0.0 Sex ratio 0.523 0.285 0.752

g0(t)σ(·) 5 −299.69 611.3 9.7 0.0

g0(b)σ(·) 5 −300.67 613.2 11.7 0.0

2017

g0(t)σ(·) 8 −532.80 1,084.2 0.0 0.5

g0(t+sex)σ(·) 9 −531.92 1,085.0 0.9 0.3 D (km−2) 23.3 17.4 31.2

g0(t+sex)σ(sex) 10 −530.93 1,085.9 1.7 0.2 g0 (1) 0.028 0.016 0.048

g0(·)σ(sex) 5 −540.14 1,091.3 7.1 0.0 g0 (2) 0.038 0.023 0.062

g0(·)σ(·) 4 −542.03 1,092.7 8.5 0.0 g0 (3) 0.020 0.010 0.037

g0(sex)σ(·) 5 −541.12 1,093.2 9.1 0.0 g0 (4) 0.061 0.039 0.093

g0(sex)σ(sex) 6 −530.14 1,093.7 9.5 0.0 g0 (5) 0.052 0.033 0.082

g0(b)σ(·) 5 −541.55 1,094.1 9.9 0.0 σ (m) 217 184 256

Sex ratio 0.379 0.271 0.501

Note: Analyses carried out in secr. Presented for each model are the number of parameters (npar), the log- likelihood (logLik), small- sample AICc, the 
difference between each model and the AICc of the top model (dAICc), and the support (AICcwt). For the top model, the estimate (est), lower and 
upper confidence interval (lci and uci, respectively) are given for density (D) in individuals km−2, baseline detection probability g0, σ (in m) and the 
probability an individual is a male (sex ratio). Model variants concern different covariates placed on these parameters, either constant (·), sex- specific 
(sex), occasion- specific (t), or behavioral response (b). The top model estimates for g0 in 2016 are separate for female and male, and in 2017 separate 
for the five sampling occasions.

TA B L E  2   Description of the pictures collected in 2016 and 2017

2016 2017

Number of cameras 36 35

Number of 24- hr occasions 16 22

Pictures with white- tailed 
deer

5,224 6,636

Encounter events (1- hr 
grouping)

436 1,162

Encounter event/camera/day 0.76 1.5

Male individuals identified 7 17

All males/occasion/camera 0.066 0.184

Females/occasion/camera 0.34 0.47

Fawns/occasion/camera 0.53 0.47

Fawns/female 1.55 1.00

Note: In both years, cameras were operational in approximately three 
weeks (36 cameras for 16 days in 2016, 35 cameras for 22 days in 2017) 
and in total >10,000 pictures were taken. Adult males were individually 
identified on the basis of their antlers. An occasion consisted of 24 hr 
from midnight to midnight. Pictures taken within one hour of each other 
were grouped to what we here refer to as “encounter event” as these 
pictures likely represent repeated observations of the same animals.
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identical, the derived inference of fecundity was qualitatively the 
same across models (Tables 3– 5). The adult sex ratio was equal in 
the SC model where the σ for adult males and females was assumed 
to be equal with the differences in the number of pictures taken 
of males and females attributed to a much lower encounter rate 
for adult males compared with adult females and fawns (Table 3; 

Figure 5). Strikingly, the SC approaches where adult male σ was al-
lowed to differ from adult female σ (based either on literature values 
for σ or SCR analysis of individually identified male pictures) both 
inferred that the adult population was female- biased as indicated 
by the 95% credible intervals CRI of adult sex ratio not including 0.5 
(Tables 4 and 5; Figure 5).

F I G U R E  3   Relative bias (dots and lines) 
and root mean square error (RMSE, line) 
plotted for 250 a posteriori simulations 
of the fDNA- SCR design for 2016 (a,c) 
and 2017 (b,d). Relative bias and RMSE 
are plotted for both density (a,b) and 
sigma (c,d). Simulation assumes that 
year- specific density and sigma were as 
estimated by the top model (Table 2). 
Detection was conservatively assumed 
to be 0.03 in all simulations. In the design 
used, there were 2 occasions in 2016 with 
7 days of interval, and 5 occasions with 
4 days of interval in 2017
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TA B L E  3   Parameter estimates of the spatial capture analysis (SC) where an informative prior for σ was based on the year- specific values 
inferred by fDNA- SCR (see Table 1)

2016 2017

Estimate Lower Upper Estimate Lower Upper

σ (m) 303 300 313 167 147 187

λ (male) 0.055 0.0092 0.16 0.21 0.10 0.37

λ (fem and fawn) 0.61 0.44 0.79 0.54 0.39 0.73

D (male km−2) 2.4 0.28 7.4 4.5 2.3 7.0

D (female km−2) 1.8 0.9 3.0 5.2 3.2 7.1

D (fawn km−2) 2.8 1.5 4.3 4.9 3.0 7.0

D (total km−2) 7.3 4.0 12.5 14.7 10.1 18.9

Adult sex ratio (m/m + f) 0.57 0.24 0.85 0.47 0.30 0.67

Fecundity 1.55 0.62 2.96 0.96 0.48 1.59

Note: The mean of the prior Gaussian distribution for σ for 2016 and 2017 was 305 m and 217 m, respectively, with a prior variance of 500 and 400, 
respectively. Encounter rates were assumed identical for females and fawns, but different for adult males. Adult sex ratio and fecundity are derived 
parameters calculated as the ratio of the number of adult males to adult females (i.e., 1 is equal sex ratio), and the number of fawns to adult females in 
the state space, respectively. Summary of 4,500 and 3,000 posteriors for 2016 and 2017, respectively.
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4  | DISCUSSION

In this study, we use an array of wildlife cameras taking pictures 
during a short time period (2– 3 weeks) in late summer just prior to 
harvest. Our main finding is that wildlife cameras indeed collect a 
sufficient amount of information to allow calculating the population 
parameters of interest, but that they may provide different infer-
ences than the fecal DNA- based analyses. Firstly, based on fecal 
DNA the space use of males and females is not significantly different. 

This result is surprising as sex differences in movement of male and 
female adult white- tailed deer are well established (Dechen Quinn 
et al., 2013; Honzová, 2013; Lesage et al., 2000). Because DNA can-
not be used to distinguish age groups, sexes in analyses based on 
fecal DNA refer to both fawns and adults. The space use inferred 
here by SCR analysis of fecal DNA agrees well with that found in an 
earlier study conducted in a different area using fecal DNA in late 
summer (σ 190 m; Poutanen et al., 2019). The σ (for both sexes) in-
ferred by using fecal DNA (305 m in 2016 and 217 m in 2017) agrees 

TA B L E  4   Parameter estimates of the spatial capture analysis where informative priors for the space use (σ) for females and fawns versus 
adult males were based on estimates published (Honzová, 2013) in the literature (SC- lit)

2016 2017

Estimate Lower Upper Estimate Lower Upper

σ (male) 607 466 743 593 459 734

σ (fem/fawn) 154 114 219 170 146 196

λ (male) 0.046 0.0031 0.27 0.13 0.019 0.35

λ (fem and fawn) 0.59 0.42 0.78 0.53 0.38 0.72

D (male km−2) 0.84 0.093 4.2 0.60 0.063 2.1

D (female km−2) 5.1 2.5 7.9 5.2 2.9 7.7

D (fawn km−2) 7.1 3.9 8.4 4.9 2.8 7.6

D (total km−2) 13.4 7.0 18.0 11.0 6.9 15.1

Adult sex ratio (m/m + f) 0.15 0.01 0.48 0.10 0.01 0.31

Fecundity 1.3 0.74 2.3 0.97 0.44 1.60

Note: The prior mean of σ was 624 m for males and 287 m for females and fawns with variance of 5,000 and 1,000, respectively. Sex ratio and 
fecundity are derived parameters calculated as the ratio of the number of adult males to adult females (i.e., 1 is equal sex ratio), and the number of 
fawns to adult females in the state space, respectively. Summary of 4,500 and 3,000 posteriors for 2016 and 2017, respectively.

2016 2017

Estimate Lower Upper Estimate Lower Upper

pID 0.60 0.46 0.75 0.71 0.62 0.79

σ (male) 547 387 748 989 643 1521

σ (fem/fawn) 237 201 268 195 179 213

λ (male) 0.11 0.04 0.24 0.021 0.012 0.030

λ (fem/fawn) 0.64 0.46 0.82 0.47 0.32 0.64

D (male km−2) 0.6 0.3 1.1 2.0 1.8 2.6

D (female km−2) 2.5 1.1 4.1 5.4 3.0 8.1

D (fawn km−2) 3.8 2.0 6.2 5.4 3.2 8.6

D (total km−2) 7.0 4.5 10.4 13.0 9.0 17.4

Adult sex ratio (m/m + f) 0.20 0.10 0.40 0.27 0.18 0.40

Fecundity 1.57 0.64 2.97 1.02 0.49 1.67

Note: For females and fawns, the mean of the prior Gaussian distribution for σ for 2016 and 
2017 was 305 m and 217 m, respectively, with a prior variance of 500 and 400, respectively. The 
parameter pID infers the probability a picture taken of an adult male could be individually identified. 
Space use and encounter rates were assumed identical for adult females and fawns. An informative 
prior for σ for adult females and fawns was used where the point value was set at the year- specific 
sigma inferred by fDNA- SCR (Table 1). Sex ratio and fecundity are derived parameters calculated 
as the ratio of the number of adult males to adult females (i.e., 1 is equal sex ratio), and the number 
of fawns to adult females in the state space, respectively. Summary of 3,000 posteriors for both 
years.

TA B L E  5   Parameter estimates of 
the spatial capture– recapture analysis 
of antlered individually identified males 
combined with spatial capture of females 
and fawns (SC- SCR)
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well with what is expected on the basis of published home- range 
area of GPS collar located white- tailed deer adult females in Finland 
(287 m; Honzova et al., 2013; see Material and Methods for calcula-
tion of σ). However, our SCR analysis of pictures of individually iden-
tified adult males concludes that adult males have a σ that is about 
threefold the σ inferred by SCR of fecal DNA, a finding much in line 
with literature values. However, we cannot infer σ of adult females 
using wildlife cameras as adult females cannot be individually identi-
fied. Taken together, nevertheless, it could be that fecal DNA- based 
SCR does not capture the heterogeneity in σ between adult males 
and adult females in cases as ours where the preharvest population 
is studied and a substantial part of the population consists of fawns 
that have a σ more comparable to adult females than adult males.

Secondly, the total density inferred by fecal DNA is in general 
higher than the density inferred by SC analysis of wildlife camera 
data, and in one of the two study years (2017) significantly higher 
than two of the three SC models. While our a posteriori simula-
tions show that the fDNA- based estimate of density in 2016 risks 
being an overestimate, bias for 2017 is largely absent. Finding that 
SC analyses provide lower estimates of density than fDNA- based 
SCR is surprising as simulations show that, all else being equal, SC 
analyses tend to overestimate density and underestimate space use 
(Royle, Richard, et al., 2013) and are generally imprecise (Augustine 
et al., 2019). At the same time, the SC model has clear potential for 

inferring density of wildlife species based on a variety of relatively 
simple methods including cost- effective approaches for recording 
presence/absence (Ramsey et al., 2015). Importantly, density and 
space use are inversely related (Efford et al., 2016) and with lack of 
information on how individuals move, an SC model's conservative 
inference of space use typically leads to large density. We indeed 
find that our SC models typically infer σ to be below the informative 
prior for σ, and thus are unlikely to infer density conservatively. We 
find that assuming literature values of σ, which is typically the only 
option (Chandler & Royle, 2013), provides particularly low estimates 
for total density, and is hence from that perspective most conserva-
tive. However, as a corollary, literature- based prior for σ also infer 
the most female- biased adult sex ratios and are hence not conserva-
tive from that perspective. A further, partially related, issue is that 
our DNA sampling design may be suboptimal to detect individuals 
moving larger distances. Based on σ provided by fDNA- SCR, which 
is same for adult males, adult females, and fawns (305 m in 2016 and 
217 m in 2017), our fecal DNA clusters are at distances of what Sun 
et al. (2014) suggested for an optimal sampling design (intercluster 
spacing maximally two times σ). Nevertheless, the wildlife cameras 
were placed at the same distances as DNA clusters but they still 
allow SCR analysis of adult males (σ based on cameras 547 m in 2016 
and 989 m in 2017). One explanation for higher densities based on 
fecal DNA is therefore that DNA sampling captures primarily shorter 

F I G U R E  4   Estimates of total density (individuals/km2) in the study area plotted for both study years separately. The SCR analysis of fecal 
DNA (fDNA- SCR) is reported in Table 1, SC analysis of wildlife camera data (SC) in Table 3, SC analysis based on literature estimate of sigma 
for adult females and fawns versus adult males (SC- lit) is reported in Table 4 and the SC analysis of wildlife camera data of adult females and 
fawns combined with SCR analysis of individually identified pictures of adult males (SC- SCR) is reported in Table 5. Dots denote the point 
estimate and lines the 95% credible interval
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movement such as of adult females with fawns, and probably adult 
males when moving at shorter distances. DNA captures are based 
on feces left on the ground and cameras take pictures when they 
detect moving individuals. Somehow related to this aspect, these 
two approaches may detect different movement behaviors of adult 
males. Hence, an important improvement in future studies would be 
to have spacing of fDNA and camera traps both at short and longer 
distances in order to better capture the heterogeneity in σ across 
age/sex classes.

An exciting aspect of the theory underlying spatial capture– 
recapture models is that certain (derived) parameters are assumed 
to be identical across model formulations. In particular, the pa-
rameter σ describing space use as well as the number and location 
of the activity centers of individuals are assumed to be the same 
(Kéry & Royle, 2020; Royle, Richard, et al., 2013). There are, how-
ever, not many studies directly comparing inferences obtained using 
different SCR methodologies (but see, e.g., Burgar et al., 2018). 
One advantage of having SCR parameters in common is that data 
of different sources (e.g., fecal DNA and wildlife cameras, or fecal 
DNA and radio- tracking data) can be combined (e.g., Gopalaswamy 
et al., 2012), although nonindependence of detections across meth-
ods needs to be carefully considered (Clare et al., 2017). Combination 
of spatial capture– recapture data from DNA and from cameras typ-
ically provide more precise estimates (Burgar et al., 2018; Sollmann, 
Gardner, et al., 2013; Sollmann, Tôrres, et al., 2013). Other studies 
have focused on developing “hybrid” approaches with models ex-
plicitly combining count and SCR data, because count data are easier 
and cheaper to obtain as it does not require individual identification. 
For example, DNA- based spatial capture– recapture has been com-
bined with N- binomial mixture modeling of data from single cameras 
for estimation of ungulate density over landscape scale combining 
information from several sites (Furnas et al., 2018). Chandler and 
Clark (2014) showed that SC data collected in some years combined 
with SCR data collected in other years are a cost- effective approach 
to improve temporal monitoring. Jiménez et al. (2019) developed 
an approach to integrate information on identified individuals with 
information on nonidentified ones and showed this integration to 
be particularly important in low- density populations. A challenge 
in combining the fDNA and wildlife camera data we collected in 
this paper is that these two methods do not identify the same age 
classes. Future work, for example, using partial identity models 
(Augustine et al., 2018), could lead to potential fruitful types of hy-
brid SCR models for this kind of data, leading to improved inference 
of density, sex ratio, and fecundity.

4.1 | Population parameters inferred by 
wildlife cameras

The regional density of the preharvest population of white- tailed 
deer in 2016 and 2017 was 3.9 and 4.2 white- tailed deer per km2, 
respectively (Riistaweb, 2021). In comparison, the density estimates 
we obtain here are larger. Apart from very different methodologies 

underlying these density estimates, it is likely that local white- tailed 
density in our study area is particularly high compared with the re-
gional average. The current challenge for wildlife managers is to keep 
the white- tailed deer population, which has dramatically increased 
in the last decade, at a sustainable level. To this end, improving the 
quality and the spatial resolution of estimates of white- tailed deer 
density likely is key. Our findings demonstrate that wildlife cameras 
allow inferences of density, but also that the uncertainty in these 
density estimates is substantial. Therefore, a possible use of wildlife 
camera data for wildlife management is to provide additional and 
independent information on local population density, fecundity, and 
sex ratio to be integrated with larger- scale population dynamical 
modeling based on, for example, hunting statistics.

Wildlife camera data suggest that adult sex ratios in the white- 
tailed deer population may be female- biased; a female bias is evident 
in both study years in the SC models that allow space use to differ 
between adult males and adult females. It is clear already from the 
raw data that more adult white- tailed deer females and fawns are 
counted compared with adult males, and this sex bias persists de-
spite the model accommodating that adult white- tailed deer males 
have a much lower encounter rate than females and fawns. In fact, 
also the fDNA data show evidence of a female- biased sex ratio in 
2017, which reflects adult sex ratio as fawns are produced at equal 
sex ratio. One explanation is that our study area happens to con-
tain more adult females than adult males, while the white- tailed deer 
population at a larger geographic scale has an equal sex ratio. Our 
study area could, for example, be particularly attractive to females 
and their offspring during early autumn when we conducted this 
study. This could be due to some resources the area provide, for 
example, cover (Kie & Bowyer, 1999). On the other hand, a female- 
biased adult sex ratio in the overall population can be partly due to 
the fact that hunting regulations (at the time of our study) specify 
that an adult female with offspring cannot be harvested, whereas 
males lack such a “life insurance” possibly leading to a higher risk for 
an adult male of being harvested compared with an adult female. 
For example, Kekkonen et al. (2016) showed that harvested adult 
females are older than adult white- tailed deer males, which is con-
sistent with a higher mortality rate for white- tailed deer males in 
Finland. Further research into the adult sex ratio of white- tailed deer 
in Finland is needed to improve our understanding of this important 
demographic parameter in this heavily harvested population.

A wildlife camera study prior to harvest in late summer allows 
inference of fecundity as adult females and fawns are readily dis-
tinguished. It is, at least in the middle of summer, possible to use 
individual- specific pattern of the spotted pelage of fawns to con-
struct individual- based SCR models (Chandler et al., 2018). Our 
analysis of camera data using the SC approach is limited by the as-
sumption that detection and space use of adult females and fawns 
are identical. This assumption is necessary as we have no informa-
tion to differentiate between these age classes. Hence, the inferred 
fecundity is simply the ratio of fawn pictures over adult female 
pictures (where the SC approach of course provides a measure of 
uncertainty). At the same time, the model assumes that activity 
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centers of fawns are independent of their mothers and of each other. 
While fawns in late summer are presumably semi- independent of 
their mother, it is likely that the activity centers of a mother and 
her fawns are close. This kind of nonindependence likely causes no 
bias for inferring density (Bischof et al., 2020; Russell et al., 2012), 
but a generally applicable way to accommodate dependencies of 
home ranges of parents and their offspring has not been developed 
(Bischof et al., 2020). White- tailed deer commonly have two fawns, 
and also triplets are observed. Although fecundity of one- year- old 
white- tailed deer females is low (Ryman et al., 1981), females aged 
2– 6 produce 1.3– 1.5 offspring per female. After these ages, a de-
cline in reproductive output commences. Fecundity values of 1.3– 
1.7 (point estimates for 2016) are from that perspective on the high 
side, whereas a fecundity of around 1 (point estimates for 2017) ap-
pears more reasonable. On the other hand, the harvesting rate of 
white- tailed deer is substantial, and it is likely that a large fraction of 
the population consists of young females (cf Kekkonen et al., 2016) 
with high reproductive potential.

5  | CONCLUSION

The number of wildlife cameras in use rapidly increases, doubling 
in number approximately every 3 years (Burton et al., 2015). This 
development creates a powerful incentive to wildlife managers and 
researchers to— through citizen science type of effort— obtain po-
tentially valuable information on population parameters of wildlife. 
However, to convert pictures into population biological information, 
a number of analysis steps are required, both in terms of interpreting 
pictures and in terms of analyzing these interpretations. We here fo-
cused on spatial capture (SC) analysis using a single (relatively large) 
array of wildlife cameras deployed during a short period of time 
(2– 3 weeks) in late summer. SC requires minimal picture interpreta-
tion (count per picture), and we show it can infer density, adult sex 
ratio, and fecundity in the preharvest population of the white- tailed 
deer. Although SC in general is considered to risk overestimation 
of density, we find that this approach provides an estimate of total 
density that is conservative when compared to density estimated 
using fecal DNA in a spatial capture– recapture context. The main 
disadvantage of the SC approach is that it often requires prior or ad-
ditional information on at least one SCR parameters. We here show 
that a literature- based informative prior of space use (σ) provides 
comparable although potentially most conservative (in terms of total 
density) estimates in relation to year- specific σ inferred from fDNA 
and/or SCR of wildlife camera data (for adult males). A spatial cap-
ture scheme of wildlife camera data therefore has potential to be a 
source of population biological information of relevance to wildlife 
management.
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