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Abstract: Chemotherapy is an aggressive form of chemical drug therapy aiming to destroy cancer
cells. Adjuvant therapy may reduce hazards of chemotherapy and help in destroying these cells when
obtained from natural products, such as medical plants. In this study, the potential therapeutic effect of
Rosa damascena callus crude extract produced in vitamin-enhanced media is investigated on colorectal
cancer cell line Caco-2. Two elicitors, i.e., L-ascorbic acid and citric acid at a concentration of 0.5 g/L
were added to the callus induction medium. Callus extraction and the GC–MS analysis of methanolic
crude extracts were also determined. Cytotoxicity, clonogenicity, proliferation and migration of
Caco-2 colorectal cancer cells were investigated using MTT cytotoxicity, colony-forming, Ki-67 flow
cytometry proliferation and Migration Scratch assays, respectively. Our results indicated that L-
ascorbic acid treatment enhanced callus growth parameters and improved secondary metabolite
contents. It showed the least IC50 value of 137 ug/mL compared to 237 ug/mL and 180 ug/mL
in the citric acid-treated and control group. We can conclude that R. damascena callus elicited by
L-ascorbic acid improved growth and secondary metabolite contents as well as having an efficient
antiproliferative, anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used
as an adjuvant anti-cancer therapy.

Keywords: Rosa damascena; callus induction; bio-elicitors; colorectal cancer cell line; anti-cancer activity

1. Introduction

Colorectal cancer is the fourth frequently diagnosed cancer after lung, prostate and
breast cancers [1]. In 2020, 104,610 new cases of colon cancer and 43,340 cases of rectal
cancer were estimated to occur. During the same year, 53,200 people were estimated to
die of colon and rectal cancer combined [2]. In the past 30 years, the mortality from colon
cancer has reduced slightly due to early diagnosis [3]. However, the incidence of colon
cancer has increased in people younger than 65 years old, with a 1% yearly rise in those
aged between 50 to 64 years and 2% for those younger than 50 years old [1]. The risk of
increasing colon cancer is influenced by genetic and acquired risk factors. Acquired risk
factors associated with this disease include (i) dietary factors, for example low intake of
fruit, fiber or vegetables, and high intake of red meat, caffeine, saturated fat and alcohol;
(ii) lifestyle factors such as smoking and absence of exercise; (iii) side effects of some
medical or surgical procedures, such as pelvic irradiation, cholecystectomy and ureterocolic
anastomosis and (iv) co-morbid medical conditions such as human immunodeficiency virus
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infection, diabetes mellitus and inflammatory bowel disease [4]. Surgical resection is the
best treatment for colon cancer but chemotherapy, radiation therapy and immunotherapy
also play an important role in inhibiting recurrence and metastasis. Chemotherapy is the
main therapeutic strategy in many incidences. It uses various drugs or combinations of
drugs to diminish the cancer cell division. The classical route for delivering chemotherapy
for colon cancer comprises delivering drugs to non-target positions; thus, patients suffer
from side effects such as gastrointestinal toxicity, anemia, diarrhea, neutropenia, vomiting,
mucositis, liver toxicity, hematologic disorders, damage to the nervous system and memory
problems [5]. To date, the results of used treatments have not reached an acceptable
outcome due to the risk of side effects and resistance to chemotherapy.

The use of medicinal plants as a natural source of pharmaceuticals has become in-
creasingly popular in recent years. As a result of urbanization, overgrazing, pollution
and the growth of agricultural regions, medicinal plants have been targeted for uncon-
trolled gathering and destruction. Secondary metabolism in plants produces a diverse
range of chemically complicated chemicals, many of which are commercially valuable.
Secondary metabolites are plant products of great pharmacological value, such as pheno-
lics, terpenoids, glycosides, alkaloids and other compounds [6]. Secondary metabolites
are often extracted from intact plants for commercial use. The three main chemical cate-
gories of secondary metabolites in plants are nitrogen compounds, terpenes and phenolic
compounds [7]. Secondary metabolites that contain nitrogen have a basic nature and are
identified by the presence of nitrogen in their fundamental structure. Alkaloids, glycosides
and nonprotein amino acids are among plants’ most prevalent nitrogen-containing sub-
stances [8,9]. These metabolites are crucial for plants’ defense against insects and animals.
The majority of alkaloids are extremely dangerous to humans, although small dosages of
these substances may have medicinal benefits. Alkaloids or extracts containing alkaloids
have been used as muscle relaxants, analgesics and tranquilizers from ancient times to
the present [10]. The building block for terpenes, which are organic compounds, is an
isoprene compound with five carbon atoms. Monoterpenes (C10), sesquiterpenes (C15),
diterpenes (C20), triterpenes (C30), tetraterpenes (C40) and polyterpenes, with more than
40 carbons, are the different subgroups of terpenes [8,11]. Sesquiterpenes and volatile
monoterpenes make up the majority of an essential oil’s chemical makeup [12,13]. Triter-
penes, tetraterpenes and polyterpenes are the most prevalent terpenes [8]. Some terpenes,
such as gibberellins, carotenoids and brassinosteroids, are also crucial for plant develop-
ment in addition to their roles as anti-herbivore defensive chemicals in plants [9,14,15].
Phenolic chemicals are aromatic molecules made up of two groups: a hydroxyl (OH) group
and a phenyl (C6) group. Simple molecules (such as phenolic acids) and highly polymer-
ized molecules have different types of structures in these molecules (condensed tannins).
Lignin, flavonoids, tannins, phenolic acids and coumarins are the five subgroups that make
up phenolic chemicals [16]. The development of plant structure is affected by phenolic
compounds, and they are also linked to a number of physiological functions, such as the de-
fense against infections, insects and animals [17]. These substances are also recognized for
their cardiovascular, gastrointestinal, antibacterial, antiviral, anti-cancer, anti-inflammatory,
antiatherogenic, antithrombotic, analgesic and antithrombotic properties [18–23].

Plant cell culture is a renewable and environmentally acceptable source of secondary
metabolites. Several findings show that plants can create a wide range of secondary
metabolites, with some of them being commercially produced. Tissue culture methods have
been created for a number of plants, but there are many others that are being over-exploited
in the pharmaceutical industry and other disciplines, and need to be protected [24]. For
generations, roses have been one of the most popular ornamental plants in the world. Rosa
damascena Mill. (Damask rose) is one of the oldest and most valuable variants among the
Rosaceae family. This rose is also used to make products with a variety of uses, including
aromatherapy, antiseptic, antispasmodic, astringent agent, sedative, blood cholesterol
altering, antibacterial, antimicrobial [25,26], anti-oxidizing [27] and anti-HIV effects [28]. R.
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damascena also has a variety of uses in the perfume, cosmetic and food sectors, such as the
creation of rosewater, jam and dried flowers [29].

Vitamins may be conceived as bioregulator or hormone precursor chemicals that have a
beneficial effect on plant growth and development when present in minute amounts. There-
fore, these compounds might have an impact on the metabolic process for energy [30,31].
Ascorbic acid, a form of vitamin C, is more or less necessary for many vital physiological
functions, including cell division, nutrition and water absorption, photosynthesis and the
manufacture of enzymes and secondary metabolites. It serves as an enzyme cofactor, an
antioxidant and a precursor for the production of oxalate and tartrate. Ascorbic acid is
connected to chloroplasts that reduce the impact of oxidative stress during photosynthesis.
Additionally, it prevents cell division from altering and functions as the main substrate in
the cyclic pathway of hydrogen peroxide enzymatic detoxification [32].

The effect of these metabolites on cancer cell growth and behavior needs to be explored.
Thus, the aim of this study is to investigate the potential effect of R. damascena callus elicited
by two vitamins, ascorbic and citric acids, on cancer cells using colorectal cancer cell line
Caco-2 as an in vitro model.

2. Results
2.1. R. damascena Callus Fresh, Dry and Crude Weight (g)

We looked for the suitable bio-elicitor to promote the productivity of phenolic content
obtained from R. damascena callus’ fresh or dry weight in a series of early studies. This
experiment’s outcomes in Table 1 and Figure 1A show that the ascorbic acid concentration
of 0.5 g/L resulted in the highest fresh weight (2.878 g) and the maximum dry weight
(0.306 g). The increase in fresh weight was not significant when compared to the control,
but it was substantial in the callus’ dry weight when compared to the control and citric
acid treatment. Table 1 also presents that the control treatment showed the biggest increase
in crude weight (0.038 g). The presence of ascorbic acid or citric acid in the media resulted
in a lower weight of crude output than the control treatment, with values of 0.032 g and
0.022 g, respectively, without significant differences between them.

Table 1. The effect of bio-elicitors on R. damascena callus development and total crude weight.

Treatments
1 Fresh Weight

(g)
Dry Weight

(g)
Crude Weight

(g)

Control 2 2.166 ab 0.214 b 0.038 a
Citric acid 0.5 g/L 1.267 b 0.168 b 0.022 a

L-ascorbic acid 0.5 g/L 2.878 a 0.306 a 0.032 a
L.S.D at 5% 1.019 0.075 2922.8

1 Each treatment was represented by ten replicates, each with three explants. 2 Means with different letters within
the same column or row differ significantly (p < 0.05).

2.2. GC–MS Analysis of R. damascena Callus
2.2.1. Control Treatment

The crude yield of R. damascena callus in the control treatment was 0.038 g. Table 2 and
Figure 1B represent the GC–MS analysis for R. damascena callus in the control treatment. The
obtained result shows the presence of eight compounds in the chromatogram. The major
compounds were 13.75% of Octadecanoic acid, methyl ester (CAS)—which was reported to
be the highest composition of the compounds—followed by benzonitrile (CAS) with 9.15%
and 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester (CAS) with 3.05%. The 4-Octanol,
propanoate, 1-Pentanol, 2,2-dimethyl-(CAS) and 2,6-Nonadien-1-ol had values of 1.55%,
1.60% and 1.74%, respectively, whereas (5,10,15,20-Tetraphenyl [2-(2)H1]prophyrinato)zinx
(II) achieved the lowest amount (0.96%). The components of R. damascena crude differ
according to the bio-elicitor callus they were exposed to.
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Figure 1. Callus adequate mass (A); GC–MS chromatograms of callus elicited by control (B); citric
acid (C); L–ascorbic acid (D).

Table 2. GC–MS analysis of R. damascena callus in the control treatment.

Peak R. Time Area Area % Name

1 5.72 2561 1.04 (2,3-Dihydro-5,10,15,20- tetraphenyl [2-(2)H1]prop hyinato) copper(II)
2 22.12 2251 9.15 Benzonitrile (CAS)
3 26.31 3938 1.60 1-Pentanol, 2,2-dimethyl-(CAS)
4 34.65 3385 13.75 Octadecanoic acid, methyl ester (CAS)
5 39.20 3807 1.55 4-Octanol, propanoate
6 41.56 7511 3.05 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester (CAS)
7 45.46 4280 1.74 2,6-Nonadien-1-ol
8 53.51 2360 0.96 (5,10,15,20-Tetraphenyl [2-(2)H1]prophyrinato)zinx(II)

2.2.2. Citric Acid Treatment

Table 3 and Figure 1C represent the GC–MS analysis for R. damascena callus in the
citric acid treatment. The obtained result shows the presence of eight compounds in the
chromatogram. The major compounds included Octadecane, 2-methyl—-which is reported
to be highest composition of the compounds (5.82%)—followed by Tetratetracontane
(CAS) with 3.58% and 1,2-Benzenedicarboxylic acid, diisooctyl ester (CAS) with 2.69%.
However, Tetradecane (CAS) and Dodecane 5,8-diethyl-(CAS) recorded 2.00% and 1.16%,
respectively. Dichloroacetaldehyde valued 0.95%, whereas 3,3′,5,5′-Tetrabromo-2-nitro-2′-
propylsulfonylbiphenyl and 5á-Pregnan-20-one, 3à,11á,17,21-tetrakis(trim ethylsiloxy)-,
O-methyloxime revealed the lowest amounts—0.76% and 0.73%, respectively.

2.2.3. L-Ascorbic Acid Treatment

Table 4 and Figure 1D represent the GC–MS analysis for R. damascena callus in the ascorbic
acid treatment. The obtained result shows the presence of eight compounds in the chromatogram.
The most prevalent compounds were 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) es-
ter (17.75%), 7-Octadecenoic acid, methyl ester (CAS) with 8.57% and Hexadecanoic acid,
methyl ester (CAS) with 5.82%. Nonane, 1-chloro-(CAS) and11-[(t-Butyldimethylsilyl)oxy]-6,9a-
dimethyl-6-(methoxycarbonyl)-(perhydro)napthaleno[a]benzofulvene valued 1.98% and 1.79%,
respectively, whereas (2,3-Dihydro-5,10,15,20-tetraphenyl [2-(2)H1]prop hyrinato)copper(II)
achieved the lowest amount (1.09%).
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Table 3. GC–MS analysis of R. damascena callus in the citric acid treatment.

Peak R. Time Area Area % Name

1 5.80 3614 0.95 Dichloroacetaldehyde
2 16.85 4391 1.16 Dodecane, 5,8-diethyl-(CAS)
3 19.39 7554 2.00 Tetradecane (CAS)
4 21.82 1355 3.58 Tetratetracontane (CAS)
5 32.26 2202 5.82 Octadecane, 2-methyl-
6 41.57 1018 2.69 1,2-Benzenedicarboxylic acid, diisooctyl ester (CAS)
7 45.75 2866 0.76 3,3′,5,5′-Tetrabromo-2-nitro-2′-propylsulfonylbiphenyl
8 53.28 2764 0.73 5á-Pregnan-20-one, 3à,11á,17,21-tetrakis(trim ethylsiloxy)-, O-methyloxime

Table 4. GC–MS analysis of R. damascena callus in the L-ascorbic acid treatment.

Peak R. Time Area Area % Name

1 7.03 2904 1.79 11-[(t-Butyldimethylsilyl)oxy]-6,9a-dimethyl-6-(m ethoxycarbonyl)-(perhydro
)napthaleno[a]benzofulvene

2 20.80 1980 1.22 Mixture of: 5,6-Dihydro-6-methy l-2H-pyran-2-one and 5-methoxy-3-pente ne-2-ol
3 26.34 3210 1.98 Nonane, 1-chloro-(CAS)
4 30.98 9453 5.82 Hexadecanoic acid, methyl ester (CAS)
5 34.21 1391 8.57 7-Octadecenoic acid, methyl ester (CAS)
6 37.47 1777 1.09 (2,3-Dihydro-5,10,15,20-tetraphenyl [2-(2)H1]prophyrinato)copper(II)
7 41.55 2884 17.75 1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester
8 48.32 1799 1.11 6-[2′-(4”-Phenyl)ethyl]-1,2,3-triphenyl-9H-tribenzo[a,c,e]cycloheptatriene

2.3. In Vitro Anti-Cancer Study (Cell Line Studies)
2.3.1. Cellular Cytotoxicity Assay

Cytotoxicity of control and treated callus were investigated by an MTT assay. A
concentration that kills 50% of the cells (IC50) was determined and used to compare the
activity of different preparations. The IC50 values were 180.6 ug/mL for the control group,
and 137.8 ug/mL and 237 ug/mL for the LAA- and CA-treated groups, respectively. The
results prove that LAA treatment is the most potent cytotoxic one (Figure 2A–D).

2.3.2. Clonogenic Assay

Digital images of the colonies were obtained using a camera, and colonies were
counted for the calculation of plating efficiency for three culture dishes in each group in
three separate experiments. The results revealed a significant decrease in the LAA-treated
group compared to the untreated, control- and CA-treated groups. There was no significant
difference between the control- and CA-treated groups, yet they were both significantly
lower than the untreated one (Figure 2D–H).

2.3.3. Ki-67 Flow Cytometry Proliferation Assay

A negative control of untreated Caco-2 cells was used to gate the Ki-67 negative
population. The Ki-67 expression on untreated cells showed that 69.3% of cells were
undergoing proliferation. Proliferation was significantly decreased in cells with the control-
, LAA- and CA-treated callus, showing 38.4%, 31.7% and 40.4%, respectively. The control-
and CA-treated cells showed no significant difference compared to each other. On the
contrary, the LAA-treated cells group showed a significant reduction in cell proliferation in
comparison to the CA and control groups (Figure 3).
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was no significant difference between the control and CA groups (ns) (E).



Molecules 2022, 27, 6241 7 of 13

2.3.4. Migration Assay (Scratch Assay)

A comparison between untreated cells and the control-, LAA- and CA-treated groups
was based on measuring the percentage of wound closure—a decrease in this percentage
was taken as an indication of the decrease in cells’ migratory ability. Areas were quantified
using Image J software (1.52p software 32, NIH, USA). The results showed that the least
average wound closure percentage was for the LAA-treated group, with 17% after 24 h and
33% after 48 h. This was significantly less than that of the control- and CA-treated groups,
showing 26% and 34% after 24 h, and 44% and 56% after 48 h, respectively (Figure 4).
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3. Discussion

The components of R. damascena crude differ according to regions and the elicitors
used in the experiments. Obviously, the results showed that ascorbic acid treatment
recorded the highest values of fresh and dry weights of rose callus with a reliable value
of crude weight when compared with the control treatment. Ascorbic acid is the major
compound functioning in plant antioxidant systems [33]. It is implicated in cell division,
cell elongation and synthesis of phytohormones [34]. Furthermore, it plays a key role in
protecting plants from ROS through the ascorbate–glutathione cycle, as well as acting as a
cofactor to violaxanthin de-epoxidase, which is considered to be an important enzyme in
the photoprotective xanthophyll cycle during photosynthesis [35]. All of the previously
mentioned positive effects of ascorbic acid can explain its significant improvement in the
concentration of fresh, dry and crude weight under the circumstances of this study. This
study evaluated the compounds obtained from the GC–MS analysis of R. damascena callus
methanol extracts. Octadecanoic acid, methyl ester (CAS) is reported to be the major
compound obtained from the GC–MS analysis of R. damascena callus in the control treat-
ment, whereas (5,10,15,20-tetraphenyl [2-(2)H1]prophyrinato)zinx (II) recorded the lowest
value. Our investigation was in line with those recorded by [36], who mentioned a signifi-
cant presence of βcitronellol (30.24–31.15%); trans-geraniol (20.62–21.24%), n-heneicosane
(8.79–9.05%), n-nonadecane (8.51–8.77%), nonadecene (4.42–4.55%) and phenylethyl alco-
hol (4.04–4.16%) was detected from the GC–MS chromatograph profile of R. damascena
essential oil. GC–MS analysis for the methanol extract of R. damascena callus exposed to
citric and ascorbic acids resulted in 16 compounds in the chromatogram, which confirmed
that biotic elicitors increased the secondary products content. Obtained results of our study
agreed with [37], who demonstrated that the exogenous application of ascorbic acid could
enhance foliar growth, which may contribute to increased plant biomass and the yield
of secondary products. Ascorbic acid was considered as an antioxidant involved in cell
division and elongation [38]. Moreover, it also enhanced shoot formation in both young
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and old tobacco callus [39]. Furthermore, the application of ascorbic acid significantly
improved photosynthetic pigments, gas exchange and nutrient content. This enhancement
could be due to the functions of ascorbic acid as an essential cofactor of various enzymes
or protein complexes [40,41]. This finding is in harmony with [42,43], who found that
ascorbic acid foliar spray had a positive impact on total phenols, total chlorophyll, total
carbs and percentages of N, P and K in lettuce. Ascorbic acid supplementation, in ac-
cordance with [44], enhanced N, P and K accumulation, and had a significant effect on
nutrient uptake. Additionally, ascorbic acid enhanced the osmoprotectant proline and
soluble carbohydrates, as well as the antioxidant enzymes CAT, POD, APX and SOD. This
impact might be brought on by ascorbic acid, a water-soluble antioxidant that modulates
a wide range of biological processes that influence plant development [45,46]. It is also
involved in a variety of metabolic processes and has a dynamic connection with reactive
oxygen species (ROS) [47–49]. In this regard, Sajid and Aftab [50] discovered that a foliar
application of ascorbic acid significantly boosted the antioxidant enzyme activity of SOD,
POD, CAT and APX in potatoes under salinity stress conditions. The variation in chemical
composition between our research (greater 7-Octadecenoic acid, methyl ester (CAS) content
and lower n-heptadecane content) and the presented data could be attributable to the
bio-elicitors to which the plant was subjected.

Investigating the potential effect of the crude, ascorbic acid and citric acid-treated
callus as an anti-cancerous adjuvant, human colorectal carcinoma cell line Caco-2 was
employed in this study. The LAA-treated group was the most potent regarding cytotoxicity,
where the IC50 was 137 ug/mL compared to 237 ug/mL and 180 ug/mL in the CA and
control groups, respectively. This was further confirmed by the results of the clonogenic
assay, where the colonies formed were the lowest in cells treated with LAA, denoting
the lowest reproductive viability. The control- and CA-treated groups’ ability to produce
progeny was also decreased in comparison to the untreated cells, but with no significance
between them. Moreover, a negative control of untreated Caco-2 cells was used to gate the
Ki-67 negative population. The Ki-67 status of Caco-2 cells treated with LAA showed the
least proliferation capacity. Proliferation was also decreased in the CA-treated and control
groups rather than the untreated group, suggesting that the anti-cancerous potential of
R. damascena metabolites may be due to inhibiting the proliferation of cancer cells. In this
study, a wound-healing scratch test was employed to reflect the migration potential of
Caco-2 cells, and thus, their metastasizing ability. The results indicated that the ability
of the LAA-treated group would significantly decrease the migration of Caco-2 cancer
cells more than the CA-treated and control crude groups, which would result in better
therapeutic outcomes.

4. Materials and Methods

This research was carried out in the Tissue Culture Laboratory of Taif University—where
tissue culture techniques were used to increase the production of secondary metabolites
in R. damascena (Family: Rosaceae)—and in the Center of Excellence for Research in Re-
generative Medicine and its Applications (CERRMA) in Faculty of Medicine, Alexandria
University—for the application of R. damascena callus crude extracts on cancer cell line
Caco-2 to evaluate their potential anti-cancer effect. The current study was carried in three
parts: the first was the induction of R. damascena callus; the second included an increment
of secondary metabolites utilizing various elicitors, extraction, and GC–MS measurement;
the third applied these metabolites on a cultured cancer colon cell line Caco-2 to evaluate
their effect on cell viability, proliferation, clonogenicity and migration.

4.1. Callus Initiation of R. damascena

The goal of this section was to receive adequate quantities of callus. R. damascena
mature closed flowering buds (1–1.5 cm long) were collected from the Al-hada district of
Taif governorate for this investigation.
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4.1.1. Explant Sterilization

Closed mature flowering buds were washed in tap water with soap and a few drops
of Tween-20 (a wetting agent that lowers the surface tension, enabling better surface
contact), then submerged for 1 min in 70% ethanol, washed with sterile distilled water, and
immersed for 5 min in a 5% marketing Clorox solution. To eradicate residuals, explants
were disinfected three times with sterile distilled water in a laminar air flow hood.

4.1.2. R. damascena Callus Generation in MS Medium Culture

For callus initiation, sterilized explants were grown in MS medium supplemented with
0.1 mg/L kinetin (Kin) and 1.0 mg/L naphthaleneacetic acid (NAA). Callus was obtained
after 6 weeks of culture on medium.

4.2. R. damascena Elicitation Secondary Metabolites

Flowering callus buds were cultivated on Murashige and Skoog (MS) medium with cit-
ric acid at 0.5 g/L, L-ascorbic acid at 0.5 g/L, sucrose at 30 g/L, agar at 7 g/L, and produced
from MS media supported with 0.1 mg/L kinetin (Kin) and 1.0 mg/L naphthaleneacetic
acid (NAA).

4.2.1. Experiment Design and Setting

The three following treatments were performed: 1-0.1 mg/L KIN and 1.0 mg/L NAA
(control group), 2-L-ascorbic acid at 0.5 g/L (LAA group) and 3-citric acid at 0.5 g/L (CA
group). Every three explants received ten jars in each treatment. Before autoclaving, the pH
of the media was adjusted to 5.7–5.8 using a pH meter and an appropriate amount of 0.1
N HCl or 0.1 NaOH. Clean jars were used to deliver the material. Each one had 30 mL of
nutritional media in it. After that, the jars were autoclaved for 15 min at 121 ◦C, 1.5 kg/cm3

at 1.5 kg/cm3. All treatments were incubated at 26 ± 2 ◦C and exposed to a 16 h light/day
photoperiod under constant fluorescent light of 1500 Lux in the growth chamber. After 4
weeks of culturing on media, the following data were recorded: 1—Average callus fresh
weight (g), 2—Average callus dry weight (g).

4.2.2. Callus Crude Extraction

The obtained callus was dried, and ground to fine powder by a mortar and pestle.
Five grams of dried powdered callus of each treatment was extracted for roughly 6 h at
60 ◦C using a Soxhlet apparatus with 50 mL of 100% methanol. The solution was then
evaporated to dryness at 40 ◦C using a rotary evaporator [51]. Next, the crudes were stored
in glass bottles at −20 ◦C for further bioassays.

4.2.3. The GC–MS Analysis

The GC–MS analysis of methanolic crude extracts was conducted for the identification
and characterization of various chemical components, as well as the presentation of the
total extract from samples. A Thermo Scientific Trace GC Ultra/ISQ Single Quadrupole
MS (Thermo Scientific, Waltham, MA, USA) TG-5MS-fused silica capillary column was
used for the GC–MS study (30 m, 0.251 mm, 0.1 mm film thickness). An electron ionization
system with 70 eV ionization energy was employed for GC–MS detection, with Helium
as the carrier gas at a constant flow rate of 1 mL/min. The temperature of the injector
and MS transfer line was fixed to 280 ◦C. The oven temperature was set to rise from 50
◦C (hold for 2 min) to 150◦ C at a pace of 7 ◦C per min, then to 270 ◦C at a pace of 5 ◦C
per min (hold for 2 min), then to 310 ◦C at a rate of 3.5 ◦C per min as a final temperature
(hold 10 min). A percent relative peak area was used to evaluate the quantification of all
the discovered components. The chemicals were tentatively identified by comparing their
respective retention times and mass spectra to those of the NIST, WILLY library data from
the GC–MS instrument.
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4.3. In Vitro Anti-Cancer Study (Cell Line Studies)

Following the method of Etman et al., 2020 [52], human colorectal adenocarcinoma
cell line (Caco-2) (ATCC® HTB-37™) was employed in this study and all experiments
were carried out in CERRMA (Center of Excellence for Research in Regenerative Medicine
and its Applications), Faculty of Medicine, Alexandria University. Cells were cultured in
Dulbecco’s modified eagle medium (DMEM)-high glucose enriched with (10% v/v) fetal
bovine serum (FBS) and antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin). Cells
were incubated in 5% CO2 at 37 ◦C for maintenance and media was changed every 2 days.
Cells were passaged on reaching 80–90% confluence using 0.25% (w/v) trypsin/ethylene
diamine tetra acetic acid (EDTA), then plated in T75 cm2 flasks or in other culture vessels
(6 or 96 well plate) according to the experiment conducted.

4.3.1. Cellular Cytotoxicity Assay

Different callus extracts were dissolved in 1 mL dimethyl sulfoxide (DMSO) to assess
their cytotoxicity through applying different concentrations, in which the highest concen-
tration of DMSO would never exceed 0.1% DMSO to avoid its cytotoxic effect. Cellular
cytotoxicity was assessed using MTT assay as described by El-Habashy et al., 2020 [53].
Caco-2 cells were seeded at a density of (5 × 103) in 96-well plate. Each well contained
100 µL of culture media. Cells were allowed to adhere for 24 h. Then, they were treated
with different concentrations ranging from 10 to 200 ug/mL or 100 to 350 ug/mL of the
LAA-, CA- and control-treated groups, respectively, then incubated for 48 h. After incuba-
tion, 100 µL of fresh media containing a 10 µL MTT solution (5 mg/mL) was added and
incubated for another 4 h in a CO2 incubator. Finally, 100 µL DMSO was added to dissolve
the produced formazan crystals. Absorbance was measured at 570 nm using a microplate
reader. The viability of cells was determined according to the following equation: % viabil-
ity = Absorbance of sample at 570 nm/Absorbance of untreated at 570 nm × 100, where
untreated cells were treated with culture media only. The effect of different concentrations
on cell viability was expressed as % inhibition against concentration and used to calculate
IC50 (concentration required to kill 50% of the cells). Results were expressed as mean ± SD
(n = 8).

4.3.2. Colony-Forming Assay

Clonogenic assay is an in vitro cell-survival assay based on the ability of a single cell
to grow into a colony. The assay tests the cell for its ability to undergo division with and
without treatment, thus, used to determine the effectiveness of cytotoxicity. The assay was
performed by plating 103 cells on a 60 mm culture dish in CCM; after 24 h, the media
-was discarded from the wells and replaced with culture media only or media with added
treatment of half-calculated IC50 of the LAA, CA and control for 14 days. The medium
was changed every 2–3 days; then, after 14 days, cells were washed with PBS, fixed and
stained using Crystal Violet (Sigma-Aldrich, Burlington, MA, USA) at 3% (w/v). The
number of visible colonies was counted and plating efficiency, (the number of colonies
formed/number of cells plated) × 100 was calculated for comparison.

4.3.3. Ki-67 Flow Cytometry Proliferation Assay

Caco-2 cells were plated in 6-well plates at a density of 2 × 104 cells per well for the
cell proliferation assay. After incubation for 24 h for adherence, the media was discarded
from the wells and replaced with culture media only or media with added treatment of
half-calculated IC50 of LAA, CA and control groups for 48 h. The culture medium was
then removed from the wells, cells were washed twice with sterile PBS, and 0.25% of
the trypsin-EDTA solution was added to detach the cells. After 5 min of incubation at
37 ◦C and 5% CO2, fresh culture medium was added to inactivate trypsin, and cells were
collected in flow cytometry tubes. Cells were then labelled using the Ki67 Proliferation
Kit (D3B5, Rabbit mAb Alexa Fluor® 488 Conjugate, Cell signaling technology) according
to the manufacturer’s instructions (cell signaling technology; flow cytometry, methanol
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permeabilization protocol) and analyzed by using BD FACS Calibur flow cytometry. Un-
stained control cells were used for gating to determine the percentage of proliferation of
the Ki67-positive cells in the samples. Percentages of proliferating (Ki67 positive) cells were
used to calculate the means ± SD for each group in triplicate [54].

4.3.4. Migration Assay (Scratch Assay)

The scratch assay was carried out to test the ability of the LAA, CA and control groups
to attenuate the migration of cancer cells [55]. The cells were grown until 70–80% confluency
in complete media. Then, they were incubated for 24 h in a 6-well plate to allow cellular
adhesion. Next, media was removed and replaced with starvation (serum-free) medium
for another 24 h. Then, a scratch was carried out using a sterile 200 µL pipette tip and cells
were washed with PBS twice to remove any detached cells; then, the cells were treated
with half-calculated IC50 in the LAA, CA and control groups in starvation media, or just
starvation medium in the control–untreated group, for 48 h. Images of the scratch were
taken using an inverted phase contrast microscope (Olympus, Waltham, MA, USA) after
scratching and this was marked as zero time. Images were then taken after 24 and 48 h.
Representative images were taken, and the area of wound-healing was calculated using
Image J software (Version 1.52p software 32, NIH, USA).

4.4. Statistical Analysis

GraphPad Prism 8 was used for statistical analysis (GraphPad Software, La Jolla, CA,
USA). The data were analyzed using one-way analysis of variance (ANOVA). Significant
differences were determined to have p-values less than 0.05.

5. Conclusions

In the current study, we found that adding L-ascorbic acid to media enhanced the sec-
ondary metabolite production in R. damascena callus and it has an efficient antiproliferative,
anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used as an
adjuvant anti-cancer therapy.
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