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Uniqueness of gait kinematics 
in a cohort study
Gunwoo Park1, Kyoung Min Lee2 & Seungbum Koo1*

Gait, the style of human walking, has been studied as a behavioral characteristic of an individual. 
Several studies have utilized gait to identify individuals with the aid of machine learning and computer 
vision techniques. However, there is a lack of studies on the nature of gait, such as the identification 
power or the uniqueness. This study aims to quantify the uniqueness of gait in a cohort. Three-
dimensional full-body joint kinematics were obtained during normal walking trials from 488 subjects 
using a motion capture system. The joint angles of the gait cycle were converted into gait vectors. 
Four gait vectors were obtained from each subject, and all the gait vectors were pooled together. Two 
gait vectors were randomly selected from the pool and tested if they could be accurately classified if 
they were from the same person or not. The gait from the cohort was classified with an accuracy of 
99.71% using the support vector machine with a radial basis function kernel as a classifier. Gait of a 
person is as unique as his/her facial motion and finger impedance, but not as unique as fingerprints.

Walking is a fundamental human movement that is personalized due to daily repetitive activities. Gait, a person’s 
walking pattern, is influenced by various individual features. For example, sex, somatotype, age, hand preference, 
habits, pathology, and ethnic or cultural background affect gait  styles1. Physiological and behavioral characteris-
tics, including gait, constitute the biometrics of a person. Biometrics are utilized in electronic banking and access 
control systems for identification and authentication. In security and forensic applications, the biometrics of gait 
have an advantage because they are non-invasive and easy to capture using  cameras2,3.

One challenge in using biometrics of gait is that obtaining gait features such as the joint positions via video 
images is computationally  expensive3,4. However, image processing and machine learning techniques have rapidly 
advanced in the last few years. Recent studies using deep neural networks and convolutional layers have extracted 
high-level gait features from images. Gait features are acquired in two main forms of data from a sequence of 
images: binary silhouette images and model-based kinematics of  gait5. Binary silhouette images are usually pro-
cessed into a gait energy image (GEI), which is the temporal accumulation of the silhouette sequence. A GEI can 
represent spatiotemporal information of a cyclic movement of a person, but the images should be captured from 
the side of the  pedestrian6,7. Meanwhile, model-based gait kinematics estimation methods project and register 
a skeleton model to a person in the image using computer vision technologies, such as pose  estimation8–12. By 
using a known camera angle or predicting the camera angle for the image, the three-dimensional posture of the 
skeleton model can be estimated to calculate gait  kinematics13–16.

There is still a lack of research on the utility of gait as a biometric for identification. The performance of biom-
etric systems is measured by evaluating how well the population set could be individualized. The top matches in 
the identification system and error rates of the verification system are evaluated for a selected  dataset17. Unique 
characteristics are highly individualized but not vice versa. General uniqueness depends on the population size, 
number of features, and the difference between individual  features18. Therefore, uniqueness cannot be assessed 
directly but can be estimated  statistically18–20.

Biometric features should possess universality, distinctiveness, permanence, and  collectability4. Popular 
biometric features such as fingerprint and face are accepted to have those properties. Moreover, new biometric 
features are being studied for identifying individuals. Benedikt et al.21 studied the uniqueness and permanence 
of facial movements acquired from three-dimensional video sequences. Armstrong et al.22 also investigated 
the uniqueness, permanence, and collectability of event-related potentials using electroencephalogram. Noh 
et al.23 presented ratiometric finger impedance as an alternative biometric feature. Multimodal biometric sys-
tems combine various biometric features to overcome the performance limitations of single-modal  methods4,24. 
Development of multi-modal biometrics increased the importance of suggesting and validating other unique 
features from individuals.
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Gait is not a particularly distinctive biometric feature but can be applied to systems with lower security 
 requirements4. Nevertheless, discussion regarding the uniqueness of gait and its potential for individualization 
has been lacking. Many studies have directly assessed GEIs. Shiraga et al.25 proposed a convolutional neural 
network for view-invariant gait recognition. Zhang et al.26 introduced metric learning with Siamese neural 
networks, which were originally designed for few-shot image classification. For the model-based approach, 
studies for reconstructing three-dimensional kinematic  models8–12 and using the kinematic models for person 
 identification13–16 were developed. Liao et al.14,15 proposed a two-stage gait recognition method that first recon-
structs 2D or 3D poses from images and then extracts features based on the sequence of poses. Instead of using a 
stick figure model, Li et al.16 adapted a vertex-based model to use body shape and pose during walking to identify 
individuals. These studies concluded that gait identification can be achieved by extracting the discriminative 
features of gait. However, it is necessary to further study the uniqueness of gait features and to analyze the benefits 
and limitations of using gait features for biometric identification.

Although vision-based 3D human pose estimation has been widely investigated, the standard method to 
obtain accurate human poses is to use an optical motion capture system with multiple synchronized cameras. 
The cameras can record the trajectories of the reflective skin markers attached to a subject. The motion capture 
system can provide a sub-millimeter accuracy in tracking the 3D position of a marker if an appropriate number 
of cameras and camera resolution are provided for a target  volume27,28. The joint angles of the subject can be 
estimated by fitting the markers to a human model using the inverse kinematics method. It is significantly used 
in sports  biomechanics28 and clinical  biomechanics29 to quantify human kinematics.

In this study, we aim to explain the variation of gait data over a cohort of 488 subjects and estimate their 
uniqueness using gait kinematics data obtained using a motion capture system. There have been many attempts 
to use the gait features captured through videos for security and forensics. This study provides a statistical basis 
and analysis for utilizing gait features in applications such as biometric security systems and forensics through 
following steps:

– Extraction and interpretation of kinematic features of gait from the statistical distribution of cohort data 
using principal component analysis (PCA).

– Comparison of inter-subject variance and intra-subject similarity to check discriminative gait kinematics.
– Examination of binary classification methods to distinguish whether a given pair of gait kinematics is from 

the same person or from different persons.

Methods
Gait kinematics acquisition. This study was approved by the institutional review board at Seoul National 
University Bundang Hospital. Five hundred healthy subjects were recruited from the city of Seongnam, South 
Korea. Informed consent was obtained from all participants. Subject data acquisition and processing were per-
formed in accordance with the institutional ethical guidelines of human subject research. Three-dimensional 
gait kinematics were recorded from the participants using a motion analysis system (Motion Analysis Corpora-
tion, Santa Rosa, California, USA) equipped with 10 cameras at 120 frames per second and two force plates. A 
sole operator having 9 years of experience placed photo-reflective skin markers in accordance with the Helen 
Hayes marker set. The study subjects walked barefoot on a 10-m long track at a self-selected comfortable speed 
after 10 walking trials. Other spatiotemporal gait parameters were also collected, including cadence, step length, 
and walking velocity.

Among the motion capture data from 500 subjects, the data from 12 subjects had technical problems in 
extracting three-dimensional gait kinematics due to missing data values or marker mismatches. Thus, data from 
488 subjects were used for the study. Two-hundred forty-eight of them were male [average 36.8 (SD 17.2) years 
old, average 172.1 (SD 6.6) cm in height, and average 71.3 (SD 11.7) kg in weight] and 240 of them were female 
[average 37.4 (SD 16.3) years old, average 159.4 (SD 5.7) cm in height, and average 56.8 (SD 9.4) kg in weight].

Two walking trials were recorded for each subject. As shown in Fig. 1, we extracted the temporal locations of 
seven anatomical points in the upper body (head, shoulders, elbows, wrists) and 10 anatomical points in the lower 
body (hips, knees, ankles, toes, and heels) using the motion capture data. A body segment was defined between 
the two adjacent anatomical points. The temporary mid-hip and mid-shoulder points were determined using 
the left and right hip and shoulder points, respectively, to calculate the neck and trunk segments. Therefore, 17 
points and 16 segments were extracted for each frame of the motion capture data. From the two walking trials, 
four gait cycles from the right heel strike to the next right heel strike were extracted.

Gait kinematics data pre-processing. On average, a gait cycle took 1.03 s with 123.16 frames. For tem-
poral normalization, we resampled each gait cycle using MATLAB (Version 2019a, MathWorks, Natick, Mas-
sachusetts, USA) linear interpolation to obtain 101 frames. The spatial coordinates of the 17 points were aligned 
to the laboratory coordinate system so that the positive X-axis was the direction of progression and the positive 
Z-axis was aligned vertically upwards.

Accordingly, the orientations of each body segment were represented as direction cosines in the laboratory 
coordinate system, as shown in Fig. 2. The orientations of the segments in a cycle were transformed into a gait 
vector with 4848 components (16 segments × 3 dimensions × 101 frames). The gait vectors from 1952 gait data 
(488 subjects × 4 gait data) were collected.

The dimensions of a gait vector, 4848 dimensions, were reduced using the PCA method to create a low-
dimensional gait feature vector. The 1952 gait vectors were created in the subspace of the original data space with 
4848 dimensions. The subspace was spanned using 1951 principal components. The output of the dimensional-
ity reduction was the loading matrix, score matrix, and mean gait vector. The loading matrix contained 1951 
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principal components in the order of variance. The score matrix had scores for the 1951 principal components 
to reconstruct the gait vector. We varied the number of principal components to understand the effectiveness of 
the dimensionality reduction. The dimension of the gait vector was reduced to three different levels that could 
explain 90, 95, and 99% of the total variance of the data, respectively.

Verification models with binary classification. Two gait feature vectors from the 1952 gait feature vec-
tors were compared to calculate their variance or similarities. We assumed that the magnitude of variance was 
smaller if a pair of gait feature vectors were from the same person. In our research, we set a verification problem 
as a binary classification task to determine whether the pair is from the same person or not. If the variance in the 
two gait feature vectors was within the classification boundary, they were considered to be from the same person.

From 488 subjects with four trials each, we obtained 2928 (488 × Comb(4, 2)) cases for the pairs of gait feature 
vectors from the same person and 1,901,248 (Comb(488, 2) ×  42) cases for the pairs of gait feature vectors from 
different persons. We subsampled 2928 cases among other cases. In summary, a total of 5856 cases were used for 
analysis. We tested the L1 and L2 norms, which are known as the Manhattan distance and Euclidean distance, 
respectively, to calculate the difference between the two gait feature vectors. Further, we tested the SVM for a 
more flexible boundary classification.

After learning the boundaries, we calculated the receiver operating characteristics (ROC) to validate the per-
formance of the classifiers and observe their behaviors for varying boundaries. The false acceptance rate (FAR), 
false rejection rate (FRR), and equal error rate (EER) were calculated from the ROC. The FAR is the conditional 
probability that a pair of data was predicted to be from the same person while it was from two different persons. 
The FRR is the conditional probability that a pair of data was predicted to be from two different persons, while 
it was from the same person. The EER, a popular performance measure of biometrics research, is defined as the 
probability that the FAR and FRR are  equal17.

We tested five classification methods using MATLAB. L1 norm, L2 norm, and SVM with linear and polyno-
mial kernels were tested with gait feature vectors whose components were the absolute values of the original gait 
feature vectors. An SVM with a radial basis function (RBF) kernel was tested on the original gait feature vec-
tors. We did not apply any additional normalization to the gait feature data because the mean of the gait feature 

Figure 1.  (a) Using Helen Hayes Marker set to capture the motion during walking trials. (b) Seventeen 
anatomical points were extracted from the motion capture data. Sixteen body segments (solid line) were defined 
by connecting the anatomical points.

Figure 2.  x-directional cosine plot of the segments. From left to right, each segment corresponds to the right 
upper arm (a), right lower arm (b), right upper leg (c), and right lower leg (d).



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15248  | https://doi.org/10.1038/s41598-021-94815-z

www.nature.com/scientificreports/

vectors was zero. We used fivefold cross-validation for each classifier because there were no hyperparameters 
to be optimized.

Results
Interpretation of principal components. We extracted 1951 principal components from 1952 cycles 
of gait. Using PCA, we could explain a total variance of 90%, 95%, and 99% with 30, 50, and 120 principal 
components, respectively. The first four principal components shown in Fig. 3 were multiplied with a score and 
added to the mean gait pose. The first and second principal components represented the flexion/extension of the 
shoulder joint and internal/external rotation of the foot, respectively. The third principal component represented 
the forward-directional angle of the lower body, resulting in a difference in the amplitude of leg movement. 
The fourth principal component represented hip and knee joint rotations. The detailed correlation coefficients 
between the first eight principal components and gait parameters are shown in Fig. 3.

Intra-subject variance and variance ratio. A gait feature vector whose components were the scores of 
the principal components were calculated for each gait vector. For each principal component, the intra-subject 
variance of the scores from the four gait vectors of each subject was calculated and averaged over 488 subjects. 
The variances calculated from the entire set of gait vectors are shown in Fig. 4a, and the average intra-subject 
variances of the first 120 principal components are shown in Fig. 4b. The variance from the entire set is the same 
as the explained variance of the principal component. Because principal components were numbered in the 
order of their explained variance, it decreased monotonically for the latter principal components. However, the 
average intra-subject variance did not decrease monotonically. This implies that the intra-subject variance of 
the principal component is not strictly proportional to its total variance. A feature with lower intra-subject vari-
ance would be more consistent for an individual when there are two features of gait with similar total variance. 
Likewise, if a feature shows a higher total variance than the other for the same intra-subject variance, the feature 
is more discriminative for different people. Therefore, we calculated the intra-subject variance to explained vari-
ance ratio to consider both intra-subject variance and total variance.

The intra-subject variance-to-explained variance ratios are shown in Fig. 4c. In Fig. 4d,e, we compared two 
sets of principal components. The first set with the first, third, and ninth principal components displayed rela-
tively high intra-subject variance to explained variance ratios ranging from 0.101 to 0.176. The second set with 
the second, fifth, and tenth principal components had relatively low intra-subject variance to explained variance 
ratios ranging from 0.032 to 0.073. Figure 4d,e show the distribution of data in the feature space of the principal 
components in each set. The axes correspond to the scores of the principal components, and the color of each 
point represents individual subjects. The first set with higher intra-subject variance was used as the feature set 
in Fig. 4d, and the second set with lower intra-subject variance was used, as shown in Fig. 4e. We can observe in 
Fig. 4d,e that the data are more clearly separated for smaller intra-subject variance.

Performance of individual verification. The verification models with five different classification algo-
rithms were tested for the first 30 principal components in the order of total variance. The distributions of the 
classifier outputs are shown as histograms for the acceptance and rejection cases in Fig. 5. In the first two figures 
illustrating L1 and L2 norms, the horizontal axis represents the L1 and L2 distances between the two gait feature 
vectors. Most of them ranged from 0 to 45 for L1 norms and from 0 to 12 for L2 norms. The average values at 
equal error rate (EER) were 18.4 for L1 norms and 4.6 for L2 norms. The horizontal axis in the figures illustrat-
ing support vector machine (SVM) classifier output denotes the distance from the separating hyperplane. The 

Figure 3.  (a–d) Effect of the first four principal components were visualized by motion varying scores 
corresponding to each principal component. Each figure is about the first (a), second (b), third (c), and fourth 
(d) principal component. The motion represented with red and the blue lines indicate the gait reconstructed 
by adding and subtracting the principal component from the mean gait. (e) Correlation of the principal 
components and clinical gait parameters was shown as a colormap.
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positive and negative values indicate that the classifier predicted that the two gait feature vectors were from the 
same person and from different persons, respectively. The blue and red histograms correspond to the distribu-
tion of the acceptance and rejection cases, respectively. The overlapping area of the two histograms implies that 
misclassified ambiguous cases exist. The histograms illustrating the SVM results had a smaller overlapping area 
than the histograms illustrating simple distance calculations.

According to the receiver operating characteristic (ROC) curve in Fig. 6, the SVM with the radial basis 
function (RBF) kernel displayed the best result. It could classify acceptance and rejection cases with 99.71% 

Figure 4.  (a–c) Plot of variance properties of 120 principal components. (a) Plot of the explained variance. (b) 
Plot of the intra-subject variance. (c) Plot of the intra-subject variance to the explained variance ratio. (d,e) Data 
distribution with example set of principal components.

Figure 5.  Distribution of classifier outputs, from acceptance case and rejection case pairs. The acceptance 
cases are displayed as blue histogram, while rejection cases are displayed as red histogram. Each of five figures 
corresponds to L1 norm calculation, L2 norm calculation, and SVMs with three kernels. The horizontal axis 
represents the output values from the classifiers.
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accuracy on the test set. In addition, the EER was just 0.27%. Therefore, in a population of randomly selected 
300 people, a person will show a similar gait with only one of the other people on an average. Table 1 shows the 
classification accuracies and EERs of the SVM with RBF for different numbers of principal components: 6, 14, 
30, 50, and 120. The accuracy improved when the number of principal components increased to 30. However, no 
significant change was observed in accuracy when the number of principal components was increased above 30.

Discussion
The results showed that gait kinematics with segment orientation during walking could achieve an EER of 0.27% 
in the verification problem.  Kaye18 defined special uniqueness as uniqueness conditioned by the given data. In 
our study, the given data were a sequence of gait kinematics from a person. EER is the probability of similar 
gait kinematics being found in another unrelated person within the population. Let us consider a population of 
10 people and a sequence of gait kinematics data from one of them. The probability of an error in finding the 
owner of gait kinematics is at most 2.7% (0.27% × 10). Moreover, the sequence of gait kinematics can be assumed 
to have at least a 97.3% chance of being unique within the population. Conversely, general uniqueness means 
that every person in a given population possesses features with specific  uniqueness18. The probability that all 10 
individuals in the population will have unique gait kinematics is approximately 76.1% (97.3%10). The estimation 
of both special and general uniqueness depends on the population size. A much lower EER would be required 
to use the biometric for identification in a larger population.

The EER of the gait was not as low as the EER of the fingerprint, which was 0.022% in fingerprint verification 
 competitions30. New biometric features are being developed and verified based on recent multimodal approaches. 
For example, lip motion during speaking achieved an EER of 8%21, and ratiometric finger impedance achieved 
an EER of 3.00%24. Although EERs depend on the size and quality of the dataset, the EER of the gait kinemat-
ics is comparable to the EERs of the new biometric features. The advantage of gait kinematics is that it can be 
measured even from a distance through video.

The gait vector in our study consisted only of body kinematics, without body segment lengths. Studies have 
been conducted on the uniqueness of somatotypes in  populations31,32, but we focused on the movement pattern 
of an individual. Gait is created by complex interactions between the neural control of muscles and human body 
 dynamics33. We focused on behavioral biometric information and investigated the uniqueness of human gait. 
Furthermore, information regarding the body segment orientation is more extensively used for studies on clini-
cal gait analysis. Many previous studies selected joint rotation, flexion, and abduction as features rather than the 
relative coordinates of joints for the analysis of gait  uniqueness34.

Figure 6.  Plots of ROC curves for different classifier settings. (a) Comparison of five classification algorithms. 
(b) Comparison of gait feature vectors with different numbers of principal components.

Table 1.  Classification accuracy and EER of SVM with the RBF kernel.

# PCs Accuracy (%) 1—Accuracy (%) EER (%)

6 97.37 2.63 2.77

14 99.32 0.68 0.55

30 99.71 0.29 0.27

50 99.69 0.31 0.27

120 99.69 0.31 0.34
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We used the PCA method to reduce the dimensions of the gait vector that had 4848 dimensions. Determining 
the statistical classification boundary for high-dimensional data requires large samples. Acquiring experimental 
gait data is expensive and laborious. Hence, effective data reduction is frequently used for statistical analysis of 
gait  uniqueness35. PCA can extract linear components of the gait data in the order of the amount of informa-
tion, variance. PCA demonstrates superior performance to nonlinear dimension reduction methods for certain 
 datasets36.

The relationships between the traditional gait features and principal components extracted from the gait vec-
tors are shown in the results. The first principal component with high intra-subject variance and total explained 
variance had a high correlation with upper-body movement. Therefore, upper-body movement has higher vari-
ance than other parts of the body while walking, even for the same person. The first principal component was also 
correlated to the walking speed. This supports the idea that walking speed is related to the flexion and extension 
of the upper body  joints37. The subjects in our study walked at a self-selected speed. Therefore, walking speed 
influenced the high intra-subject variance of the first principal component. The second principal component, 
which is related to the rotation of the foot, showed the smallest intra-subject variance to the explained variance 
ratio providing statistical grounds for using ankle movements for person identification applications. Foot inver-
sion/eversion and outward rotation of the ankle were used to specify the subject in a previous study using gait 
from videos for forensic  investigation38.

To recognize individuals based on gait features, such features should be invariant for the same  person3. To 
compare variations of each subject and variation among all the subjects at once, we calculated intra-subject 
variance to explained variance ratio for each principal component. A small intra-subject variance to explained 
variance ratio means that the score variance of the principal component is small for the same person, compared 
to the total score variance. The two example sets of the principal components in the results are features with low 
intra-subject variance (components 2, 5, and 10) and high intra-subject variance (components 1, 3, and 9). We 
observe in Fig. 4 that a set of robust features simplifies subject classification.

In many studies using PCA, principal components with a lower variance are regarded as less important 
 features39. The PCA could reduce the dimension of gait vectors efficiently. The performance of the binary classi-
fier increased when we used the principal components up to 30. The intra-subject variance to explained variance 
ratio generally increased for principal components greater than 30. We tried to change the order of the principal 
components from higher explained variance first to lower intra-subject variance to explained variance first. Using 
less than four principal components improved the classification accuracy of the SVM with the RBF kernel. The 
classification accuracy was improved from 69.45 to 78.93% for one principal component, 87.28% to 88.18% for 
two principal components, and 90.35% to 92.93% for the three principal components. However, it did not change 
significantly for four principal components.

Among binary classification algorithms, SVMs showed higher performance than L1 or L2 norms. While L1 
and L2 norms classify data with one threshold, SVM can optimize its classification boundary using more param-
eters. In other words, SVM can determine approximate weightage for each principal component according to 
its effect on the classification performance. Among SVMs, the SVM with the RBF kernel achieved the highest 
classification accuracy. For our data, which are the differences between two gait feature vectors, we assumed the 
acceptance case to have a smaller magnitude. Therefore, the classification boundary between the acceptance and 
rejection cases had a shape that enclosed data corresponding to the acceptance case. This shape of the boundary 
was obtained using an SVM with the RBF kernel. For the other methods, we used an absolute value from each 
component of the gait feature vectors. The main reason that the SVM with RBF kernel achieved the best per-
formance might be that there was no information loss due to using absolute values. The multilayer perceptron 
model from PyTorch was also tested using the same binary classification problem. Using a multilayer perceptron 
as a classification algorithm resulted in the highest classification accuracy of 99.35%. Adding more layers to the 
classification model could not further improve the classification accuracy.

Our study quantified the uniqueness of gait using the well-established PCA and SVM methods. The gait 
feature vector was obtained by applying PCA, which is a linear dimensionality reduction method, to the gait 
vectors. Nonlinear dimensionality reduction methods such as autoencoders can perform better depending on 
the characteristics of the  data40. In addition, state-of-the-art deep learning methods, such as convolutional neu-
ral networks, can improve the classification accuracy even without the dimensionality reduction of the input 
 data14–16. Thus, the uniqueness of the gait should be further validated using state-of-the-art methods. Another 
limitation is that the uniqueness of gait is quantified with only a standard walking motion in this study. Thus, 
the results of this study should be used carefully for person identification. The uniqueness of motions other than 
gait can be different from the results of this study. The number of subjects in our study was not as large as that 
in the video-based motion  datasets41. Optoelectronic motion capture systems provide a state-of-the-art accu-
racy in measuring three-dimensional gait  motions27,28; therefore, the measurement errors can be minimized to 
understand the uniqueness of gait.

The EER of gait kinematics was quantified from the three-dimensional gait data obtained in a controlled 
clinical environment using state-of-the-art motion capture system that could provide high accuracy for joint 
positions. The EER of gait kinematics would increase if the three-dimensional gait kinematics were estimated 
using a sequence of videos taken from a single viewpoint, such as from a closed-circuit camera. However, the 
rapid development of computer vision techniques, such as body keypoint  detection9 and three-dimensional pose 
 reconstruction10–12 will be able to provide accurate three-dimensional gait kinematics with a single camera in the 
near future. In our study, the gait data of each subject were obtained during a single visit to the motion capture 
laboratory. Several movements of a subject were captured in a short period of time. Changes in gait kinematics 
with respect to weight, injury, and aging need to be studied  further4. To the best of our knowledge, this is the first 
study to assess the potential of full-body kinematics during walking as a unique characteristic of an individual.
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