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Abstract
Prostate cancer  (PC) and breast cancer  (BC) are the most common cancers in men and 
women, respectively, in developed countries. The increased incidence of PC and BC largely 
reflects an increase in the prevalence of obesity and metabolic syndrome. In pathological 
conditions involving the development and progression of PC and BC, adipose tissue plays 
an important role via paracrine and endocrine signaling. The increase in the amount of 
local adipose tissue, specifically periprostatic adipose tissue, may be a key contributor to 
the PC pathobiology. Similarly, breast adipose tissue secretion affects various aspects of 
BC by influencing tumor progression, angiogenesis, metastasis, and microenvironment. In 
this context, the role of white adipose tissue (WAT) has been extensively studied. However, 
the influence of browning of the WAT on the development and progression of PC and 
BC is unclear and has received less attention. In this review, we highlight that adipose 
tissue plays a vital role in the regulation of the tumor microenvironment in PC or BC 
and highlight the probable underlying mechanisms linking adipose tissue with PC or BC. 
We further discuss whether the browning of WAT could be a therapeutic strategy for the 
treatment of PC and BC.
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obese environment, such as increased systemic inflammation, 
hyperinsulinemia, altered adipokine profiles, and upregulated 
lipid availability  [11,12]. Augmented synthesis and uptake of 
lipids are important hallmarks of PC and are modulated by 
androgen signaling (the key driver of PC pathogenesis) [13,14]. 
In addition, increased local adipose tissue amounts, specifically 
peri‑prostatic adipose tissue (PPAT), may be associated with 
a higher grade or aggressiveness of PC; obesity‑modulated 
alteration to the size of this lipid depot may be a key contributor 
to PC pathobiology. Obesity is a condition of chronic 
inflammation that is characterized by enhanced secretion of 
inflammatory cytokine, including interleukin  (IL)‑6, monocyte 
chemoattractant protein‑1, and tumor necrosis factor‑α 
(TNF‑α), by adipose tissues [15] [Table 1]. These inflammatory 
cytokines are associated with PC progression both in clinical 
and in  vitro studies [16‑18]. Particularly, IL‑6  secreted by 
PPAT in patients with PC demonstrated a concentration 
375  times greater than that in the matched patient serum 
and was found to be associated significantly with the disease 

Introduction

Prostate cancer  (PC) is the most common type of cancer 
in men in developed countries [1]. There is growing 

evidence to demonstrate the association between obesity and 
carcinoma aggressiveness, poor treatment outcomes, and a 
higher risk of cancer‑specific mortality for PC  [2‑5]. Similarly, 
breast cancer (BC) is the most commonly diagnosed cancer and 
the main cause of cancer‑related deaths in women worldwide. 
General and central obesity are risk factors for many chronic 
diseases  [6,7] and are often defined by the body mass index 
(BMI) or waist‑to‑hip ratio  (WHR) [8]. Overweight and obesity 
are associated with an elevated risk of 13 types of cancers [9,10]. 
The aim of this review was to explore the role of adipose tissue 
in the regulation of the tumor microenvironment in PC or BC 
by discussing the following: (1) the relationship between obesity 
and PC or BC,  (2) possible physiological mechanisms linking 
obesity and the progression of PC or BC, and  (3) white adipose 
tissue (WAT) browning as a potential therapeutic strategy for PC 
or BC via the improvement of tumor microenvironment.

Obesity and prostate cancer
Numerous studies have been conducted to understand 

how PC progression is affected by the consequences of an 
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pathological grade [19]. Moreover, PPAT inflammation, defined 
by the existence of crown‑like structures  (CLS), was found 
to be associated with larger adipocyte size, higher circulating 
levels of insulin and triglycerides, and highgrade  PC  [20]. 
Adipose tissues are endocrine organs that synthesize, 
secrete, and metabolize steroid hormones from circulating 
precursors. In addition, adipose tissues contain several 
androgens and androgen precursors, including testosterone, 
dihydrotestosterone, androstenedione, progesterone, and 
dehydroepiandrosterone  [21], which, in the case of PPAT, 
supply a valid local extragonadal source of androgens that 
may reinforce PC growth and metastasis. PPAT also produces 
aromatase enzymes, which convert androgens to estrogens [22], 
and several studies suggest that estradiol is a modulator in PC 
pathogenesis and progression  [23]. In addition, estrogen can 
activate both wild‑type and mutated androgen receptors  [24]. 
In summary, obesity is rather consistently associated with an 
increased risk of aggressive PC.

Reciprocal interactions between adipose 
tissue and prostate cancer

The reciprocal interaction between adipocytes and tumor 
cells re‑shapes adipocytes to a less differentiated condition 
referred to as cancer‑associated adipocytes, a phenotype 
favorable to more aggressive tumors such as PC  [22,25‑27]. 
Several studies suggest that cancer‑associated adipocytes can 
increase the malignant features of the cancer cells, eventually 
leading to detrimental positive feedback  [25,28,29]. Culturing 
human PPAT using PC3 cell‑derived conditioned medium (CM) 
increases the secretion of adipokines, TNF‑α, IL‑6, and 
osteopontin and enhances matrix metalloproteinase  (MMP)‑9 
activity  [25]. Furthermore, preadipocytes primed with PC 
CM undergo neoplastic‑like transformation such as genetic 
instability, mesenchymal‑to‑epithelial transition, and formation 
of prostate‑like neoplastic lesions in  vivo  [30]. PC is affected 
by adipocyte‑secreted factors that increase the cells’ ability 
to proliferate, migrate, and/or invade  [19,26,29,31‑34]. The 
biopsies of human prostate specimens or PPAT collected 
after prostatectomy showed a strong concentration gradient 
of the adipokine CCL7, suggesting that the PPAT secretome 
passively diffuses away from it into the tumor tissues to 
increase the directed migration of PC cells [26]. The CM of 
PPAT demonstrates higher MMP activity compared with that 
seen in peri‑peritoneal visceral adipose tissue  [29], which 
degrades the extracellular matrix proteins and promotes the 
invasion of cancer cells into the surrounding tissues  [35]. 
Direct adipocyte–prostate cell crosstalk has been observed 
in their co‑culture models. Mature rat epididymal adipocytes 
influenced the growth and differentiation of normal rat 
prostatic epithelium [36] or human PC [37,38] when 
cocultured in a three‑dimensional collagen gel matrix. These 
effects were accompanied by an upregulated expression 
(20‑fold) of the cytokines, including vascular endothelial 
growth factor and platelet‑derived growth factor [37], and 
activation of the phosphatidylinositol 3‑kinase (PI3K) 
pathway [38] in the PC3 cells.  However, different studies 
have reported considerable variability  –  PPAT CM showed a 
stimulatory effect on PC3 and LNCaP cell migration in one 

study  [29], and coculturing rat epididymal adipocytes with 
PC3 cells increased PC3 proliferation in one study  [37] – but 
these findings were contradicted in other studies  [38]. This 
discrepancy is probably due to the differences in the nature 
of the cell lines and experimental methodologies used. The 
functional significance of adipocyte‑PC cell interactions is 
emphasized by a study using a subcutaneous in  vivo tumor 
model, in which larger tumors were generated by co‑injection 
of PC cells with preadipocytes than by injection of only PC 
cells  [39]. Thus, targeting the biological modulators of the 
tumor microenvironment, which links PPAT and PC, has the 
potential to reduce PC progression.

Possible mechanisms connecting obesity 
and prostate cancer

The mechanisms connecting adiposity and the progression 
of PC are poorly understood, and may be multifactorial [40]. In 
this respect, prospective components consisting of adipokine 
signaling pathways, sex hormone concentrations, and 
variation along the insulin/insulin‑like‑growth‑factor  (IGF) 
axis were involved  [41,42].  (1) In adipokine signaling 
pathways, leptin and adiponectin are the two most plentiful 
and well‑studied adipokines. High concentrations of 
adiponectin inhibit PC cell growth  [43,44]  [Table  2] and 
extend a beneficial effect on PC by suppressing inflammation, 

Table 1: Adipokines with their alterations in obesity and 
beneficial/detrimental effects
Adipokines Alteration in 

obesity
Beneficial or detrimental effects

Adiponectin Reduction Anti‑inflammation, insulin sensitizing
Leptin Increase due to 

leptin resistance
Modulates appetite and energy expenditure

Resistin Increase Induces insulin resistance, pro‑inflammation
TNF‑α Increase Impairs the insulin signaling, contributes to 

the pro‑inflammatory state
IL‑6 Increase Enhances C‑reactive protein release from 

the liver, causes insulin resistance, leads to 
the pro‑inflammatory state

MCP‑1 Increase Leads to the pro‑inflammatory state
TNF‑α: Tumor necrosis factor‑α, MCP‑1: Monocyte chemoattractant 
protein‑1, IL‑6: Interleukin 6

Table 2: Effects of adipokines on prostate cancer and breast 
cancer
Adipokine Tumor type Cancer development References
Leptin PC Increase [43]

BC Increase [45]
Adiponectin PC Decrease [44]

BC Decrease [46]
MCP‑1 PC Increase [15]

BC Increase [15]
TNF‑α PC Increase [25]

BC Increase [47]
IL‑6 PC Increase [19]

BC Increase [46]
TNF‑α: Tumor necrosis factor‑α, MCP‑1: Monocyte chemoattractant 
protein‑1, IL‑6: Interleukin 6, PC: Prostate cancer, BC: Breast cancer
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activating fatty acid oxidation, ameliorating insulin 
sensitivity and glucose metabolism  [44,48], and stimulating 
adenosine monophosphate‑activated protein kinase  (AMPK) 
activity [49]. Conversely, high concentrations of leptin have a 
pro‑tumor effect in DU145 and PC‑3 but not in LNCaP‑FGC 
PC cell lines  [32]. The relationship between these adipokines 
and PC progression needs to be elucidated  [50].  (2) Sex 
hormone: Massillo et  al. have found that estradiol induces 
the proliferation of androgen‑sensitive cells, whereas it 
diminishes the proliferation of androgen‑insensitive cell 
lines. Furthermore, high‑fat diet  (HFD)‑fed mice had 
elevated concentrations of estradiol, which was associated 
with increased PC cell growth  [51]. Although preclinical 
studies have demonstrated the link between estradiol and 
PC progression  [52], further investigation is required to 
substantiate the results  [53].  (3) Insulin and IGF‑axis: Insulin 
resistance is strongly associated with obesity, leading to 
high insulin levels circulating in the blood  [54]. Insulin 
increases cell proliferation and glucose consumption in PC 
cells but not in noncancerous prostate epithelial cells  [55]. 
The IGF‑axis is composed of cell surface receptors, ligands, 
IGF‑binding proteins, and proteases  [41]. Epidemiological 
studies have shown that higher serum IGF‑1 concentrations 
and downregulated circulating IGFBP‑3 levels are correlated 
with an increased risk of developing PC  [56]. IGFBP‑3 
has been shown to induce apoptosis in a PC‑3 cell line 
in vitro [57]. In addition, previous studies have indicated that 
exercise and nutrition interventions could decrease the BMI 
and weight loss may be advantageous in ameliorating IGFBP 
concentrations, leading to decreased bioavailable IGF‑1 and 
reduced risk of PC progression  [58,59]. In conclusion, the 
regulation of adipokine signaling, sex hormones, and insulin 
and IGF‑axis in the tumor microenvironment may have the 
potential for reducing PC progression [Figure 1].

Obesity and breast cancer
A meta‑analysis of cohort studies demonstrated positive 

associations between BMI and WHR with obesity‑related 
cancers, such as postmenopausal BC  [60]. However, 
there is still disagreement on their influence on the risk 
of premenopausal BC, which may be caused by ethnic 
differences or/and sample size of the clinical study. 
Recently, a study on Korean women found that there 
was a negative association between obesity and BC in 
premenopausal women  [61]. Nonetheless, several studies 

showed no remarkable effect of obesity on the risk of BC 
in Asian premenopausal women  [62,63]. In addition, an 
increased risk of triple‑negative BC was observed in obese 
type II (BMI ≥30 kg/m2) premenopausal Korean women [64].

Crosstalk between adipocytes and breast 
cancer

Obesity is greatly related to a dysfunctional metabolism in 
adipocytes resulting in several chronic diseases. High levels of 
free fatty acids  (FFA), cholesterol, glycerol, and triglycerides 
in serum impact breast tumor initiation, development, and 
migration  [65‑69]. In vitro coculture of mature adipocytes 
with BC cells enhances BC cell proliferation, which 
strongly suggests that adipocytes directly impact cancer 
cells by their secretions  [70]. FFA are obtained from daily 
meals, which deposit as lipid droplets in the adipose tissue. 
Inflammation‑induced obesity is an essential mechanism in 
the development and invasion of BC  [66,67,71]. Saturated 
fatty acids reportedly activate toll‑like receptor 4 to 
augment inflammation that leads to angiogenesis and tumor 
progression  [72]. Inflamed microenvironment promotes 
adipocyte cell death, recruits macrophages, and leads to the 
formation of CLS  [71]. The number of CLS is nine times 
higher in cancer patients with obesity than in lean women 
with BC and is often related to poor prognosis  [73,74]. 
A  study demonstrated that induced inflammation in WAT 
and increased CLS reduced the survival rate in patients  [74]. 
Furthermore, saturated fatty acids can activate NF‑kB, leading 
to TNF‑α production, which affects BC cell proliferation, 
invasion, and metastasis  [47]. FFAs induce BC invasion by 
activating the epidermal growth factor receptor, GTP‑binding 
protein, and protein kinase C pathway  [75], and controlling 
cell proliferation via PI3K [76] and cell migration through 
FFA receptor 1 and 4 and AKT pathway activation  [77]. In 
addition, obesity‑related factors within the tumor and the 
breast microenvironment are now known to regulate several 
important metabolic pathways: PI3K‑RAC serine/threonine 
protein kinase  (AKT), hypoxia‑inducible factor 1α, liver 
kinase B1‑AMPK, and p53. Dysregulated metabolic pathways 
in the breast microenvironment can support tumor growth. 
In summary, targeting the biological regulator of the tumor 
microenvironment between WAT and BC has the potential to 
decrease BC progression.

Figure 1: Proposed mechanisms for the link between obesity and prostate cancer progression. IGF: Insulin‑like growth factor
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Possible mechanisms linking obesity and 
breast cancer

The mechanism for the obesity‑driven BC is very 
complex, and the underlying mechanisms in this process 
mainly consist of adipokines, insulin/IGF, sex hormone, 
and chronic inflammation; their dysregulation can enhance 
BC incidence and progression in the following ways.  (1) 
Adipokines: Leptin‑dependent secretion of the extracellular 
matrix proteins such as MMP‑2 and MMP‑9 and invasion 
in a FAK and Src‑dependent manner suggest that leptin 
boosted the development of a more aggressive invasive 
phenotype in BC [45]  [Table  2]. In addition, serum levels 
of adiponectin were decreased in a diet‑induced obese 
mouse model, which was negatively correlated with obesity 
and increased the BC recurrence  [46].  (2) Insulin and IGF: 
Insulin in conjunction with inflammation can enhance BC 
growth and metastasis  [78]. Furthermore, HFD‑fed obese 
mice showed hyperinsulinemia, upregulated IGF‑1 levels, 
and accelerated BC recurrence, suggesting that the insulin/
IGF‑1 signaling pathway is a potential regulator for obesity 
and BC recurrence  [46].  (3) Sex hormone: Aromatase, 
a rate‑limiting enzyme, is secreted by stromal cells of 
adipose tissue that converts androstenedione to estrone, 
subsequently forming estrogen after menopause. Aromatase 
upregulation in the breast tissue of obese patients resulted in 
an increased risk of hormone receptor‑positive BC in obese 
postmenopausal women  [79].  (4) Chronic inflammation: 
Studies have found that obesity decreases the local IL‑10 
levels in the mammary fat pad of ovariectomized mice, 
resulting in the upregulation of aromatase and leading to 
BC progression  [80]. In summary, targeting of adipokines, 
insulin/IGF‑1, sex hormones, and inflammation in the BC 
tumor microenvironment may have the potential to hinder 
BC progression [Figure 2].

Factors involved in white‑to‑brown 
adipocyte conversion

There are two different types of adipose tissues  –  WAT, 
cells of which contain a large single, spherical lipid 
vacuoles and few mitochondria, and brown adipose 
tissue  (BAT), cells of which contain small and multilocular 
lipid droplets and large number of mitochondria. BAT is 
the principal effector organ of nonshivering thermogenesis 
and can use a large amount of glucose and lipid from 
circulation to promote negative energy balance. Hence, it 

will induce thermogenesis, dissipate heat, improve glucose 
metabolism, and develop insulin resistance in obese 
individuals  [81‑84]. Therefore, BAT is now known to exert 
anti‑type  2 diabetes effects associated with improvement 
of dyslipidemia and decreased insulin resistance  [85‑88]. 
The metabolic adaptations during white‑to‑brown adipocyte 
conversion are not well known. Several studies have shown 
that another type of brown cells, known as the beige or 
brite  (brown in white) cells, exists in both mouse and 
human  [89‑91]. Beige cells are generated postnatally within 
WAT in response to cold or adrenergic stimulations. Both 
classical brown fat and beige cells are rich in mitochondria 
and uniquely express UCP1. Although both share the same 
thermogenic function, they arise from entirely different cell 
lineages  [89,92]. In contrast to brown cells that express 
both myogenic genes Myf5 and Pax7  [93,94], beige cells 
are generated postnatally in WAT depots and arise from 
Myf5‑precursor lineage that expresses PDGFRα  [89,95,96] 
or through transdifferentiation of mature white  [96‑98] 
adipocytes in response to cold or β‑adrenergic stimulation. 
In human, beige adipocytes have been observed in white fat 
depots  [87,99]. Morphological and histological data indicate 
the presence of cells with an intermediate phenotype, 
suggesting that conversion of white into beige adipocytes 
likely occurs  [87]. There are three main transcriptional 
regulators of classical BAT development, namely PR domain 
containing 16  (PRDM16), peroxisome proliferator‑activated 
receptor γ, and peroxisome proliferator‑activated receptor 
γ coactivator 1α, which are key nodes in the regulation of 
inducible brown fat. In addition, some transcription factors 
and coregulators are involved in the browning process of 
WAT such as forkhead box protein C2 [100], steroid receptor 
coactivator‑1, transcriptional intermediary factor‑2  [101], 
T‑box 15  (TBX15)  [102], and mitochondrial transcription 
factor A  [103]. Moreover, secreted proteins, including 
irisin  [104], FGF21  [105], cardiac natriuretic peptide  [106], 
and bone morphogenetic protein 7  [107], had been reported 
to regulate white‑to‑brown conversion. Furthermore, 
different components of the immune system have been 
reported to promote browning, such as eosinophils  [108], 
macrophages  [109,110] and ILC2s  [111,112]; several 
cytokines are involved in the regulation of browning. 
In sum, targeting transcription factors and coregulators 
involved in the browning of WAT may have the potential to 
combat obesity or improve the tumor microenvironment and 
needs further investigation.

Figure 2: Proposed mechanisms for the association between obesity and breast cancer progression. IGF: Insulin‑like growth factor
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Therapeutic browning of white adipose 
tissue in the tumor microenvironment

In pathological conditions such as the development and 
progression of PC and BC, adipose tissue plays an important 
role via paracrine and endocrine signaling. Although implied, 
the influence of WAT browning on the development and 
progression of PC and BC is unclear and has received less 
attention. Browning of WAT can be achieved with benzyl 
isothiocyanate and Honokiol, which increase the expression 
of BAT marker genes  (UCP1, PRDM16, EVOL3, COX7a, 
and CIDEA) in WAT. It not only abolishes the pro‑cancer 
effects of WAT on BC cells but also changes the secretome 
profile of WAT  [113]. Furthermore, the in  vitro and in  vivo 
models with primary brown adipose cells (BACs) indicate that 
primary BACs can directly decrease the viability of H22 cells, 
a hepatocellular carcinoma cell line, and the growth of tumors. 
In conclusion, BACs may be a potential therapeutic tool for 
the treatment of hepatocellular carcinoma  [114]. However, 
whether browning WAT could be a therapeutic strategy for the 
treatment of PC and BC needs further examination.

Conclusion
Epidemiological and clinical evidence has shown a 

consistent association between obesity with cancer progression 
and increased mortality of PC and BC patients. However, 
the underlying mechanisms linking them remain unclear. 
Clinical studies found that alteration of insulin and IGF‑axis, 
sex hormone concentrations, and adipokine signaling can 
increase cancer cell proliferation in individuals with obesity. 
In addition, these factors can also synthetically affect 
angiogenesis, oncogene activation, immune cell dysfunction, 
and oxidative stress, which can modulate the behaviors of 
PC or BC cells and tumor microenvironment. Targeting 
adipocyte‑derived molecules may be a potential therapeutic 

approach to ameliorate the prognosis of obese patients. 
Furthermore, a thorough understanding of the physiological 
mechanisms of obesity on treatment effectiveness and 
tolerance is necessary for improving the efficacy of PC or BC 
therapy. A  summary of the possible mechanisms involved in 
the tumor microenvironment regulated by adipocyte in PC 
and BC is depicted in Figure 3. Thus, it can be concluded that 
regulation of adipocyte function is a novel therapeutic strategy 
for the treatment of PC or BC.
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