
Recent studies have linked defective epithelial basement 
membrane (EBM) lamina lucida and lamina densa regenera-
tion in the cornea to the development of late stromal haze 
after photorefractive keratectomy [1,2]. EBMs have critical 
roles in modulating growth factor–mediated stromal–epithe-
lial interactions in organs throughout the body, including the 
cornea. The basement membrane (BM) is a 50 nm to 100 nm 
thick layer of specialized extracellular matrix (ECM) protein 
complex found basolateral to all epithelium and endothelium 
[3]. The BM composition is extremely diverse, tissue-specific, 
and dynamic, and the composition and assembly of the BM 
in a tissue vary according to the tissue’s physiologic and/or 
pathophysiologic state [4-6].

The corneal EBM is positioned between basal epithelial 
cells and the stroma [2]. Many studies have indicated that the 

corneal EBM is more than a thin acellular layer separating 
epithelial cells from the adjacent anterior stroma. Since the 
corneal stroma is avascular and has a low keratocyte density, 
it is likely that the corneal EBM is different in composition 
from the BM in other tissues [2,5,7]. The corneal epithelial 
BM has regional heterogeneity from the central cornea to 
the limbus to the conjunctiva [2,8]. The corneal EBM is 
assembled from four primary components: collagens, lami-
nins, heparan sulfate proteoglycans (HSPGs), and nidogens, 
although many other components such as fibronectin are also 
present, which may be tissue specific [5,7]. The lamina lucida 
and lamina densa layers that are not regenerated in rabbit 
corneas with haze [1] are composed of specific components 
that include perlecan, nidogen-1 and -2, and laminin 332 [6]. 
Perlecan (HSPG2) is a basement membrane–specific HSPG 
protein that has been identified in the EBM [9,10] that has 
important functions in maintaining cell adhesion and the 
integrity of the corneal matrix [11]. Perlecan deficiency 
impairs the corneal epithelial structure in a mutant mouse 
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Purpose: The purpose of this study was to examine the expression of corneal epithelial basement membrane (EBM) 
components in different corneal stromal cell types. In vitro model systems were used to explore the expression of EBM 
components nidogen-1, nidogen-2, and perlecan that are the primary components in the lamina lucida and the lamina 
densa that defectively regenerate in corneas with stromal opacity after in −9.0 D photorefractive keratectomy (PRK).
Methods: Primary rabbit corneal stromal cells were cultured using varying serum concentrations and exogenous growth 
factors, including fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, to optimize the growth 
of each cell type of interest. The expression of the keratocyte-specific marker keratocan and the myofibroblast-specific 
marker α-smooth muscle actin (α-SMA) were analyzed with real-time PCR, western blot, and immunocytochemical 
staining to evaluate the specificity of the cell types and select optimal conditions (high keratocan and low α-SMA for 
keratocytes; low keratocan and high α-SMA for myofibroblasts; low keratocan and low α-SMA for corneal fibroblasts). 
The expression of the EBM components nidogen-1, nidogen-2, and perlecan was evaluated in each corneal cell type 
using real-time PCR, immunostaining, and western blotting. In agreement with previous studies, serum-free DMEM 
was found to be optimal for keratocytes, DMEM with 10% serum and 40 ng/ml FGF-2 yielded the best marker profile 
for corneal fibroblasts, and DMEM with 1% serum and 2 ng/ml TGF-β1 was found to be optimal for myofibroblasts.
Results: Nidogen-1 and nidogen-2 mRNAs were highly expressed in keratocytes, whereas perlecan was highly expressed 
in myofibroblasts. In keratocytes, nidogen-2 and perlecan proteins were expressed predominantly in intracellular com-
partments, whereas in myofibroblasts expression of both EBM components was observed diffusely throughout the cell. 
Although the perlecan mRNA levels were high in the myofibroblasts, the qualitative protein expression was different 
from that of the keratocytes. Corneal fibroblasts produced a low amount of each EBM component.
Conclusions: We have demonstrated qualitative and quantitative differences in the expression of nidogen-1, nidogen-2, 
and perlecan by keratocytes compared to myofibroblasts that may contribute to defective regeneration of the lamina 
lucida and the lamina densa of the EBM associated with late stromal haze after high-correction PRK.
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model [12]. Nidogens interact with laminins [13,14], collagen 
IV, and perlecan, and thus act as bridging molecules in the 
EBM [15,16].

Evidence has been provided for a stromal cellular origin 
for some EBM components in the cornea [17-20]. Changes in 
the qualitative or quantitative composition, localization, or 
structure of EBM proteins have been shown to be involved 
in the pathophysiology of different disease states [7]. Corneal 
stromal keratocytes are relatively quiescent in the fully-
developed normal cornea. However, after injury or infection 
to the cornea, growth factors, and cytokines originating from 
corneal epithelial cells, inflammatory cells, and tear fluid 
activate the keratocytes to fibroblastic cells and, in some situ-
ations where severe opacity or scarring is noted, to myofibro-
blast phenotypes [21-25]. These cells synthesize disorganized 
extracellular matrix that contributes to pathological stromal 
opacity. Each cell type has been characterized by the specific 
marker proteins the cell expresses [26-29]. Keratocan is 
limited to the corneal stroma, and keratocan expression is 
considered a phenotypic marker for keratocytes [26,27,30-
34]. Lumican is the major keratan sulfate proteoglycan of 
the cornea but is also distributed in interstitial collagenous 
matrices throughout the body. Lumican regulates collagen 
fibril organization, circumferential growth, corneal transpar-
ency, epithelial cell migration, and tissue repair, and is used as 
a marker for keratocytes [35,36]. Alpha-smooth muscle actin 
(α-SMA) is the primary marker of myofibroblasts [32,37].

EBM composition and formation are altered during 
corneal wound healing after injury, infection, and surgery 
associated with the generation of fibroblasts and myofi-
broblasts. It is important to understand the contributions 
each corneal stromal cell type (keratocyte, fibroblast, and 
myofibroblast) may make to the regeneration of the EBM. The 
current study focused on identifying the expression patterns 
of nidogens and perlecan components found in the lamina 
lucida and the lamina densa of the EBM in the three dominant 
keratocyte-derived corneal stromal cell types in vitro since 

these are the primary components in the lamina lucida and 
the lamina densa of the EBM [1,38].

METHODS

Primary cell culture: Fresh rabbit corneas were obtained 
from Pel Freeze (Rogers, AR). Twenty-five rabbit corneas 
were used in each experiment to have sufficient stromal cells 
for the experiments. Each experiment was repeated three 
times with a new set of primary culture cells from rabbit 
corneas. The epithelial and endothelial layers were removed 
from the corneas using 0.12 mm forceps and a #64 scalpel 
blade (BD Beaver, Franklin Lakes, NJ) under a dissecting 
microscope using the sterile technique. Keratocytes were 
isolated from the corneal stroma using a modified Jester et 
al. procedure [14]. Briefly, the corneas were digested in sterile 
Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Grand 
Island, NY) containing 2.0 mg/ml collagenase (Gibco, Grand 
Island, NY) and 0.5 mg/ml hyaluronidase (Worthington, 
Lakewood, NJ) overnight at 37 °C. Cells were spun down 
and cultured in DMEM (Gibco), supplemented with RPMI 
vitamin mix (Sigma), non-essential amino acids (Gibco), anti-
biotic antimycotic solution (Gibco), sodium bicarbonate (JRH 
Bioscience, Lenexa, KS), and L-ascorbic acid (Sigma, St. 
Louis, MO). Keratocytes were grown with different serum 
concentrations—1%, 5%, or 10% fetal bovine serum (FBS; 
Invitrogen Corporation, Carlsbad, CA), with or without 
fibroblast growth factor (FGF-2, 40 ng/ml, Sigma Aldrich, 
St. Louis, MO), heparan sulfate (HS; 5 μg/ml), and TGF-β1 
(2 ng/ml, R&D, Minneapolis, MN) for 60–72 h. The culture 
medium was changed every 48 h. Corneal cells between one 
and three passages were used for all experiments. The condi-
tions used for the cell culture are summarized in Table 1 and 
confirmed in Appendix 1 and Appendix 2.

Immunocytochemistry: For immunocytochemical analyses, 
the cells were fixed with 4% paraformaldehyde (Sigma) for 
30 min and permeabilized with 0.2% Triton X-100 (Sigma) in 
PBS (7.6 mM Na2HPO4, 2 mM NaH2PO4, 160 mM NaCl, pH 

Table 1. List of culture conditions used.

Culture Condition Serum FGF2/HS/TGF-β
1 Serum Free (SF) Nil
2 Serum Free (SF) FGF2–40ng/ml; HS-5µg/ml
3 1% FBS FGF2–40ng/ml; HS-5µg/ml
4 5% FBS FGF2–40ng/ml; HS-5µg/ml
5 10% FBS FGF2–40ng/ml; HS-5µg/ml
6 1% FBS TGF-β −2ng/ml

FBS=Fetal Bovine Serum, FGF2=Fibroblast Growth Factor2, HS=Heparan Sulfate TGF-β=Transforming 
Growth Factor beta.
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7.4) for 10 min, followed by blocking with 5% bovine serum 
albumin (BSA; Sigma) or 5% FBS (Gibco) in PBS for 1 h. 
The cells were then treated with primary antibody for 90 min 
at room temperature and washed three times in PBS, followed 
by treatment with secondary antibody for 1 h.

For nidogen-2 and perlecan, the slides were treated with 
primary antibody for overnight at 4 °C and washed three times 
in PBS, followed by treatment with a secondary antibody 
for 1 h at room temperature. Slides were rinsed with PBS, 
and coverslips were mounted with Vectashield containing 
4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories, 
Inc., Burlingame, CA). The primary antibodies included a 
mouse monoclonal anti-human α-smooth muscle actin clone 
1A4 (1:100, M0851, Dako, Carpinteria, CA), mouse mono-
clonal anti-bovine perlecan A71 antibody (1:150, CSI 001–71–
02, Thermo Scientific, Rockford, IL), and goat anti-human 
nidogen-2 antibody (1:100, AF3385, R&D Systems, Minne-
apolis, MN). Antibodies that recognized rabbit nidogen-1 
could not be identified; therefore, the isoform of the nidogen 
protein could not be studied. The secondary antibodies used 
in this study were goat anti-mouse immunoglobulin G (IgG) 
Alexa Fluor 568 (1:200, A11004, Life Technologies, Carlsbad, 
CA) and donkey anti-goat IgG fluorescein isothiocyanate 
(FITC; 1:100, SC-2024, Santa Cruz). Fluorescence images 
were captured using a Leica DM5000 microscope (Buffalo 
Grove, IL) equipped with Q-imaging Retiga 4000RV (Surrey, 
Canada) camera and ImagePro software (Leica).

Extraction of total RNA, synthesis of cDNA, and RT–PCR: 
Total RNA was isolated from corneal cells using the RNeasy 
Mini Kit (Qiagen) according to the manufacturer’s instruc-
tions. The cDNA was synthesized from total RNA (approxi-
mately 400 ng) with the ThermoScript RT–PCR system (Invi-
trogen, Carlsbad, CA) using oligo (dT) primers according to 
the manufacturer’s instructions. Initial screening of cDNA 
for different genes of interest was performed using reverse 
transcription PCR (RT–PCR). Primers were designed using 
Primer3 combined with BLAST from the NCBI (Table 2).

Quantitative real-time PCR: The quantitative measurement 
of keratocan, lumican, and α-smooth muscle actin (α-SMA) 
from different corneal cells was performed with real-time 
PCR using a DNA Engine Opticon system (MJ Research, 
Waltham, MA) with the SYBR Green PCR Master Mix 
(BioRad, Hercules, CA) in a one-step reaction according to 
the manufacturer’s instructions. The primer sequences used 
are listed in Table 2. The melting curves and gel electro-
phoresis of the end products were obtained to confirm the 
specificity of PCR. The relative quantification of target genes 
was determined using the comparative Ct (ΔΔCt) method.

To measure specific marker mRNA expression, real-time 
PCR was performed for keratocan, lumican, and α-SMA 
under the different culture conditions. Keratocytes grown in 
serum-free medium expressed high levels of keratocan and 
were keratocan+, lumican+ and α-SMA-, while corneal fibro-
blasts grown in 10% FBS with 40 ng/ml FGF-2 expressed 
low levels of all three markers (keratocan, lumican, and 
α-SMA, Figure 1A). This reinforced the finding that 10% 
FBS with 40 ng/ml FGF-2 provided the optimal condition for 
culturing corneal fibroblasts and serum-free DMEM was the 
optimal condition to grow keratocytes. Quantitative analysis 
of α-SMA mRNA expression revealed that cells grown in the 
presence of 2 ng/ml TGF-β1 expressed high levels of α-SMA 
mRNA and were keratocan-, lumican-, and α-SMA+ (Figure 
1A). Expression of keratocan mRNA and α-SMA mRNA was 
monitored under several other culture conditions (data not 
shown), and these conditions represented the optimal condi-
tions to culture each of the three primary corneal stromal cell 
types in vitro (keratocytes, fibroblasts, and myofibroblasts).

Western blot analysis: The cultured cells were trypsinized, 
and the pellets were extracted in RIPA buffer (Thermo 
Scientific) containing the protease inhibitor cocktail (Thermo 
Scientific) at 4 °C for 30 min. The extracts were centrifuged 
at 15800 ×g for 15 min to remove debris, and the superna-
tants were used for western blotting to detect α-SMA and 
β-actin. For keratocan, the cells were extracted by adding 4 

Table 2. List of primers.

mRNA Up primer 5′ to 3′ Dp primer 5′ to 3′ Amplicon 
size (bp)

Perlecan CGTGGCAGTCAACACCAAAG TTCTTGATGCAGCCCGTGAT 105
Nidogen-1 ATGGTTCAGCATCACTGGG TAATGACCAGCTTGCCTGGG 80
Nidogen-2 CGTGCAAGACACGGAAGTCA GAGTTGGCTGGGACGTAAGG 141
Lumican TGCAGCTTACCCACAACAAG TGAAGGTGAACGAAGGTCAA 76

Keratocan AGTGCGGATGACTTTGATTG TGGCTTCTCTGGAATGGTTT 165
α-SMA ATTGTGCTATGTCGCTCTGG GATGAAGGAGGGCTGGAA 157
β-actin CTGGAACGGTGAAGGTGACA CGGCCACATTGCAGAACTTT 73
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M guanidine-HCl containing 10 mM sodium acetate, 10 mM 
sodium EDTA, 5 mM aminobenzamidine, and 0.1 M є-amino-
n-caproic acid and protease inhibitor cocktail at 4 °C over-
night. The extracts were dialyzed in distilled water, and the 
precipitates were collected and dissolved in 0.1 M Tris-acetate 
solution (pH 6.0) containing 6 M urea and protease inhibitor. 
For keratocan, a 100 µg protein aliquot was incubated with 
endo-β-galactosidase (0.1 U/ml, Sigma-Aldrich) in 50 mM 
sodium phosphate (pH 5.8) at 37 °C overnight. After diges-
tion, the protein was lyophilized, dissolved, and underwent 
western blot analysis for keratocan. Protein concentrations 
were determined using the BCA protein assay kit (Thermo 
Scientific). Twenty microns of total protein were loaded to 
each lane on a sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS–PAGE) gel (8%) for electrophoresis and 
transferred to a nitrocellulose membrane. The membranes 
were blocked with 5% non-fat milk and probed with primary 
antibodies at 4 °C overnight, α-SMA (1:1,000, M0851, Dako), 
β-actin (1:5,000, A5441, Sigma-Aldrich), and keratocan 
(1:500, LS-B8216, LSBio, Seattle, WA). After washing and 
incubating with corresponding secondary antibodies, protein 
blotting was visualized by reaction with western horseradish 
peroxidase substrate (Millipore, Billerica, MA).

To verify the specificity of each cell type, we also moni-
tored the expression of α-SMA and keratocan with western 
blot. Keratocytes grown in serum-free medium expressed 
high levels of keratocan compared to cells grown in the 
presence of serum, FGF-2, and TGF-β1. The cells treated 
with 10% FBS and FGF-2 had no keratocan expression 
and was determined to be the best condition for culturing 
corneal fibroblasts. α-SMA expression was prominent in 

myofibroblasts (cells grown in the presence of 1% serum and 
2 ng/ml TGF-β1; Figure 1B).

Statistical analysis: A sample size of three was used in all 
experiments. All data are represented as the mean ± SD, and 
statistical significance was determined using a two-tailed 
Student t test from three or more independent experiments. 
A p value of less than 0.05 was considered significant.

RESULTS

Analysis of nidogen-1, nidogen-2, and perlecan with real-time 
PCR: The expression of nidogen-1, nidogen-2, and perlecan 
was monitored under the three different culture conditions 
used to culture keratocytes, corneal fibroblasts, and myofi-
broblasts. Real-time PCR showed nidogen-1 and nidogen-2 
mRNAs were highly expressed in keratocytes compared to 
corneal fibroblasts and myofibroblasts. Conversely, perlecan 
mRNA was highly expressed in myofibroblasts compared 
to keratocytes or corneal fibroblasts (Figure 2), although 
the keratocytes produced significant amounts of perlecan 
mRNA. Corneal fibroblasts expressed only small amounts 
of nidogen-1, nidogen-2, and perlecan mRNAs.

Analysis of nidogen-2 and perlecan proteins with immuno-
cytochemistry: Nidogen-2 and perlecan protein expression 
was monitored with immunocytochemistry (Figure 3 and 
Figure 4). Nidogen-2 localization of expression was different 
in keratocytes and myofibroblasts. In keratocytes, nidogen-2 
appears most highly expressed in a perinuclear organelle, 
whereas in myofibroblasts the expression was more diffuse 
and formed a mesh-like network throughout the cells (Figure 
3). Staining for nidogen-2 in a perinuclear organelle was also 
noted in corneal fibroblasts. Perlecan was highly localized 

Figure 1. Expression of stromal cell 
markers under different culture 
conditions. Cells were cultured 
in the presence or absence of 
serum, fibroblast growth factor 
(FGF)-2, and transforming growth 
factor (TGF)-β1, as described. 
SF is serum-free. A: Keratocan 
and lumican mRNA was highly 
expressed in cells grown in SF 
medium whereas α-smooth muscle 
actin (α-SMA) mRNA was highly 
expressed only in cells grown 
in the presence of TGF-β1 (n=3; 
***,  p<0.001; **, p<0.01). B: 

Western blot analysis of keratocan and α-SMA protein expression. As expected, the keratocytes produced keratocan protein, and the 
myofibroblasts produced α-SMA. The corneal fibroblasts did not produce either marker protein.
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in what appeared to be intracellular organelles in the kera-
tocytes whereas in the myofibroblasts the perlecan was seen 
more diffused throughout the cell body (white arrowheads 
in Figure 4). Fibroblasts had little, if any, detectable expres-
sion of perlecan protein. These results show that the levels of 
expression and localization of expression of nidogen-2 and 
perlecan are different in the different corneal stromal cell 
types.

DISCUSSION

The focus of this study was to examine the synthesis of 
corneal EBM components in different keratocyte-derived 
corneal stromal cell types present during regeneration of 
the EBM after injury or surgery that might have a role in 
defective EBM regeneration in corneas with stromal haze 
after high-correction PRK [5]. It is important to understand 
the synthesis of the components involved in EBM formation 
that could be derived from stromal cells, in addition to the 
components contributed by the epithelium, which include 
nidogens and perlecan.

Studies have demonstrated that there is involvement of 
stromal cells or mesenchymal cells in epithelial basement 
membrane formation or regeneration. For example, Gipson 
et al. showed that collagen type VII and laminin are present 
in the stroma immediately beneath the wounded area at 7 
days after keratectomy wounds in rabbit corneas [17]. Studies 
by Weiser et al. and Thomas and Dziadek have demonstrated 
the involvement of mesenchymal cells in intestinal and neural 
basement membrane formation, respectively [18,20]. The 
present in vitro study was designed to investigate whether 
the three most common corneal stromal cell types produce 
EBM components that could contribute to the regeneration of 
the lamina lucida and lamina densa after corneal injury such 
as photorefractive keratectomy.

Nidogen-1 and nidogen-2 are closely related sulfated 
glycoprotein homologs, and both bind to the EBM component 
laminin [39,40]. In the human cornea, nidogen-2 was found 
to codistribute with nidogen-1/entactin and is a prominent 
component of corneal epithelial and limbal vascular BMs [8]. 
Nidogen to laminin binding has been shown to be the initial 
step for the bridging of laminin and collagen IV networks 
[13,15,41-43]. Nidogen-2 interacted with collagens I and IV 
and perlecan at a comparable level to nidogen-1 but failed to 
bind to fibulins [44]. The absence of both nidogens completely 
impaired EBM deposition and structural assembly, while the 
levels of all other EBM components remained unchanged 
in the model studied [38]. Perlecan is the most prevalent 
HSPG in the corneal EBM, and studies by Inomata et al. 
showed the epithelium to be thin and poorly differentiated 
in perlecan-deficient mice (Hspg2−/−-TG) and accompanied 
by the downregulation of Ki67, cytokeratin12, connexin43, 
Notch 1, and Pax6 [12]. These findings suggested that EBM 
perlecan is critical for the formation and terminal differentia-
tion of the normal corneal epithelium. Given the important 
roles of nidogens and perlecan in corneal EBM formation and 
regeneration, including the lamina lucida and lamina densa 
that are defective in corneas with severe stromal opacity after 
photorefractive keratectomy [1], the current study used an 
in vitro model system to study the synthesis of these EBM 
components by the most common keratocyte-derived corneal 
stromal cells.

Keratocytes are normally present in the corneal stroma 
of unwounded corneas, and our results show that the EBM 
components nidogen-1, nidogen-2, and perlecan are synthe-
sized by keratocytes and myofibroblasts, whereas their local-
ization is different in keratocytes and myofibroblasts in vitro. 
After surgical wounds such as radial keratectomy stromal 
incisions or photorefractive keratectomy stromal surface abla-
tion, fibroblasts and myofibroblasts may be generated within 

Figure 2. Relative nidogen-1, nidogen-2, and perlecan mRNA levels. 
Cells were treated under different culture conditions in the pres-
ence and absence of serum and growth factors. SF is serum free. 
Nidogen-1 and nidogen-2 mRNAs were most highly expressed in 
cells grown in SF medium (keratocytes) whereas perlecan was most 
highly expressed in cells grown in the presence of transforming 
growth factor (TGF)-β1 (myofibroblasts; n=3; ***, p<0.001; **, 
p<0.01).

http://www.molvis.org/molvis/v21/1318


Molecular Vision 2015; 21:1318-1327 <http://www.molvis.org/molvis/v21/1318> © 2015 Molecular Vision 

1323

the corneal stroma [45]. Myofibroblasts are also generated 
from bone marrow–derived cells that migrate into the corneal 
stroma from the limbal vasculature [46,47]. As stromal wound 
healing progresses after the wave of keratocyte apoptosis that 
occurs following injury, keratocytes, fibroblasts, and myofi-
broblasts may repopulate and survive in the depleted stroma 
in cellular proportions that depend on the type and extent of 
the injury, as well as variations in individual animals [48]. 
Activated keratocytes differentiate into spindle-shaped fibro-
blasts and then, along with bone marrow-derived fibrocytes, 
subsequently develop into persistent mature myofibroblasts in 
the presence of adequate concentrations of epithelium-derived 
TGF-β1 in the stroma [49-52]. These persistent mature myofi-
broblasts, and the extracellular matrix they secrete, comprise 
the anterior stromal opacity associated with persistent “haze” 
after high ablation photorefractive keratectomy [53,54]. Our 
working hypothesis is that activated fibroblasts and mature 
myofibroblasts secrete disorganized extracellular matrix 
materials but only low levels of EBM components that are 
not adequate to support normal EBM regeneration, or these 
cells may interfere with normal EBM regeneration through 
the production of alternative EBM components. A recent 
study conducted by Toricelli et al. [19] showed nidogen-2 

and perlecan increase in stromal keratocytes after epithelial 
injury in human cornea. The current study results showed 
that myofibroblasts produce nidogen-1 mRNA, and nidogen-2 
and perlecan mRNA and protein in vitro but that these EBM 
components localize in a disorganized manner throughout the 
myofibroblast to form a meshwork-like intracellular pattern. 
Conversely, in keratocytes nidogen-2 and perlecan are seen 
predominantly at the cell–cell junction and in a perinuclear 
organelle. It is not known whether this perinuclear organelle 
is the nucleolus or another structure. Abnormal localization 
of EBM components could be an important aspect of stromal 
cellular contributions to the regenerating nascent EBM. In 
addition, we have found that rabbit myofibroblasts produce, in 
addition to the normal sized approximately 150 kDa protein, 
a prominent, much larger (greater than 250 kDa) nidogen-2 
protein, not produced by keratocytes or corneal fibroblasts, 
when cellular proteins are analyzed with western blotting 
(Santhanam and Wilson, unpublished data, 2015). Ongoing 
work is aimed at characterizing this alternative protein. 
Corneal fibroblasts express small amounts of nidogens or 
perlecan, which is an interesting finding since corneal fibro-
blasts are likely the intermediate cell type between kerato-
cytes and myofibroblasts when the latter cells are derived 

Figure 3. Nidogen-2 immunocyto-
chemistry of corneal stromal cells 
under different culture conditions. 
The expression of nidogen-2 protein 
(green) is seen to be highest in the 
perinuclear organelle, whereas in 
myofibroblasts nidogen-2 protein 
expression appears as a meshwork-
like pattern throughout the cell 
body (white arrowheads). Fibro-
blasts have little, if any, nidogen-2 
protein expression, except the peri-
nuclear organelle staining, as was 
observed in keratocytes. Isotypic 
control immunoglobulin (IgG) 
staining was negative under all cell 
conditions, as shown for the myofi-
broblasts. Magnification=400X.
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from corneal stromal cells instead of bone marrow–derived 
cells [55]. Thus, qualitative and quantitative differences in 
expression of EBM proteins, localization of these proteins, 
or other as yet unidentified factors could be important deter-
minates of defective EBM regeneration in corneas with haze 
after photorefractive keratectomy or other injuries. Further 
study is needed to characterize stromal cell contributions 
to EBM regeneration after corneal injury to understand the 
pathophysiology of corneal stromal opacity after injury, 
surgery, and infection.

APPENDIX 1. MORPHOLOGY OF CELLS UNDER 
DIFFERENT CULTURE CONDITIONS.

Cells in panel A were treated with serum-free DMEM 
medium and panel B cells were treated with serum-free 
DMEM (SF) with 40 ng/ml FGF-2. Cells in panel C, D, E 
are treated with DMEM containing 1%, 5%, 10% FBS with 
40 ng/ml FGF-2, respectively. Heparin sulfate (5 μg/ml) was 
always added along with FGF-2. Cells in panel F are treated 
with DMEM containing 1% FBS with 2 ng/ml TGF-β. The 
difference in the morphology of cells grown in the presence 
and absence of serum and growth factors can be noted. 

Mag. 100X. To access these data, click or select the words 
"Appendix 1".

APPENDIX 2. Α-SMA IMMUNOCYTOCHEMISTRY 
OF CELLS UNDER DIFFERENT CULTURE 
CONDITIONS.

Cells in panel A were treated with serum-free DMEM 
medium and cells in panel B were treated with serum-free 
DMEM with 40 ng/ml FGF-2 and 5 μg/ml heparin sulfate. 
Cells in panel C were treated with DMEM containing 1% 
FBS and 2 ng/ml TGF-β. α-SMA (red) is seen in cells grown 
in the presence of TGF-β but not in the cells grown under the 
other conditions. DAPI is blue. Mag. 400X. To access these 
data, click or select the words "Appendix 2".
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Figure 4. Perlecan immunocyto-
chemistry of corneal stromal cells 
cultured under different conditions. 
Perlecan (red) was most highly 
expressed in localized intracellular 
structures in keratocytes whereas 
in the myofibroblasts perlecan was 
detected more diffusely throughout 
the cell (white arrowheads). Fibro-
blasts had little, if any, detectable 
expression of perlecan protein. The 
isotypic control immunoglobulin 
(IgG) did not yield staining under 
any of the culture conditions, 
as is shown for myofibroblasts. 
Magnification=400X.
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