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The secretion of carbohydrate-degrading enzymes by a bacterium
sourced from a softwood forest environment has been investigated
by mass spectrometry. The findings are discussed in full in the
research article “Proteomic insights into mannan degradation and
protein secretion by the forest floor bacterium Chitinophaga
pinensis” in Journal of Proteomics by Larsbrink et al. ([1], doi:
10.1016/j.jprot.2017.01.003). The bacterium was grown on three
carbon sources (glucose, glucomannan, and galactomannan) which
are likely to be nutrient sources or carbohydrate degradation
products found in its natural habitat. The bacterium was grown on
solid agarose plates to mimic the natural behaviour of growth on a
solid surface. Secreted proteins were collected from the agarose
following trypsin-mediated hydrolysis to peptides. The different
carbon sources led to the secretion of different numbers and types
of proteins. Most carbohydrate-degrading enzymes were found in
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the glucomannan-induced cultures. Several of these enzymes may
have biotechnological potential in plant cell wall deconstruction
for biofuel or biomaterial production, and several may have novel
activities. A subset of carbohydrate-active enzymes (CAZymes)
with predicted activities not obviously related to the growth sub-
strates were also found in samples grown on each of the three
carbohydrates. The full dataset is accessible at the PRIDE partner
repository (ProteomeXchange Consortium) with the identifier
PXD004305, and the full list of proteins detected is given in the
supplementary material attached to this report.
© 2017 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject area Microbiology, Biochemistry

More specific Bacterial protein secretion and carbohydrate deconstruction
subject area

Type of data Tables and figures

How data was The analysis utilised a nanoHPLC-MS/MS system consisting of a Dionex Ulti-
acquired mate 3000 RSLCnano (Thermo Scientific, Bremen, Germany) connected to a Q-

Exactive hybrid quadrupole-orbitrap mass spectrometer (Thermo Scientific,
Bremen, Germany) with a nano-electrospray ion source.

Data format Raw, analysed
Experimental The bacterium was grown on agarose plates containing one of three tested
factors substrates (glucose, glucomannan and galactomannan). Secreted proteins

were collected from the solid medium following trypsin hydrolysis performed
within the agarose medium. Samples were collected at three time-points
during growth.
Experimental Three biological replicates were collected for each time-point sample. Proteins
features were hydrolysed by trypsin within the solid medium. Released peptides were
then prepared for analysis by mass spectrometry. Two technical replicate
experiments were performed for each sample. Raw data was normalised and
analysed using the Max Quant programme, with quantification performed
using the MaxLFQ algorithm.
Data source Proteomic data were collected in-house at the Norwegian University of Life
location Sciences, As, Norway
Data accessibility Data is with the article and at PRIDE: PXD004305.

Value of the data

® The method of collecting proteins from solid medium gave a strong enrichment of secreted
proteins. The method of protein preparation is simple, and can be utilised in future work on both
bacteria and fungi.

® The data reveal that the secretion of several CAZymes is induced by the polysaccharide gluco-
mannan, while a larger number of CAZymes appear to be constitutively produced. Sequence and
domain analysis of the induced CAZymes suggests that many may have novel mannan-related
activities.

® Several of the identified CAZymes have no or weak similarity to enzymes of known function,
suggesting the possibility of novel activities. We recommend that these enzymes are biochemically
characterised in future experiments.
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e Several proteins of unknown function were co-upregulated together with relevant CAZymes, and
these may also represent novel activities for biomass deconstruction.

® Enzymes identified in this study may prove to be useful new tools in the deconstruction of plant
biomass for a biorefinery or similar biotechnological applications.

1. Data

After an initial growth trial in liquid cultures (Fig. 1), C. pinensis was grown on agarose plates
containing 0.5% carbon source and quartz filters [2], to minimise the common issues of cell lysis and
exo-polysaccharide contamination, as well as to better mimic natural solid state-like conditions.
Samples for proteomic analyses were collected in an early-, mid-, and late-stage of growth (time-
points t1, t2 and t3): for KGM and glucose plates, sampling was performed on days 2, 4, and 5, and for
CGM plates on days 6, 9, and 15. In the final proteomic analysis (summarised in Fig. 2), a protein was
counted as ‘present’ in a sample if detected and quantifiable in at least two biological replicates;
technical replicates of each sample were merged in MaxQuant to improve quantification. All iden-
tified proteins are described in Supplementary Tables 1-3. As the main focus of this work was the
discovery of new CAZymes with potential application in the deconstruction of plant biomass, Fig. 3
refers to only the CAZymes found in each sample. A full discussion of this dataset can be found in
Larsbrink et al. [1].

2. Experimental design, materials and methods
2.1. Carbohydrates

Glucose was obtained from Sigma Aldrich (Stockholm, Sweden). The polysaccharides KGM and
CGM were purchased from Megazyme (Wicklow, Ireland).
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Fig. 1. Protein secretion by C. pinensis grown in liquid culture containing three different carbon sources. Media contains
glucose, konjac glucomannan or carob galactomannan as sole carbon course at 0.5% final concentration. Protein secretion was
measured using the Bradford assay to determine protein concentration in the media at various time-points throughout growth.
Solid lines: protein concentration in growth medium (g L~!). Dashed lines: protein concentrations normalised for cell density
by dividing by Aggo. Error bars represent one standard deviation from the mean. Compared to glucose and CGM, growth on
KGM reached the highest final OD, and the growth curve adhered most closely to the classical three-stage growth profile of a
bacterial culture. The glucomannan liquid cultures also showed the highest concentration of protein in the growth medium, as

measured by the Bradford assay [3].
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Fig. 2. Numeric overview of proteins detected after growth on three different carbohydrates. A: The number of proteins
detected in the samples at three sampling points during growth. Error bars represent one standard deviation from the mean.
The sampling time-points t1, t2 and t3 denote the three stages of growth (early, mid and late) on which sampling was per-
formed. For all substrates, the number of proteins increased between t1 and t2, and then remained relatively stable between t2
and t3. While the total number of detected proteins did not significantly differ at t1, differences emerged at the later time-
points. B: Venn diagram showing the similarity and differences between proteins identified for the three different growth
conditions. The numbers refer to the total number of identified unique proteins for each substrate.
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Fig. 3. Numeric overview of CAZymes detected after growth on three different carbohydrates. A: The number of CAZymes at
three time-points during growth. A protein was counted as ‘present’ if detected in at least two replicates for a given substrate.
Error bars represent one standard deviation from the mean. B: Venn diagram showing similarities and differences of all 35
CAZymes identified for the three growth conditions at t2.

2.2. Strain growth

All reagents used for bacterial growth were purchased from Sigma-Aldrich, unless otherwise
stated, and were of microbiological grade. Chitinophaga pinensis strain UQM 2034 T was propagated at
30 °C on LB agar plates supplemented with kanamycin at 50 pg mL~', to which the bacterium has
innate resistance. To obtain proteins for proteomic analysis, C. pinensis was grown on agarose plates
(50 mm diameter). The solid medium contained agarose (1%), M9 medium (prepared according to
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Miller [4] but lacking any carbohydrate), 50 pg mL~! kanamycin, and 0.4% (w/v) of either glucose,
KGM or CGM. Each plate was cast with a 0.2 um Pall supor 200 sterile filter (47 mm diameter) laid
between two 5 mL beds of medium (total volume 10 mL medium) as described by Bengtsson et al. [2].
Prior to inoculation, C. pinensis was grown in 5 mL LB medium at 30 °C overnight. The cells were
harvested by centrifugation for 10 min at 5000 g, washed in 10 ml carbohydrate-free M9 medium,
and harvested again by centrifugation. The supernatant fluid was discarded, and the cells were
resuspended in carbohydrate-free M9 medium to an ODgg value of 0.5, of which 50 pl was used to
inoculate the agarose plates. The plates were incubated at 22 °C until an early, mid or late stage of
growth, as estimated from prior visual observations. For KGM and glucose plates, this was days 2, 4,
and 5, and for CGM plates this was days 6, 9, and 15. Three biological replicates of each sample were
produced. Only two biological replicates were produced for the KGM time-point t1 sample.

2.3. Mass spectrometric analysis of secreted proteins

The process of protein collection, protein hydrolysis, and peptide analysis by mass spectrometry,
proceeded essentially as described by Bengtsson et al. [2], and are described below.

2.3.1. Preparation of secreted proteins for MS analysis

Proteins secreted during growth on agarose plates were collected essentially as described by
Bengtsson et al. [2]. Proteins were collected from plates at early, mid, and late points during growth,
as described above. These three time-points are hereafter referred to as t1, t2 and t3, respectively. The
solid medium of a plate was removed from the Petri dish and inverted onto a clean surface. The
agarose from directly beneath the filter was stamped out and collected into a pre-weighed 50 mL
Falcon tube. The wet mass of the sample was obtained by weighing the tube again. To each gram of
sample was added 4 umol of dithiothreitol. The sample was then heated until the agarose was melted,
and vortexed vigorously. The liquefied agarose, containing secreted proteins, was boiled for 30 min,
then transferred into a syringe and cooled to room temperature. After solidification, the agarose was
extruded, crushing the material. 1 mL of a 100 mM solution of NH;HCO3; was added per gram of
sample, giving a final concentration of 50 mM NH4HCOs. To this 2 pg of porcine trypsin (Promega)
was added per sample, followed by overnight incubation at 37 °C. The sample was frozen and thawed
and then briefly centrifuged. The supernatant liquid contained the extracted trypsin-digested pro-
teins. This supernatant liquid was collected into a 2 mL LoBind tube (Eppendorf) and centrifuged at 16
000g for 10 min to remove any remaining solids. The resulting supernatant liquid was filtered
(0.22 um) into a new eppendorf tube. For mass spectrometric analysis, trifluoroacetic acid (TFA) was
added from a 10% (v/v) stock solution to a final concentration of 0.1% (v/v) in the sample. The peptides
in this mixture were subsequently purified using a C-18 column (Strata C-18E, Phenomenex, Cali-
fornia, USA), and eluted with 80% (v/v) acetonitrile/ 0.1% (v/v) TFA. The eluate containing peptides was
vacuum dried, then resuspended in 10 pL 2% (v/v) acetonitrile and 0.1% (v/v) TFA. A subsequent
peptide purification step using carboxylate modified magnet beads (Thermo Scientific, USA) was
performed as described by Hughes et al. [5], before peptide analysis by LC-MS/MS.

2.3.2. Identification of proteins by mass spectrometry

For peptide analysis by mass spectrometry, a nanoHPLC-MS/MS system consisting of a Dionex
Ultimate 3000 RSLCnano (Thermo Scientific, Bremen, Germany) connected to a Q-Exactive hybrid
quadrupole-orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany) with a nano-
electrospray ion source was used. Samples were loaded onto a trap column (Acclaim PepMap100,
Cqs, 5um, 100 A, 300 um i.d. x 5 mm, Thermo Scientific) and back-flushed onto a 50 cm analytical
column (Acclaim PepMap RSLC Cyg, 2 pm, 100 A, 75 um i.d., Thermo Scientific). Equal volumes of all
samples were loaded (2 x 4 uL). Columns were pre-equilibrated in 96% solution A (0.1% (v/v) formic
acid), and 4% solution B (80% (v/v) ACN, 0.1% (v/v) formic acid). Peptides were eluted with a 70 min
gradient from 4% to 13% (v/v) solution B in 2 min, 13% to 45% B (v/v) in 43 min and finally to 55% B
(v/v) in 3 min, followed by a wash phase at 90% B. The flow rate was set to 0.3 uL min~'. By operating
the Q-Exactive in data-dependent mode, switching automatically between orbitrap-MS and higher-
energy collisional dissociation (HCD) orbitrap-MS/MS acquisition, isolation and fragmentation of the
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10 most intense peptide precursor ions at any given time throughout the chromatographic elution
was ensured. The selected precursor ions were then excluded for repeated fragmentation for 20 s. The
resolution was set to R=70,000 for MS and R=35,000 for MS/MS. Automatic gain control target
values were set to 1,000,000 charges and a maximum injection time of 128 ms. Two technical
replicates were analysed for each sample. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium [6] via the PRIDE partner repository with the dataset
identifier PXD004305.

2.3.3. Bioinformatics and statistical validation

The mass spectrometry data were analysed using MaxQuant [7,8] version 1.4.1.2. Identification and
quantification of proteins were performed using the MaxLFQ algorithm [9], searching against a
database containing the full predicted proteome of C. pinensis, generated from the Uniprot database
(7179 sequences in total) [10]. The MaxLFQ algorithm uses a non-linear optimisation model to nor-
malise the peptide intensities. Technical replicates were combined in MaxQuant to obtain more
reliable quantification values. The database was supplemented with common contaminants such as
keratins, trypsin and bovine serum albumin. For estimation of false discovery rates, reversed
sequences of all protein entries were concatenated to the database. As variable modifications in the
MaxQuant analysis we used protein N-terminal acetylation, oxidation of methionine, conversion of
glutamine to pyro-glutamic acid, and deamidation of asparagine and glutamine. Trypsin was used as
proteolytic enzyme and two missed cleavages were allowed. The ‘match between runs’ feature of
MaxQuant was enabled with default parameters, in order to increase the number of identified pep-
tides and transfer identifications between samples based on accurate mass and retention time [11].
The settings were such that transfer of peptide identifications was only allowed between samples
from the same carbon source. All identifications were filtered in order to achieve a protein false
discovery rate (FDR) of 1%.

The protein group file from MaxQuant was loaded into Perseus (version 1.5.1.6). The matrix was
reduced following a standard MaxQuant procedure by removing proteins categorised as only iden-
tified by site, reverse, or as a contaminant, in order to remove false hits from the MaxQuant data files.
For a quantification to be considered valid, we used both unique and razor peptides for quantification
and required at least two ratio counts. Furthermore, for a protein to be considered as present we
required its quantification in at least two of the three biological replicates in at least one time-point
(or at least one substrate for comparative analysis). In Perseus the label free quantification (LFQ)
intensities were logqo transformed and missing values (proteins not quantified in a given sample)
were replaced with a value of zero.
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