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Abstract

Purpose

To assess the inter session reproducibility of automatic segmented MRI-derived measures

by FreeSurfer in a group of subjects with normal-appearing MR images.

Materials and Methods

After retrospectively reviewing a brain MRI database from our institute consisting of 14,758

adults, those subjects who had repeat scans and had no history of neurodegenerative disor-

ders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were

grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise

comparison (involving area, thickness, and volume) was performed on all segmented

results. An intraclass correlation coefficient was used to estimate the agreement between

sessions. Wilcoxon signed rank test was used to assess the population mean rank differ-

ences across sessions. Mean-difference analysis was used to evaluate the difference inter-

vals across scanners. Absolute percent difference was used to estimate the reproducibility

errors across the MRI models. Kruskal-Wallis test was used to determine the across-scan-

ner effect.

Results

The agreement in segmentation results for area, volume, and thickness measurements of

all segmented anatomical labels was generally higher in Signa Excite and Verio models

when compared with Sonata and TrioTim models. There were significant rank differences

found across sessions in some labels of different measures. Smaller difference intervals in

global volume measurements were noted on images acquired by Signa Excite and Verio

models. For some brain regions, significant MRI model effects were observed on certain

segmentation results.
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Conclusions

Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clin-

ical setting. However, since repeatability of software performance is contingent on the

reproducibility of the scanner performance, the scanner performance must be calibrated

before conducting such studies or before using such software for retrospective reviewing.

Introduction
Brain morphometry is an important assessment used in neuroscience research. Chronological
changes in brain morphology may be related to aging, neurodegenerative disease, brain insults,
or treatment effects [1–5]. Magnetic resonance imaging (MRI), a widely used non-invasive,
clinical, diagnostic tool, can provide excellent brain tissue contrast. The high resolution of
brain MRI also makes MRI-derived morphometric data ideal for clinical or research purposes.
However, due to the complexity of brain morphology, accurate neuroanatomical measurement
is difficult and time-consuming even for trained experts. For studies that require quantitative
assessment of a large number of subjects or brain regions, automated methods play an impor-
tant role in providing rapid and robust segmentation, while also minimizing human inter- and
intra-rater variability.

Quantitative imaging biomarkers can serve as indicators of normal biological processes,
pathogenic processes, or responses to therapeutic intervention [6, 7]. Among them, brain MRI
morphometry is a promising imaging biomarker for early detection or diagnosis of neurode-
generative and psychiatric disorders [8–11]. Several software packages have been developed
that provide automated segmentation and measurement of brain morphometry [12–15].

Prospective longitudinal studies of morphometric changes within the brain require both
accuracy and reproducibility of automated morphometric measures across sessions. While the
accuracy validation of automated neuroanatomical measures against regional manual measure-
ments has been performed [13, 16], some studies have reported variable accuracy and reliabil-
ity across sessions involving MRI-derived measures on the same subjects, and the sources of
variance and bias have been investigated [17–24]. The reliability of brain morphometric mea-
sures across sessions can be influenced by subject-related, instrument-related, and image pro-
cessing-related factors. Clinically, we usually need to retrospectively review previously acquired
serial brain MRIs of patients to determine if any chronological change in brain morphometry
has occurred. However, images are usually reported in a qualitative manner, so that there is lit-
tle need for well-controlled image acquisition parameters other than image quality. It is also
commonplace for hospitals to have multiple scanners and there is no clinical stipulation for fol-
low-up scans to be performed on the same scanner, although such a practice is preferred. In
consideration of the need for quantitative comparison of objective measures of disease progres-
sion or response to therapeutic treatment, it is important to evaluate the feasibility of using
automated segmented measures from previously acquired clinical brain MRI scans for compar-
ison purposes.

Our study had as its goal to validate the cross-session agreement of automatic segmented
MRI-derived measures obtained using FreeSurfer software in a group of subjects with normal-
appearing MR images. While this study was performed using FreeSurfer, the methodology
could also be applied to other software packages and other images.
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Materials and Methods

Ethics Statement
This study was approved by the National Taiwan University Hospital Institutional Review
Board (IRB: 201207033RIC) and the requirement to obtain informed consent was waived due
to its retrospective nature. The patient records were anonymized and de-identified prior to
analysis.

Subjects
From December 2011 to December 2013, 14,758 subjects (all older than 20 years of age)
received brain MRI examinations in the Department of Medical Imaging at our hospital. These
subjects included those referred from clinical departments (clinics, wards, and the emergency
department) and volunteers for health screening. There were 2,299 subjects who had more
than one brain MRI exam in this period. To limit the variance caused by instrument-related
factors, only subjects who received repeat MRI studies on the same scanner were selected for
this study.

A neuroradiologist (HML) with 30-years of experience carefully reviewed the medical his-
tory and images of all subjects. After excluding cases of dementia, psychiatric disorders, neo-
plastic disease, ischemic or hemorrhagic brain insults, infectious disease, prior surgical
intervention, or poor image quality, 36 subjects remained who were reported as neuroradiolo-
gically normal on repeat brain MRI using the same scanner.

MRI Scanners
Five MRI scanners were used at our institute during 2011 to 2013. A routine brain MRI exami-
nation contained a 3D T1 pulse sequence on every subject. The sequences used for morpho-
metric analysis in each MRI scanner are listed below. Please note that, although these are the
default parameters in the scanning protocols, the technicians sometimes made minor adjust-
ments at the time of scanning for practical reasons.

• 1.5T Signa Excite (GE Healthcare, Milwaukee, Wis): 3D T1 Spoiled Gradient-echo (SPGR,
TR = 8.916 ms, TE = 3 ms, flip angle = 12°, FOV = 250.0 x 250.0 mm, slice thickness = 1.2
mm, contiguous 1.2 mm sections, 512 x 512 matrix, NEX = 0.75, voxel size = 0.49 x 0.49 x 1.2
mm); installed in 2005.

• 1.5 T Signa HDx (GE Healthcare, Milwaukee, Wis): 3D T1 Spoiled Gradient-echo
(FastSPGR IrP, 3D COR 3D FSPGR IrP, TR = 9.904 ms, TE = 3.836 ms, flip angle = 12°,
FOV = 240.0 x 240.0 mm, slice thickness = 1.2 mm, contiguous 1.2 mm sections, 256 x 256
matrix, NEX = 1, voxel size = 0.94 x 0.94 x 1.2 mm); installed in 2008.

• 1.5 T Sonata (Siemens, Erlangen, Germany): 3D T1 Spoiled Gradient-echo (FLASH,
TR = 8 ms, TE = 3.12 ms, flip angle = 12°, FOV = 200.0 x 200.0 mm, slice thickness = 0.9
mm, contiguous 0.9 mm sections, 256 x 256 matrix, NEX = 1, voxel size = 0.78 x 0.78 x 0.9
mm); installed in 2001.

• 3.0 T Trio Tim (Siemens, Erlangen, Germany): 3D T1 Spoiled Gradient-echo (Turbo-
FLASH, TR = 1720 ms, TE = 2.58 ms, flip angle = 9°, FOV = 220.0 x 220.0 mm, slice thick-
ness = 1.2 mm, contiguous 1.2 mm sections, 512 x 512 matrix, NEX = 1, voxel size = 0.43 x
0.43 x 1.2 mm); installed in 2003.

• 3.0 T Verio (Siemens, Erlangen, Germany): 3D T1 Spoiled Gradient-echo (TurboFLASH,
TR = 1450 ms, TE = 2.47 ms, flip angle = 9°, FOV = 240.0 x 240.0 mm, slice thickness = 1.1
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mm, contiguous 1.1 mm sections, 640 x 640 matrix, NEX = 1, voxel size = 0.38 x 0.38 x 1.1
mm); installed in 2009.

FreeSurfer (http://freesurfer.net, Athinoula A. Martinos Center for Biomedical Imaging,
Harvard-MIT, Boston) is a freely available open source software suite for processing and ana-
lyzing human brain MR images [12, 13]. With an array of algorithms and tools provided by
FreeSurfer, automated or semi-automated analysis and visualization of structural, connectional
and functional brain imaging data can be performed using a wide variety of hardware and
operating systems. Such data includes segmentation, registration, cortical surface reconstruc-
tion, quantification of segmented structures, longitudinal processing, fMRI analysis, and trac-
tography. FreeSurfer allows visualization of different computed measures (such as thickness,
area, or volume) over the brain surface after automatic parcellation.

The 64-bit Linux version of FreeSurfer 5.1.0 was used in this study. In brief, the FreeSurfer’s
preprocessing and segmentation were executed with the command “recon-all -all”. “recon-all”
is a batch script which involves more than 30 reconstruction routines and can be summarized
as follows (The details can be found in https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
and http://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllTableStableV5.1):

1. Motion correction and averaging.

2. Intensity correction and normalization.

3. Skull stripping.

4. Gray matter/white matter segmentation

5. Parcellation, labeling, and statistics.

All stages of cortical reconstruction were performed in a fully automated manner. To ensure
the reproducibility of the computed data, no manual intervention was performed. After suc-
cessful automated processing by FreeSurfer, inspection of the snapshots from the final results
was performed to ensure that no obvious non-brain parts had been incorrectly segmented as
brain tissue. Images of each subject were automatically processed with the longitudinal stream
[25] in FreeSurfer to create a reliable unbiased within-subject template space and image, which
were used in further processing steps, such as skull stripping, Talairach transforms, atlas regis-
tration, spherical surface mapping and parcellations. By using the FreeSurfer longitudinal
stream, it can significantly increase reliability and statistical power [25]. After that, tabulated
data of the segmented results were collected using two FreeSurfer summarizing scripts (i.e.,
aparcstats2table and asegstats2table).

After automatic segmentation and quantification, several types of measurement can be used
for analysis, including area, volume, std (standard deviation of volume), thickness, thicknessstd
(standard deviation of thickness), and meancurv (mean curvature). The neuroanatomical
labels in FreeSurfer could be categorized according to the different measurements acquired
(i.e., area, thickness, or volume), the sidedness (left, right), cortical parcellation atlas (Desikan-
Killiany Atlas [aparc] or Destrieux Atlas [a2009s]), and anatomical locations.

In this study, area, volume, and thickness measurements of segmented anatomical labels
from the two MRI scans for each subject were selected for label-wise longitudinal analysis.
Among them, the volumes of cortical gray matter (label: CoretexVol), deep gray matter (label:
SubCortGrayVol), and white matter (label: CorticalWhiteMatterVol) were selected for analysis
of the global measure of volume. For cortical area measurements, there were 150 labels for the
Destrieux Atlas and 70 labels for the Desikan-Killiany Atlas. For cortical thickness measure-
ments, there were 298 labels for the Destrieux Atlas and 138 labels for the Desikan-Killiany
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Atlas. For volume measurements, there were 148, 68, 76, and 55 labels for Destrieux Atlas,
Desikan-Killiany Atlas, subcortical white matter, and miscellaneous structures, respectively. In
total, there were 1003 labels for all parcellation/segmentation types of area, thickness, and vol-
ume measurements generated by FreeSurfer.

Statistical Analysis
Intraclass correlation coefficient (ICC) [26–28] is a descriptive statistic commonly used to
assess the reliability when quantitative measurements are organized into groups. It can be
interpreted as the proportion of the total variance that is due to variation between groups. It
measures the degree to which the units in the same group approximate each other. ICC will
approach 1.0 when within-target variation is small, suggesting consistent results from each
measurement. ICC will be negative when the between-target variation is relatively small com-
pared to the within-target variation. An examination or a test is considered reliable if consistent
results can be obtained under similar methodology. There are two kinds of reliability: consis-
tency or absolute agreement. Because our targets of interest are absolute measurements (e.g.
area, thickness, and volume), ICC was computed to assess the reliability of the results across
sessions using a two-way random model with measures of absolute agreement. To approximate
the actual distribution of ICC values, we employed 10,000 bootstrap-based resampling with an
equal sample size (N = 20) for each model to computed means and 95% confidence intervals.

The Wilcoxon signed rank test is a non-parametric paired difference test. It is used to test
the null hypothesis (i.e., the median of the differences between the paired observations is zero)
versus the alternative hypothesis (i.e., the median is not zero). While the sample size was small,
it can be used as an alternative to the paired t-test. After parcellation of the two sessions of
brain MRI data, comparison of the paired segmented results was performed using the Wil-
coxon signed rank test assuming a 5% and a 1% level of significance (α = 0.05 and 0.01,
respectively).

Bland-Altman (BA) analysis is a graphical method used in analyzing the agreement between
two measurement methods [29, 30]. This method plots the difference against the average of
each data pair between two methods of measurement. The 95% limits of the mean difference
were calculated and plotted for visual judgment of agreement. It was expected that 95% of dif-
ferences were included in the 95% limits between the two measurement methods. A smaller
range between these two limits indicates better agreement but the threshold of the range
depends on the clinical context. In this study, Bland-Altman analysis was used for a global
measure of selected brain volume.

A dimensionless measure of absolute percent change in segmentation results for a structure
with respect to its average was used to estimate the variability error. The across-session vari-
ability error was estimated as follow:

ϵ ¼ jx1 � x2j
ðx1 þ x2Þ=2

� 100%

Kruskal-Wallis test, a non-parametric method used for comparing two or more samples
that are independent, was used to test the MRI model effect on the ICC and variability error.
All statistical analyses were performed using R version 3.1.2 [31].
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Results

Subjects and MRI
After careful exclusion of any known brain disease or morphologic abnormality, 36 subjects
remained who had repeat brain MRI scans using the same machine. The MRI results of Signa
HDx were not analyzed in this study because only two subjects had repeat scans during this
period. A total of 34 subjects (15 males and 19 females) representing 68 sessions of MRI scan-
ning were included in this study. Their median age was 54.5 years (range: 34–85 years)
(Table 1).

Intraclass Correlation Coefficient
The label-wise ICCs from the repeat MRI scans are shown in Fig 1. For each measurement, the
ICCs in Signa Excite and Verio were generally in better agreement compared with the results
from Sonata and TrioTim. Poor agreement was seen for the thickness and white matter volume
measurements obtained using TrioTim. The mean and standard deviation of the ICC for each
MRI model were 0.85 ± 0.16 (Signa Excite), 0.68 ± 0.34 (Sonata), 0.66 ± 0.33 (TrioTim), and
0.87 ± 0.17 (Verio). Kruskal-Wallis test revealed a significant MRI model effect on the ICCs
(p< 0.001).

Wilcoxon Signed Rank Test
The p values of the Wilcoxon signed rank test for each label of each measurement produced by
the FreeSurfer are summarized in Fig 2. Among all labels, significant differences were found
across repeat MRI scans in 121 (12.1%) and 23 (2.3%) labels for 5% and 1% significance level
test, respectively. The labels with significant differences (α = 0.01) are summarized in Table 2
and Fig 3, especially some measurements at some measurements around the bilateral central
gyri of the Verio model and scattered labels of the Signa Excite model.

Bland-Altman Analysis (Global Measure of Volume)
In addition to the ICC andWilcoxon signed rank test, selected global measures of brain volume
(cortical gray matter, subcortical gray matter, and white matter) were also analyzed using the
Bland-Altman (mean-difference) plot of each pair of measurements (Fig 4 and Table 3).
Greater mean differences and wider agreement intervals were observed in the TrioTim model.

Across-Session Variability
The across-session variability errors of all segmentation results were computed. Among them,
the results of three global measures of brain volume (cortical gray matter, subcortical gray mat-
ter, and white matter) are summarized in Table 4. In each MRI scanner, the mean reproducibil-
ity error was estimated as a mean across all subjects. The last column shows the effects of
analysis on the various structures by averaging the across-MRI model reproducibility errors
across MRI models. Although no significant MRI model effect was found among these selected
global measures, significant MRI model effect was shown on 125 (12.4%) and 14 (1.4%) labels
among all segmentation results for 5% and 1% significance level tests, respectively.

Discussion
This study evaluated the automatic segmented results obtained using FreeSurfer on a group of
normal subjects who received repeat MRI scans over a short time interval (up to 15.5 months).
Unlike most prospective studies, in which careful tuning of experimental conditions is
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expected, the subjects in this study were retrospectively selected from a clinical database. Vari-
able degrees of reproducibility were noted using different MRI machines, shown as a wide
range of ICCs (Fig 1). Although this is a study of short-term repeat MRI scans in normal sub-
jects, significant differences were still found in some labels of different measures. Different vari-
ances were found in the results of the BA analysis from different machines.

Table 1. Demographics of the 34 subjects.

Model Subjects Age (year)* Gender** MRI sessions Follow up interval (month)*

Signa Excite 12 55.5 (42–75) 5/7 24 5.3 (2.8–12.6)

Sonata 5 52 (34–59) 3/2 10 5 (3.6–9.7)

TrioTim 6 61 (51–79) 2/4 12 6.4 (0.5–12.3)

Verio 11 54 (50–85) 9/2 22 12.4 (10.8–15.5)

* Median (range);

** Female/Male

doi:10.1371/journal.pone.0146913.t001

Fig 1. The violin plot of label-wise agreement (ICC) for each MRI scan. The bootstrapped ICCs of each label from each measurement produced by
FreeSurfer are summarized in Fig 1. In addition to the information in the box plot, the shape of the distribution visualized in the violin plot helps to detect
clusters or bumps within a distribution. This plot reflects the density of label-wise ICC among different scanners grouped by measurement and parcellation/
segmentation types. The distribution of the density plot reveals the portion from different levels that are in agreement within each group. Abbreviations:
a2009s, Destrieux Atlas; aparc, Desikan-Killiany Atlas; wm, subcortical white matter; aseg, miscellaneous structures.

doi:10.1371/journal.pone.0146913.g001
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Comparison of longitudinal follow-up results from different MRI systems is possible, how-
ever, there are some limitations regarding image quality, which may be influenced by acquisi-
tion sequences, magnetic field strength, scanner software, or the type of scanner used [18, 22].
Although it has been suggested that using registration-based algorithms can provide better
reproducibility, for longitudinal follow-up, MRI acquisitions should be performed at the same
imaging site [18]. The automatic segmentation software used in this study, FreeSurfer, is imple-
mented with segmentation-based algorithms. In this study, repeat longitudinal follow-up
examinations in a group of neuroradiologically normal subjects were performed on the same
MRI scanner, however, less agreement and large mean differences in the morphometric data
across sessions were found with certain MRI scanners, as shown in Figs 1 and 4. While the vast
majority of ICCs for each label from repeat scans were high in scans from the Signa Excite and
Verio MRI scanners, a certain portion of low ICCs were noted in the Sonata and TrioTim mod-
els. Varying degrees of agreement between scanner types were also found in this study using
Bland-Atman analysis and, similarly, a MRI model effect on the absolute percent difference
was revealed in segmentation results using the Kruskal-Wallis test. Individual comparison with
normal databases is important for the purposes of reporting, as the confidence interval of nor-
mal data can serve as a reference to improve the accuracy of interpretation. While many differ-
ent scanners could be used to create an MRI database, considerable across-scanner variability

Fig 2. The violin plot of the p value of label-wise Wilcoxon signed rank test for each MRI scan. The p value is presented as log10(p). This plot reflects
the distribution of label-wise p values between different machines by different measurement type and parcellation/segmentation type. The number and
percentage of the regions of statistical significance (p < 0.01 or log10(p) < -2) were also labeled below the violin distribution. Abbreviations: a2009s, Destrieux
Atlas; aparc, Desikan-Killiany Atlas; wm, subcortical white matter; aseg, miscellaneous structures.

doi:10.1371/journal.pone.0146913.g002
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might exist and, thus, it is necessary to quantify the differences and to determine the signifi-
cance of the variability using the reference data.

Although both Signa Excite (GE) and Sonata (Siemens) are 1.5T MRI models, the agree-
ment and variance in generated FreeSurfer results were quite different between models. Better
agreement and smaller variance could be seen in the scans from the Signa Excite system. A

Table 2. Regions showing significant differences.

model ICC p Wilcoxon test (p) measurement hemisphere label type

Signa Excite 0.99 0.00 0.01 area rh G_front_inf-Triangul a2009s

Signa Excite 0.95 0.00 0.00 area rh S_circular_insula_ant a2009s

Signa Excite 0.82 0.01 0.01 thickness rh G_temp_sup-Plan_tempo a2009s

Signa Excite 0.85 0.00 0.00 thickness rh S_front_middle a2009s

Signa Excite 0.89 0.00 0.00 volume rh S_circular_insula_ant a2009s

Signa Excite 0.84 0.00 0.01 thickness lh bankssts aparc

Signa Excite 0.95 0.00 0.01 volume lh entorhinal aparc

Signa Excite 0.93 0.00 0.01 volume rh wm-rh-parsorbitalis wm

Signa Excite 0.97 0.00 0.01 volume rh wm-rh-superiortemporal wm

Verio 0.97 0.00 0.00 area lh G_front_inf-Triangul a2009s

Verio 0.96 0.00 0.00 area lh G_oc-temp_med-Lingual a2009s

Verio 1.00 0.00 0.00 area lh S_occipital_ant a2009s

Verio 0.99 0.00 0.01 area rh G_precuneus a2009s

Verio 0.99 0.00 0.01 area rh S_circular_insula_ant a2009s

Verio 0.98 0.00 0.00 area rh S_postcentral a2009s

Verio 0.76 0.01 0.01 thickness lh G_precentral a2009s

Verio 0.97 0.00 0.01 volume lh G_precentral a2009s

Verio 0.98 0.00 0.01 area lh lateraloccipital aparc

Verio 0.97 0.00 0.00 area lh lingual aparc

Verio 0.99 0.00 0.00 area lh parstriangularis aparc

Verio 0.99 0.00 0.01 area rh precuneus aparc

Verio 0.88 0.01 0.00 thickness lh precentral aparc

Verio 0.96 0.00 0.00 volume lh wm-lh-parstriangularis wm

doi:10.1371/journal.pone.0146913.t002

Fig 3. The regions of significant difference usingWilcoxon signed rank test are labeled and colored
on the cortical surface for visualization.

doi:10.1371/journal.pone.0146913.g003
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difference in scanning parameters or vendors, and magnetic field inhomogeneity due to aging
of the machine may have contributed to these differences. On the other hand, although Trio-
Tim and Verio are both 3T MRI models from the same manufacturer (Siemens), the ability to
reproduce quantifiable results from the two machines differed significantly.

While there are various accelerating methods used for high-quality high-resolution 3D T1
images, MP-RAGE and IR-SPGR are the sequences of choice for brain morphometry because
of their superior signal to noise ratio and gray-white matter contrast. The selection of acquisi-
tion sequences for regular MRI scanning in a clinical site relies on a balance between scanning
time, tissue contrast, resolution, sensitivity to motion, and availability of the sequence. For a
clinical examination, the sequences are optimized to detect abnormalities rather than to obtain
the best segmentation results by automated processing software. It is common not to use
MP-RAGE or IR-SPGR for regular brain MRI scanning. Although the sequences used in this

Fig 4. Results of the Bland-Altman analysis comparing results obtained from repeat MRI scans using different MRI models and selected global
measures of brain volume. These plots represent the difference between repeat MRI scans against the average value for each pair of measurements. A
continuous line and two dotted lines represent the mean difference between each pair of measurements and the limits of agreement, respectively, for each
BA plot.

doi:10.1371/journal.pone.0146913.g004
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study (SPGR, FLASH, TurboFLASH) are alternatives to MP-RAGE/IR-SPGR [32], the gray-
white matter contrast may effect the ability of the segmentation software to optimally perform.
Thus, it is crucial to choose an optimized sequence when using brain morphometry metrics as
a quantitative imaging biomarker in clinical trials, or the suboptimal segmentation may influ-
ence the accuracy of the results.

Results of neuroanatomical labeling using two cortical parcellation systems, Desikan-Kill-
iany Atlas [33] and Destrieux Atlas [34], were provided in FreeSurfer. Each cortical vertex of
the brain was classified using gyral-based mapping for the Desikan-Killiany Atlas, which con-
tains 68 gyral-based labels, 34 for each hemisphere. For the Destrieux Atlas, each vertex can be
categorized as sulcal or gyral, and then subparcellated into 148 labels, 74 for each hemisphere.
Since there were more labels and a more complicated classification system for use with the Des-
trieux Atlas, it was more difficult to maintain accuracy and consistency in segmentation results.
Compared with the Desikan-Killiany Atlas, the increased number of labels used by the Des-
trieux Atlas had a significant effect, based on the Wilcoxon signed rank test.

Table 3. Bland-Altman analysis of global measures of volume obtained from repeat MRI scans.

Measurement Model Mean differences
(mm3)

Standard deviation of differences
(mm3)

Standard error of mean
(mm3)

N

SubCortical Gray
Volume

Signa
Excite

218.0 1017.4 1513 12

SubCortical Gray
Volume

Sonata -54.0 866.9 2184 5

SubCortical Gray
Volume

TrioTim -320.5 1193.3 2046 6

SubCortical Gray
Volume

Verio -180.1 969.4 2524 11

Cortex Volume Signa
Excite

-3754.7 12690.8 9201 12

Cortex Volume Sonata 1038.5 13845.9 16745 5

Cortex Volume TrioTim -12213.9 23688.8 15838 6

Cortex Volume Verio -1748.3 8576.9 15438 11

White Matter Volume Signa
Excite

3802.5 7123.4 12171 12

White Matter Volume Sonata -12303.8 13437.7 16267 5

White Matter Volume TrioTim 22878.6 38911.4 20862 6

White Matter Volume Verio -384.1 4614.4 17312 11

doi:10.1371/journal.pone.0146913.t003

Table 4. Volumetric reproducibility error for the various MRI models from FreeSurfer segmentation. Each cell represents the mean reproducibility
errors (percent absolute difference relative to the mean) across subjects within each MRI scanner. Among these three selected global volumetric measures,
there was no significant MRI model effect observed (Kruskal-Wallis test). Although not significant, large percent absolute differences were seen within the
TrioTimmodel (cortex and white matter volume), suggesting the existence of outliers.

Volume Signa Excite Sonata TrioTim Verio Mean error across MRI models (%) p*

SubCortical Gray Volume 1.55 ± 1.06 1.18 ± 0.73 1.36 ± 1.85 1.45 ± 1.18 1.43 ± 1.18 0.77

Cortex Volume 2.34 ± 2.29 2.55 ± 1.52 4.03 ± 4.89 1.73 ± 1.12 2.47 ± 2.58 0.69

White Matter Volume 1.34 ± 1.21 2.82 ± 2.38 5.43 ± 7.49 0.87 ± 0.53 2.13 ± 3.55 0.12

* Kruskal-Wallis test across MRI models

doi:10.1371/journal.pone.0146913.t004
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The MRI radiographers are trained to acquire high quality scans for lesion detection in their
daily practice. However, it is possible that a more diligent MRI technician who ensures higher
quality scans on one particular scanner while others might accept minor quality degradation as
long as the quality is good enough for a radiologist to make a diagnosis. After reviewing the
original MR images of the outliers shown in Fig 4, a small amount of blurring caused by motion
artifact was found in the image of one outlier, and this can be avoided by a sophisticated radi-
ographer in a prospective quantitative brain morphometric study. Given the retrospective
nature of this clinical study, between-scanner differences could also be partly contributed by
inter-radiographer variability.

The ultimate goal of medical researchers is to apply the observed findings to the clinical situ-
ation, and such an application relies on accuracy and reproducibility of the segmented results.
Appreciable differences in subcortical brain volumes in within-a-day repeat MRI scans on the
same subject could still be found, even when using the same scanner and acquisition parame-
ters, because of changes in image orientation, pre-scan parameters, and magnetic field instabil-
ity [19]. Similar scan-rescan measurement differences and variability in scanning parameters/
environments have been reported [22, 35]. In the clinical setting, more variability will be
encountered and, therefore, a preliminary validation of data accuracy and reproducibility is
necessary. Otherwise, false positive labels of significant differences will be reported if an unreli-
able MRI system is used. With the implementation of automated segmentation methods, we
can quantify and determine the significance of the effect caused by scanner-related factors. Fur-
thermore, we can use the same processing pipeline to investigate whether these fundamental
differences can be removed or minimized. An estimated scanner-related effect should be used
for the correction of segmentation results.

Our study had several limitations including its retrospective nature. In addition, this study
was conducted at a single institution. Future prospective studies performed at multiple institu-
tions involving larger cohorts are necessary to confirm our results. The inclusion of “normal”
subjects relied on our neuroradiologist’s judgment regarding the absence of pathological find-
ings on the MR images, however, it is possible that subjects with neurodegenerative disease did
not exhibit pathological findings but, rather, morphometric changes within the brain. There-
fore, a prospective validation study on normal subjects should be conducted. Theoretically, seg-
mentation of isometric voxels should be less sensitive to changes in image orientation
compared with non-isometric voxels. Non-isometric or near-isometric voxel sizes were used in
this study and the impact of voxel isometry on the accuracy and reproducibility of the segmen-
tation should be further explored. In this study, the effect of MRI scanners was determined by
detecting differences in each individual subject but certain regions of statistical significance in
a particular individual may not be clinically relevant. Different pathologic conditions, such as
neurodegenerative diseases, may have variable effects on brain morphology and the size of the
effect should be determined by group analysis [36–38]. Furthermore, since discrepancies in the
results derived from different segmentation methods have been shown to reach the same order
of magnitude as volume changes in disease [18, 39], the effect of different methods on the reli-
ability of the clinical MRI images should also be investigated in a future study.

Conclusion
Short-term scan-rescan reproducibility of automatic brain MRI morphometry is feasible in the
clinical setting, but validation of scan-rescan reproducibility for each MRI scanner is suggested
before conducting such a study, or prior to using such software for retrospective reviewing.
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