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Over the past decade, major efforts have been made to systematically survey the
characteristics or phenotypes associated with genetic variation in a variety of model
systems. These so-called phenomics projects involve the measurement of ‘phenomes’,
or the set of phenotypic information that describes an organism or cell, in various genetic
contexts or states, and in response to external factors, such as environmental signals.
Our understanding of the phenome of an organism depends on the availability of
reagents that enable systematic evaluation of the spectrum of possible phenotypic vari-
ation and the types of measurements that can be taken. Here, we highlight phenomics
studies that use the budding yeast, a pioneer model organism for functional genomics
research. We focus on genetic perturbation screens designed to explore genetic interac-
tions, using a variety of phenotypic read-outs, from cell growth to subcellular
morphology.

Introduction
A principal goal of many phenomics projects is to shed light on the complex relationship between an
organism’s genotype and phenotype, thus enabling functional annotation of the genome (reviewed in
[1–4]). The general approach involves assessing the consequences of gene perturbation, by mutation
or chemical treatment, using a phenotypic read-out of choice. In this mini-review, we focus on the
budding yeast, Saccharomyces cerevisiae, which has been a pioneering system for functional genomics
studies, largely due to the availability of genome-wide tools for systematic analyses in isogenic back-
grounds, and a highly engaged research community dedicated to making reagents and information
freely available through the Saccharomyces Genome Database (SGD: https://www.yeastgenome.org, [5]).
One key reagent set was constructed by a consortium of yeast labs more than two decades ago. The
yeast deletion project involved the systematic replacement of each predicted open reading frame (ORF)
in the genome with a selectable antibiotic resistance marker. This remarkable effort revealed that
individual deletion of ∼5000 genes was compatible with haploid strain viability, while also defining a set
of ∼1000 essential genes [6,7]. Several strain collections for studying the phenotypes associated with
essential gene perturbation have also been constructed; the most widely used collections consist of
strains expressing temperature-sensitive alleles that are hypomorphic at permissive temperatures and
non-functional at higher temperatures [8–11].
As noted above, a key insight from the yeast deletion project is that most single-gene deletions are

compatible with cell viability, a feature that seems to be broadly conserved [12]. This observation
revealed the apparent genetic redundancy or buffering inherent to eukaryotic genomes and has cata-
lyzed functional genomics projects aimed at exploring how genes interact to produce complex pheno-
types. A genetic interaction occurs when the combination of two genetic mutations gives rise to an
unexpected phenotype that deviates from the expected cumulative effects of both individual mutations
(reviewed in [3]). Again, efforts to systematically explore genetic interactions have been pioneered
using the budding yeast system. Below, we discuss phenomics approaches that have been used to map
genetic networks in yeast.
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Fitness-based phenomics for mapping genetic networks
The most widely used measurement for scoring phenotypes in genome-wide perturbation screens is cell prolif-
eration, due to the ease and scalability of cell growth assays. In budding yeast, arrayed mutant strains collec-
tions can be cultured on agar plates as colonies, and replica-pinned to various media. Colony size is then used
as a quantitative assay of cell fitness, and a mutant phenotype can be immediately linked to the underlying
genotype by its known position on the array [13,14]. The relative fitness of mutant strains can also be assayed
after growth of pooled strains in liquid collection, since the mutant alleles in the yeast deletion collection
feature a unique molecular barcode, enabling identification of the relative abundance of mutant strains using a
barcode sequencing read-out [6,15].
Over the past ∼two decades, genetic interactions in yeast have been systematically mapped using colony size

as a phenotypic read-out [11,16–19]. Large-scale mapping of genetic networks was made possible by the devel-
opment of an automated form of yeast genetics, termed Synthetic Genetic Array (SGA) analysis, that enables
rapid construction of double mutant arrays (Figure 1) [16]. Colony size of single and double mutants is com-
pared and deviations from the growth phenotype expected based on the single mutant phenotypes is calculated

Figure 1. Illustration of the experimental pipeline for discovery and analysis of genetic interactions in budding yeast.

A principal goal of phenomics studies is to understand the relationship between a cell or organism’s genotype and phenotype.

In budding yeast, arrays of single and double mutants, carrying gene mutations or fluorescent markers of interest integrated

into the genome either through C-terminal tagging (e.g. HTA2-RFP) or a fluorescent reporter driven by a gene-specific

promoter (e.g. PRPL39-tdTOMATO), are constructed using an automated approach known as the Synthetic Genetic Array (SGA)

method (panel 1). Following strain array construction, phenotypes are measured using a fitness-based (e.g. colony size) or

subcellular-based (e.g. fluorescent reporter) read-out (panel 2). Finally, computational analyses enable the construction of

genetic networks, assignment of novel gene function and the generation of multiparametric measurements, or phenomic IDs,

specific to each genetic perturbation (panel 3). yfg = ‘your favorite gene’.
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[13,20]. For large-scale and complex genetic interaction screens, automated image processing of mutant arrays
is used to quantify colony size phenotypes and to control for batch effects [13,21]. Using this approach, a
genome-wide genetic interaction network was mapped by examining all possible ∼18 million gene pairs for
double mutants that were either less or more fit than expected [3,11]. The resultant genetic network consists of
∼550 000 negative genetic (synthetic lethal or sick) and ∼350 000 positive genetic (synthetic suppressive) inter-
actions. To put these numbers in perspective, while there are ∼1000 essential yeast genes, in which a single
mutation causes a severe growth defect, there are 500-fold more digenic combinations that lead to an extreme
fitness defect. This ratio of negative digenic interactions to essential genes unequivocally illustrates the preva-
lence of genetic buffering [22] and the vast potential for combinatorial genetics to drive both cellular and
organismal phenotypes.
The genetic interaction profile or set of genetic interactions associated with a particular gene perturbation

can be clustered with other genetic interaction profiles to reveal a hierarchy of cell function (Figure 2) [11].
Genes that have similar genetic interactions profiles tend to be involved in the same bioprocesses, thus the pos-
ition and connectivity on the global genetic network can be used to predict gene and pathway function. This
property of quantitative genetic interaction profiles means that fitness-based profiles generated by other types
of perturbations can also be mapped onto the genetic network, to reveal functional information. For example, a
chemical-genetic profile, which consists of quantitative measurements of the sensitivity or resistance of yeast
mutants to a specific compound, may resemble the genetic interaction profile associated with perturbation of
its target [23,24]. A web-accessible database and visualization tool has been designed to facilitate data access

Figure 2. Hierarchical clustering of genetic interaction profiles enables the assembly of a global genetic interaction

network.

(a) Genes with similar genetic interaction profiles, based on fitness-based or single cell phenotypes, can be computationally

clustered to identify groups of genes likely to share functions in common. A global network view can be produced by plotting

genes on the network based on quantitative analysis of the similarity in their genetic interaction profiles. Genes that share a lot

of genetic interactions in common are spatially closer together on the global network, whereas genes with less similar genetic

interaction profiles are placed further apart. The resultant network can be functionally annotated to discover the functional

information associated with the various clusters or groups on the network. (b) The position and connectivity of genes on the

global genetic interaction network enables prediction of their participation in biology pathways or protein complexes, and of

unknown gene function. For example, YFG3 is predicted to participate in the same pathway as YFG1 and YFG2 by virtue of its

similarity of genetic interaction profile. (YFG = your favorite gene).
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and navigation of the global yeast genetic interaction network [25]. In addition to cell fitness, other
phenotypes that rely on population-based phenotypes have been used to study genetic interactions in yeast,
including transcriptional profiling to explore genetic interactions involving transcription factors, kinases, and
phosphatases [26,27].
As noted above, the inclusion of barcodes marking mutant alleles in the yeast deletion collection enables the

measurement of growth defects of pooled strain collections in competitive growth assays. Methods to map yeast
genetic interactions in pooled cultures using barcode microarray or sequencing-based read-outs include
dSLAM [28], GI mapping (GIM; [29,30]) and DNA barcode fusion (BFG-GI; [31,32]). Pooled approaches have
been adapted to study the effects of GIs on the quiescence phenotype in response to different nutrient depriva-
tions [33]. Barcodes are now commonly included in the design of libraries for systematic gene perturbation in
other systems, including genome-scale guide RNA (gRNA) libraries for CRISPR–Cas9-mediated disruption of
genes in human cells (reviewed in [34]). A flow cytometry-based read-out has also been used to map GIs fol-
lowing competitive growth of hypomorphic and wild-type alleles of essential yeast genes tagged with different
fluorescent proteins by monitoring relative strain abundance after serial dilutions [8]. Recently, methods were
developed to rapidly construct double mutants of yeast CRISPR interference (CRISPR-i) alleles, in which genes
are repressed by dCas9-based recruitment of a repressor to their promoters, compatible with sequencing-based
pooled growth assays [35]. In general, competitive growth assays can provide a more sensitive read-out of
genetic interactions, complementing large-scale efforts to map GIs using colony size.
In addition to double mutant genetic interactions, fitness-based phenomics is being used to systematically

explore more complex genetic scenarios. For example, the SGA method was recently adapted to survey triple
mutant genetic interactions, providing insight into the prevalence of trigenic interactions, the mechanisms of
retention of duplicated genes, and the functional relationships between distant biological processes [36–40]. In
addition, measurements of GIs in a variety of stress and other environmental conditions revealed that the GI
network is remarkably robust, with most conditional GIs being detectable in the reference network but exacer-
bated or suppressed in different growth conditions [41]. Finally, higher-order genetic interactions can be
explored using XGA (‘X-gene’ genetic analysis), which involves ‘en-masse’ mating of a barcoded pool of wild-
type cells with a multi-mutant strain deleted for genes of interest, followed by barcode sequencing of the
progeny to discover genetic interactions [42]. Combinations of 16 yeast ABC transporter gene deletions
revealed novel high-order genetic and chemical-genetic interactions, not evident from analysis of single and
double gene knockouts [42].

Cell biological phenomics to explore genetic networks and
gene function
While fitness-based assays have enabled genome-wide mapping of genetic interactions, cell growth is not a
precise phenotype, and population-based measurements preclude an assessment of population heterogeneity.
Furthermore, most single deletions of non-essential genes and double mutant combinations do not cause a sig-
nificant growth defect [11]. Specifically, ∼80% of deletion mutants grow comparably to wild-type (less than a
5% decrease in fitness relative to wild-type), and deletion mutants show a negative genetic interaction with
∼2% of other deletion mutants [11]. The potential of multi-parametric phenotypic measurements in yeast
mutants to add to our view of gene and pathway function has been clear for more than 15 years. For example,
the Ohya lab explored the yeast deletion collection for defects in the actin cytoskeleton, cell membrane and
nucleus by immuno-staining of the relevant compartments, followed by image analysis [43]. The project
revealed that ∼50% of yeast deletion mutants had a morphological phenotype, and comparison of phenotypic
profiles allowed the assignment of genes to specific biological pathways [43]. This approach also enabled the
identification of drug targets by obtaining and comparing chemically induced phenotypic profiles to mutant
cell phenotypes. Importantly, the project led to the development of CalMorph, one of the first high-throughput
image-processing software packages for the extraction of morphological features specifically from yeast cell
images [44].
The roster of phenotypes amenable to genome-scale image analysis has expanded tremendously due to

advances in high-throughput microscopy and computational image analysis, often referred to as high-content
screening (reviewed in [45]). In budding yeast, the combination of high-content screening and automated yeast
genetics has proven particularly powerful for exploring the genetic determinants of sub-cellular morphology. In
addition to facilitating rapid construction of double mutant yeast arrays (see above), the SGA method can also
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be used to introduce fluorescent markers of any subcellular compartment of interest into arrayed collections of
yeast mutants (Figure 1). Additional markers to provide spatial context, such as nuclear and cytoplasmic
markers, can also be simultaneously introduced enabling cell segmentation and automated image analysis [46].
This general approach has been applied over the last decade or so, using various imaging systems and image

analysis protocols, to discover phenotypes caused by single-gene perturbations for a spectrum of subcellular
structures and processes including: (1) morphology of the mitotic spindle [47]; (2) determinants of nuclear
shape [48,49]; (3) nucleolar size regulation [50]; (4) regulation of trafficking at endosomes [51]; (5) formation
of DNA damage foci [52] and; (6) endocytosis compartment morphology and regulators of endocytosis [53–55].
The integration of innovative tools such as microfluidics into automated imaging pipelines has enabled temporal
single-cell analysis in a high-throughput manner. These systems allow researchers to track the morphological
changes that yeast cells go through during their entire replicative lifespan including aging and to investigate
genetic and environmental factors that regulate lifespan [56,57].
Systematic morphological profiling of yeast mutants can reveal not only the roster of genes that influence the

structure and function of subcellular organelles and compartments, but also the prevalence of phenotypic het-
erogeneity and pleiotropy. For example, a systematic analysis of four markers of the endocytic pathway using
single cell imaging and automated image analysis revealed that many mutants were associated with multiple
phenotypes, indicating that morphological pleiotropy is common for endocytosis compartments [53].
Incomplete penetrance was also prevalent, and single cell image analysis enabled exploration of underlying
mechanisms, such as replicative age, organelle inheritance and stress response.
Comparable image analysis methods have been developed to exploit another key strain collection, the

ORF-GFP array, for assaying proteome dynamics as a read-out for genetic or other perturbations. The GFP col-
lections contains ∼4100 strains expressing different proteins tagged C-terminally with GFP, at their endogenous
loci [58]. The GFP array has been extensively validated by the yeast community [59–62] and other collections
of strains expressing RFP-tagged proteins, N-terminally tagged derivatives or tandem tags are also available
[63–67]. These collections are unique resources, enabling assessment of the localization and abundance of most
of the proteome in living cells using fluorescence microscopy. Computational image analysis tools have been
developed that enable quantitative assignment of yeast proteins into 22 subcellular compartments and the con-
struction of maps or ‘flux networks’ describing proteome changes in response to genetic [60] or environmental
perturbations [40,68,69]. For example, automated image analysis of the ORF-GFP collection was recently used
to study proteome plasticity in response to heat stress, revealing protein localization changes that may protect
proteins from thermal instability and enable new functions [40]. Single cell image analysis promises to enable
researchers to assemble ‘phenomic IDs’, or cellular proteomic signatures, based on changes in protein abun-
dance and localization, in response to specific environmental insults, gene mutation, genetic interactions and
cell states, such as cell cycle position.

Conclusion and outlook
So far, except for colony size phenotypes, most of the phenomics assays that we’ve discussed have been used to
survey single mutant phenotypes. However, there are several reasons to anticipate that more sensitive cell bio-
logical read-outs will provide new insights into genetic interactions and networks, beyond what has been
learned from population-based measurements of cell growth:

1. First, some genes (∼20% of tested genes) associated with weak genetic interaction profiles are not repre-
sented on the global network or localize to peripheral, unstructured regions of the network, which are not
enriched for genes associated with any specific function [11]. These genes may be refractory to genetic inter-
action profiling if a single gene perturbation or a more complex genetic interaction does not produce an
obvious growth phenotype, demanding a more sensitive read-out to detect single and double mutant
phenotypes.

2. Second, genetic interactions that produce an unexpected growth phenotype are rare (∼2% of gene pairs
involving non-essential genes will exhibit a genetic interaction [41]), but functionally informative genetic
interactions may be detectable by scoring more specific phenotypes. For example, a study of genetic interac-
tions using a fluorescent marker of the DNA damage focus expanded the roster of mutants that show a
genetic interaction with SGS1, a RecQ helicase, by ∼50%, relative to screens using a colony-size read-out [52].
Single-cell analysis of images of single and double mutants increases the resolution of cell phenotypes caused
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by GIs and may provide a mechanistic understanding of GIs that cannot be captured using colony size or
fitness measurements.

3. Third, population-level measurements do not allow an analysis of cell-to-cell variability, which is a key con-
sideration for predicting the consequences of genetic perturbation and genetic interactions [53,70].

Available yeast reagents and pipelines for automated image analysis can be used to map genetic networks by
examining all proteins (the GFP collection) or specific markers of interest in double mutant (or multi-mutant)
backgrounds. The complexities of biological networks demand continued development and application of new
systems-level approaches, which can only be achieved in highly accessible model systems. Foundational work
using the yeast system will continue to provide a clear conceptual and technical road map for mapping and
interpreting quantitative phenotypes in other systems, including human cells, bringing us closer to unraveling
the genotype-to-phenotype relationship.

Perspectives
• Systematic phenotypic analysis, or phenomics, has been used to map global networks of

genetic interactions and to quantitatively describe the consequences of gene perturbation in
budding yeast. The prevalence of genetic buffering underscores the importance of studying
genetic interactions and collecting multi-parametric measurements to further our understand-
ing of the genotype–phenotype relationship in eukaryotic organisms.

• Based on population-level analyses of growth phenotypes associated with single and double-
mutant genetic perturbations, a global genetic interaction network has been produced for
budding yeast. The network defines the general principles of genetic interactions, providing a
paradigm for mapping functional connections among genes and pathways. In parallel, ana-
lyses of cell biological phenotypes in single cells using automated imaging have revealed the
potential for complex phenotypic read-outs to expand our view of gene function and the
global genetic interaction network.

• Advances in imaging technology and computational resources will increase the throughput
and complexity of phenomics projects, extending population-level studies to single-cell ana-
lyses and digenic interactions to multi-gene interactions. These efforts promise to provide a
complete view of the genetic determinants of subcellular biology, and the prevalence and
mechanisms of incomplete penetrance and cell-to-cell heterogeneity. Approaches developed
in the budding yeast system will provide a proof-of-principle for both a technical and concep-
tual platform that should be readily adapted for parallel screening efforts to measure genetic
interactions in mammalian cells using CRISPR–Cas-based genome editing technologies.
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