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a b s t r a c t

The nucleocapsid (N) protein is an important antigen for coronavirus, which participate in RNA package
and virus particle release. In this study, we expressed the N protein of SARS-CoV-2 and characterized its
biochemical properties. Static light scattering, size exclusive chromatography, and small-angle X-ray
scattering (SAXS) showed that the purified N protein is largely a dimer in solution. CD spectra showed
that it has a high percentage of disordered region at room temperature while it was best structured at
55 �C, suggesting its structural dynamics. Fluorescence polarization assay showed it has non-specific
nucleic acid binding capability, which raised a concern in using it as a diagnostic marker. Immunoblot
assays confirmed the presence of IgA, IgM and IgG antibodies against N antigen in COVID-19 infection
patients’ sera, proving the importance of this antigen in host immunity and diagnostics.

© 2020 Published by Elsevier Inc.
1. Introduction

In December 2019, a new type of coronavirus (SARS-CoV-2 or
2019-nCoV) causing a novel pneumonia now named COVID-19
broke out in Wuhan, China. The virus is rapidly spreading cross
the world and caused a great impact on health and economy [1,2].
So far, as of April 16, 2020, there were 83,797 confirmed cases of
COVID-19 coronavirus infection in China and over 1,954,724 cases
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globally in over 200 countries [3,4]. Studies on the virus are ur-
gently needed for such severe situation.

The SARS-CoV-2 genome is composed of approximately 30,000
nucleotides, which encodes four structural proteins include spike
(S) protein, envelope (E) protein, membrane (M) protein, and
nucleocapsid (N) protein [5]. Among them, N protein is a highly
immunogenic and abundantly expressed protein during infection
[2,6]. Furthermore, N protein is frequently used in vaccine devel-
opment and serological assays [7]. At present, there is few reports
focus on SARS-CoV-2 N protein, and the updated understanding of
SARS-CoV-2 N protein is in urgent need.

After infection, the N protein enters the host cell together with
the viral RNA to facilitate its replication and process the virus
particle assembly and release [8]. SARS-CoV N protein contains two
distinct RNA-binding domains (the N-terminal domain [NTD] and
the C-terminal domain [CTD]) linked by a poorly structured linkage
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region (LKR) containing a serine/arginine-rich (SR-rich) domain
(SRD) [9,10]. Due to the positive amino acids, SARS-CoV N-NTD and
N-CTD have been reported to bind with viral RNA genome [11,12].
LKR is ability to improve oligomerization [13,14]. However, the
molecular properties of SARS-CoV-2 N protein remain to be
excavated.

Serological diagnosis detected that the specific antibodies
against the N protein in the serum of SARS patients have higher
sensitivity and longer persistence than those of other structural
proteins of SARS-CoV [15,16]. Moreover, anti-N antibodies have
been detected with high specificity in the early stage of infection
[17]. Thus, any information generated from the analysis of this
protein, whether in vivo or in vitro, will improve our understanding
of COVID-19 and help us to design better biological agents for the
treatment or diagnostics of diseases.

At present work, we found SARS-CoV-2 N protein a dimer in
solution by CTD-CTD interaction. Additionally, N protein can
binding with non-specific dsDNA probably by its electrostatic
interaction. Furthermore, we analyzed the immunogenicity of an-
tibodies which specific for N protein. Our work reveals new infor-
mation of the mechanism and characterization of N protein, which
may provide a prospection for the vaccine or diagnostic kit devel-
opment of N protein.
2. Results

2.1. SARS-CoV-2 N protein profile

To gain insights into the structural and functional relationships
of the SARS-CoV-2 N protein, we purified full-length protein with
419 amino acids (Fig. 1A). It is predicted to have two well-folded
domain, both of the NTD and CTD of SARS-CoV-2 N protein are
rich in b-strands while CTD has some short helices (Fig. 1B).

Sequence analysis showed that it has 90.52% identity to that of
SARS-CoV, with themost conserved region in the two core domains
and the linker (Fig. S1A). Molecular evolutionary analysis of the N
proteins showed that SARS-CoV-2 belongs to lineage B betacor-
onavirus which lies in the same branch as SARS-CoV and two bat
coronaviruses (Fig. S1B). They are well-separated with other coro-
naviruses, which is generally in agreement with the evolution tree
of these coronaviruses [18].
Fig. 1. Structural organization of SARS-CoV-2 N protein and sequence alignment.
(A) Domain structure of SARS-CoV-2 N protein. The domain boundaries were shown on
the top and the different domains were labeled in different colors. (B) The predicted
structure of SARS-CoV-2 N protein was presented. The NTD and CTD were highlighted
in red and blue, respectively.
2.2. The solution oligomerization state of SARS-CoV-2 N protein

To access the oligomerization state of N-protein in solution, we
used static light scattering (SLS) to determine the molecular
weight. Our data showed that the SARS-CoV-2 N protein formed
dimers according to a calculated molecular weight of the protein
was 114 ± 0.7 kDa by SLS (Fig. 2A). Furthermore, DSS cross-linking
verified that the N protein, with a theoretical molecular weight of
49.5 kDa including an extra 20 residues at the N-terminus, could
form dimers (Fig. 2B). A small portion of higher-order oligomers
was also observed by cross-linking.

2.3. The flexible linker is partially extended in solution

The confirmation of the full-length protein, we further studied
by the SAXS technique to provide information on its shape. As
shown in Fig. 2C, the radius of gyration of the molecule was 59 Å,
much larger than that expected for a 99 kDa globular protein
(Fig. 2F), and Kratky plot showed that the protein was partially
extended in solution (Fig. 2D). This is in consistent with the model
that the NTD and CTD do not interact, and the two NTDs in the
dimer are likely to move freely in solution. A representative
structure of NP45-365 based on CORAL simulations is shown in
Fig. 2E. Due to the flexible nature of the linker region, this structure
represents only a model of the conformational ensemble and does
not represent a structure per se. However, the model captures
features of the conformational ensemble and allows for the quali-
tative analysis of gross structural features. The most prominent
feature of the model is that the flexible linker does not adopt a fully
extended conformation, suggesting the existence of residual
structures within the linker.

2.4. Circular dichroism (CD) spectroscopic analysis

In order to characterize the conformational properties of the N
protein, CD spectroscopy was used to analyze the secondary
structures. The spectra shown in Fig. 3A demonstrated that the N
protein is mainly composed of coils, which consistent with the
structural model in Fig. 1B and the SAXS results (Fig. 2E). Interest-
ingly, the content of secondary structures increase with tempera-
ture and then started decreasing when it above 55 �C.

2.5. The N protein is potent to bind non-specific nucleic acid with
high affinity

In order to characterize the nuclei acid binding ability of SARS-
CoV-2 N protein, we used fluorescence polarization to assess the
binding affinity of the protein to a non-specific nucleic acid (a
double stranded 14mer DNA probe with a fluorescence label). As
shown in Fig. 3C, the N protein is potent to bind the dsDNA, the
apparent Kd value is 191 ± 0.036 nM. Additionally, the electrostatic
surface potential map generated with PyMOL (Fig. 3D) confirms
SARS CoV-2 N protein is a highly basic protein. The surface of both
NTD and CTD displayed highly positively charged regions which
may facilitate binding to nucleic acids.

2.6. The N protein is an important viral antigen for SARS-CoV-2

To pinpoint the possibility of the N protein as a diagnosis marker
in COVID-19, we used Western Blotting and Dot Blotting to identify
the antibodies which specifically bind with the N antigen. WB
analysis (Fig. 4A) and Dot blot analysis (Fig. 4B) showed the pres-
ence of IgG, IgA and IgM antibodies against the N protein were
detected in the confirmed COVID-19 patients’ sera pool with
different dilution. This result further confirmed that the N protein is



Fig. 2. Oligomerization state and conformation analysis of the N protein.
(A) Static light scattering analysis of the oligomerization of the N protein. The molecular weight was calculated by Astra software and is shown in red.
(B) DSS cross-linking analysis of the oligomerization forms of the N-protein (1). The protein used for positive control was mCARD9-CARD with an MBP tag (52 kDa) which was
reported to form dimers in solution (2) [33]. The MBP was used as a negative control (42 kDa) (3). (C) SAXS results for the protein. Scattering profile (points) and fitting with GNOM
(solid lines). I, scattering intensity; q, scattering angle vector. Insert: the guinier region with fitting line of the scattering profile.
(D) Dimensionless Kratky plot showed that the protein was partially extended in solution. (E) A representative CORAL model in which the NTDs are shown in yellow and purple,
respectively, and the CTD dimer is shown in green. The coiled coil regions are represented as dots. (F) Results from GNOM showing the pairwise distance distribution [P(r)] and the
maximum distance. The radius of gyration is fitted to 59 Å, and r represents the pairwise distances.
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a potent antigen for host immunity and for disease diagnosis.
3. Discussion

The nucleocapsid protein is an important structural protein for
the coronaviruses. It is highly abundant in the viruses. Its function
involves entering the host cell, binding to the viral RNA genome,
and forms the ribonucleoprotein core. The SARS-CoV-2 N protein
shares high homology with the SARS-CoV N protein, with a
sequence identity of 90.52%.

Our structural characterization of recombinant full length N
protein showed that it has high content of disordered region
without bound nucleic acid (Fig. 1B/3A). Noticeably, the linker of
SARS-CoV N protein is also highly disordered, as reported before
[19,20]. This disordered region may facilitate the protein to tran-
siently bind to different partners and maintain a correct confor-
mation of the N protein [13,21,22].

According to SAXS modeling, the NTD seems to move freely in
solution, and the flexible linker is partially extended in solution
(Fig. 2E), while the CTD forms a dimer similar to other N proteins
[23]. Static light scattering and DSS cross-linking were strongly
corroborating the results (Fig. 2 A/B). Furthermore, N protein of
SARS-CoV-2 is highly positively charged (Fig. 3C), which may
facilitate the binding ability of non-specific nucleic acid (Fig. 3B).
These results further confirmed the functional conformation of N
protein gain the ability to bind nuclei acids.



Fig. 3. Conformational and functional analysis of the N protein
(A) CD spectrum analysis of the N protein (right) and thermal denaturation of the N protein monitored at Q222 nm (left).
(B) Fluorescence polarization analysis of the N protein. The concentration of 50-FAM double stranded 14mer DNAwas 20 nM, and the apparent Kd value was 191 ± 0.036 nM. (C) The
electrostatic surface of the N protein generated by PyMOL, where the negatively charged region are represented in red, neutral regions in white, and positively charged regions in
blue.

Fig. 4. Antigenicity of the N antigen
Western Blot (A) and Dot Blot (B) analysis of specific IgA, IgM, IgG antibodies against the N
-protein after incubated with different dilution of COVID-19 recovering patients’ serum pool using anti-human IgA-Fc/IgM-m chain/IgG-Fc secondary antibodies, respectively.
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Guo et al. confirmed that the IgG in SARS-CoV and SARS-CoV-2
infected patients’ sera can bindwith the N antigen byWB and ELISA
[24]. Another report showed that antibodies against SARS-CoV-2 N
protein and RBD protein began to rise at the 10th day after COVID-
19 symptoms onset [25]. Importantly, by using COVID-19 patients’
sera, we found the existence of IgG, IgA, and IgM antibodies against
N antigen in recovering patients (Fig. 4).

Overall, our study increased the understanding of the SARS-
CoV-2 nucleocapside protein and provided the basis for future
vaccine and diagnostic kits development.

3.1. Experimental procedures

3.1.1. Patient serum samples
Serum samples were collected from recovering COVID-19 pa-

tients admitted to the First Affiliated Hospital of USTC between Jan
30 and Feb 23, 2020. All patients were confirmed to be infected
with SARS-CoV-2 by use of real-time RT- PCR (rRT-PCR) on throat
swab samples from the respiratory tract. Serum preparation as [26].

3.1.2. Molecular cloning, protein expression and purification
The coding sequence of the core N protein factor homology re-

gion (A1-A419) (NCBI accession code: ADI66791.1) was ligated into
pET28a with a His*6 on the N-terminus. The recombinant plasmid
was transformed into BL21 (DE3) bacteria for protein over-
expression. The lysis supernatant was purified by a 5 ml Hisprep™
IMAC column (GE Healthcare), and eluted protein was added with
Ammonium sulfate to a final concentration of 0.5 M. The final
protein was further purified with a 24 ml Superdex-200 gel filtra-
tion column. The UVevis spectrum was acquired on the purified
protein using a spectrophotometer (Jena).

3.1.3. Circular dichroism spectroscopic study
Circular dichroism (CD) spectra were acquired on a Chirascan

Spectrometer (Applied Photophysics, Leatherhead, UK). The pro-
teins were changed buffer into PBS. The procedure is as reported
before [27].

3.1.4. Small-angle X-ray scattering (SAXS) and low-resolution
model building

Purified full-length N protein was concentrated to 5 mg/ml us-
ing Amicon centrifugal concentrators (Millipore). To exclude con-
centration dependence, two different concentrations, 1 mg/ml and
5 mg/ml of purified N protein (corresponding to 21.7 mM, 101 mM,
respectively) were prepared and measured. The procedure fol-
lowed previous report [28]. The parameter is shown in Table S1.

3.1.5. Rigid body modeling using SAXS data
Modeling of the N protein was performed using three rigid

bodies. The model of residues 46e171 was built by the 1.7 Å reso-
lution crystal structure of the RNA binding domain of nucleocapsid
phosphoprotein from SARS coronavirus 2 (PDB: 6M3M.1.A) with
SWISS-MODEL [29]. The model of the CTD dimer was built using
the structure of SARS Coronavirus Nucleocapsid Protein (PDB:
2CJR.1.A) as a template.

SAXS-based rigid body modeling of complexes was performed
by CORAL (COmplexes with RAndom Loops) [30]. CORAL fixed the
CTD dimer, translated and rotated the atomic models of NTD do-
mains. The NTER and CTER loops were randomly generated by a
library of self-avoiding random loops. A simulated annealing pro-
tocol was employed to find the optimal positions and orientations
of available high-resolution models of domains and the approxi-
mate conformations of the missing portions of the polypeptide
chain(s).
3.1.6. Cross-linking
Disuccinimidyl suberate (DSS, Pierce) was used to cross-link

closely spaced surface-exposed active amino groups of interacting
proteins. The experimental protocol is according to previous report
[31].
3.1.7. Immuno-blotting
ForWestern Blot, 0.5 mg per well of the N proteinswere analyzed

with SDS-PAGE and transferred to a PVDF membrane (Millipore);
for Dot Blot, 0.1 mg per drop of the N protein were spotted on a
nitrocellulose membrane (Pall). The protein-coupled membranes
were blocked with defatted milk at room temperature for 1 h and
then incubated with different dilutions of virus-free sera of COVID-
19 patients overnight at 4 �C. On the next day, the membranes were
washed with PBST (0.1%v/v Tween 20). After that, the membranes
were incubated with a secondary antibody, anti-IgA (Boster bio-
logical technology), anti-IgM-m (Boster biological technology), or
anti-IgG-Fc (Sino biological), for 1 h. Last, the membranes were
washed with PBST and detected with an ECL kit (abpbiotech) using
a chemiluminescence apparatus (Bio-Rad).
3.1.8. Fluorescence polarization (FP)
The purified N protein and 50-FAM fluorescently labeled dsDNA

(50-FAM-TCG TCG TTT TGT CG) were mixed together with the final
concentration of 6.25 mM and 20 nM, respectively, in PBS with
15 mM MgCl2. Then, the mixture was serially diluted with PBS
containing 15 mM MgCl2 and 20 nM 50-FAM dsDNA to different
protein concentrations. The procedure was reported before [32].
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