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People with subjective cognitive decline (SCD) and amnestic mild cognitive impairment
(aMCI) are both at high risk for Alzheimer’s disease (AD). Behaviorally, both SCD and
aMCI have subjective reports of cognitive decline, but the latter suffers a more severe
objective cognitive impairment than the former. However, it remains unclear how the
brain develops from SCD to aMCI. In the current study, we aimed to investigate the
topological characteristics of the white matter (WM) network that can successfully
identify individuals with SCD or aMCI from healthy control (HC) and to describe the
relationship of pathological changes between these two stages. To this end, three
groups were recruited, including 22 SCD, 22 aMCI, and 22 healthy control (HC) subjects.
We constructed WM network for each subject and compared large-scale topological
organization between groups at both network and nodal levels. At the network level, the
combined network indexes had the best performance in discriminating aMCI from HC.
However, no indexes at the network level can significantly identify SCD from HC. These
results suggested that aMCI but not SCD was associated with anatomical impairments
at the network level. At the nodal level, we found that the short-path length can best
differentiate between aMCI and HC subjects, whereas the global efficiency has the best
performance in differentiating between SCD and HC subjects, suggesting that both SCD
and aMCI had significant functional integration alteration compared to HC subjects.
These results converged on the idea that the neural degeneration from SCD to aMCI
follows a gradual process, from abnormalities at the nodal level to those at both nodal
and network levels.

Keywords: amnestic mild cognitive impairment, subjective cognitive decline, white matter, network, Alzheimer’s
disease

Frontiers in Aging Neuroscience | www.frontiersin.org 1 July 2021 | Volume 13 | Article 687530

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.687530
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2021.687530
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.687530&domain=pdf&date_stamp=2021-07-12
https://www.frontiersin.org/articles/10.3389/fnagi.2021.687530/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-687530 July 12, 2021 Time: 11:7 # 2

Tao et al. Brain Degeneration From SCD to aMCI

INTRODUCTION

The current status of Alzheimer’s disease (AD) clinical treatment
is not promising, which makes preclinical prediction for AD
particularly important (Huang et al., 2020). Many studies
have shown that AD manifests significant pathological changes
decades before it develops into dementia (Jack et al., 2010;
Bateman et al., 2012). Characterized by objective cognitive
impairment similar to AD, mild cognitive impairment has been
proposed as an important stage in the development of AD. In
particular, about one-third of those with amnesiac mild cognitive
impairment (aMCI) will develop AD within 5 years (Ward et al.,
2013). Similarly, the elderly with subjective cognitive decline
(SCD) also has a high risk for developing AD (Jessen et al.,
2020). Both at the early stages of AD, the major behavioral
difference between SCD and aMCI is that aMCI has severer
objective cognitive impairments than SCD. However, knowledge
about the relationship between SCD and aMCI neuroimaging
characteristics is still insufficient.

Some studies have found that aMCI and SCD have similar
structural or functional degeneration with AD (Scheef et al., 2012;
Wang et al., 2013, 2016). In general, patients with aMCI had more
extensive and severe neurological impairments than the elderly
with SCD (Sun et al., 2015). However, regions of differences in
structural and functional activities between aMCI and SCD are
not the same in different studies. For example, SCD may, in
some way, compensate for the negative effects of neurological
damage in some distracted areas to ensure that they have normal
performance when completing cognitive ability tests (Erk et al.,
2011). Recently, studies have shown that neural impairments of
aMCI and SCD are not only restricted to individual regions but
also extended to the interactions among multiple brain areas
(Dai and He, 2014; Tao et al., 2020). Consistent with this, in the
last 5 years, extensive research has been conducted on neural
substances associated with AD and its development from the
perspective of brain networks (Wang et al., 2016; Shu et al.,
2018; Lazarou et al., 2019). Graph theoretical analysis offered a
new perspective to estimate the changes of multiple properties
of brain networks, both at the local and global level, as the
disease progresses (Bullmore and Sporns, 2009; He and Evans,
2010). There were also some researchers who suggested that
brain connectome research provided a very effective way for SCD
studies (Lazarou et al., 2019).

Functional segregation, which can reflect the local information
processing, and functional integration, which is a reflection of
the global information processing, are two major aspects of the
information activity of the brain. In the graph theoretical analysis,
the index of clustering coefficient and local efficiency, global
efficiency, and path length of brain networks can effectively reflect
the two aspects, respectively (Rubinov and Sporns, 2010). One
previous study has shown that AD patients had lower brain
network integration and higher brain network segregation, and
these changes were significantly correlated with cognitive decline
(Kabbara et al., 2018). The combination of the features of brain
network integration and segregation can distinguish AD patients
from healthy elderly with high accuracy (Cai et al., 2020). An
earlier review article on the topic of structural and functional

networks in the brain reported both functional segregation
and functional integration impairments in MCI and AD (Dai
and He, 2014). Our previous work also revealed impairments
of anterior–posterior brain functional connectivity in SCD in
the resting state (Tao et al., 2020). These results may indicate
that the brain network of SCD has also been altered. In the
meantime, considering that the pathological changes of AD are
a gradual process, it is suggested that the problems with the
integration and separation of brain networks might occur at both
aMCI and SCD stages.

To be considered as a disconnection syndrome (Delbeuck
et al., 2003), the white matter (WM) connectivity plays a crucial
role in the progress of AD pathology. The microstructural
deterioration of WM caused by demyelination and axonal
deterioration may result in obstacles of information transfer
within the brain network (Bozzali et al., 2002). Both aMCI
and SCD have been reported with widespread WM impairment
in previous studies (Selnes et al., 2013; Defrancesco et al.,
2014; Shao et al., 2019), which further disrupted the topological
properties of their brain network (Wang et al., 2016; Shu et al.,
2018). Moreover, the degree of WM abnormalities is significantly
correlated with the neurofibrillary tangle pathology stage and the
severity of the disease (Kantarci et al., 2017). Since aMCI and SCD
are in different stages of AD, it is necessary to look further into the
phase-specific characteristics of aMCI and SCD WM networks to
clarify the structural basis of the specific behavior in each stage.

To address this issue, in the current study, diffusion tensor
imaging and deterministic tractography were first used to
construct the WM structural network. We then used graph
theory approaches to estimate neural indexes, including path
length, the global efficiency, the local efficiency, and the
clustering coefficient, both the nodal and network levels. Finally,
classification models were built to investigate which indexes can
significantly identify SCD or aMCI from HC. We hypothesized
that neural degeneration follows a gradual change from SCD
to aMCI. Specifically, neural differences between SCD and HC
were mainly represented by indexes at the node level, whereas
that between aMCI and HC were represented by indexes at the
network level. We also examined the functional segregation and
integration properties between SCD or aMCI and HC, and made
further assumption that SCD and aMCI are already impaired
in both, but given that they are at distinct stages, there may be
subtle differences in the manifestation of the neural impairments
between the two.

MATERIALS AND METHODS

Participants
A total of 66 participants (mean age, 64.76 ± 6.4) were recruited
in the current study, including 22 SCD, 24 aMCI, and 23 gender-,
age-, and years of education-matched HC. All participants were
sourced from the Beijing Aging Brain Rejuvenation Initiative
database, which is a project of community-based elderly health
study. Participants meeting the following criteria were included:
(1) having no less than 6 years of education and being able
to complete a series of neuropsychological measurements; (2)
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nondementia, the score of Mini-Mental Status Examination
(MMSE, Chinese version) ≥ 24; (3) no history of coronary
disease, psychotic disorders, tumors, motor neuron disease,
developmental disability, or diseases that could influence cerebral
function; (4) no clinical diagnosis of depression, schizophrenia,
and other psychiatric disorders, and no history of taking
psychoactive medications; and (5) no physical problems that are
not appropriate for MRI scan.

In addition to the above criteria, the SCD participants also
had (1) self-reported memory declines in recent years relative to
previous states but was not caused by acute events, (2) the normal
cognitive function above -1.5 standard deviations (SD) of the
Chinese norms, and (3) intact daily living function. For the aMCI
participants, they should meet the published inclusion criteria by
Petersen et al. (1999): (1) had memory declined complaints, (2)
scores of cognitive function below 1.5 SD of the Chinese norm,
and (3) no difficulty in daily life.

Neuropsychological Assessment
A series of neuropsychological assessments were used to assess
the general mental status and other cognitive functions of all
the participants. The general cognitive function was measured
by the MMSE, while the memory function was estimated by the
Auditory Verbal Learning Test (AVLT) and the Rey-Osterrieth
Complex Figure test (ROCF-recall). The Symbol Digit Modalities
Test (SDMT) and part A of the Trail Making Test (TMTa) tested
the attention ability, while the part B of the TMT (TMTb) and
part C of the Stroop Test (Stroop C) tested the executive function.

Image Acquisition
A Siemens 3.0T scanner (Siemens, Munich, Germany) was
employed to acquire the MRI imaging data at the Imaging Center
for Brain Research, Beijing Normal University. Participants
lay flat on their backs with foam pads to minimize head
motion. T1-weighted images were acquired using sagittal
3D magnetization prepared rapid gradient echo (MP-RAGE)
sequences. The acquisition parameters were as follows: repetition
time (TR) = 1,900 ms, echo time (TE) = 3.44 ms, flip angle = 9◦,
field of view (FOV) = 256 × 256 mm2, and acquisition
matrix = 256 × 256, 1 mm slice thickness, and 176 sagittal slices.
Diffusion-weighted images were obtained by an echo-planar
imaging sequence with the parameters as follows: TR = 11,000 ms;
TE = 94 ms; flip angle = 90◦, FOV = 240× 240 mm2, acquisition
matrix = 128 × 128, 2 mm slice thickness, and 70 sagittal slices.
The diffusion sensitizing gradients were applied, 1 image without
diffusion-weighted (b = 0 s/mm2) and 30 diffusion-weighted
directions (b = 1,000 s/mm2).

Image Preprocessing
MATLAB 2018a, SPM121, and PANDA (Pipeline for Analysing
Brain Diffusion Images)2 software were used to preprocess
the DTI images. Several steps were applied to the data
preprocessing: eddy current and motion artifact correction,
fractional anisotropy calculation, whole-brain fiber tracking, and

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/panda/

diffusion tensor tractography. The fiber tracking was performed
by the continuous tracking algorithm, and the fiber tracts were
terminated if two consecutive moving directions have a crossing
angle above 45◦and the fractional anisotropy is out of the
threshold 0.2–1 (Cui et al., 2013).

Network Construction
Network nodes and edges are the most basic element of a
brain network. We used the standard procedure proposed
by Gong et al. (2009) and constructed the WM network as
Shu et al. (2018) described in their work. Network nodes
were defined using the 90 brain regions subdivided by the
automated anatomical labeling (AAL) template. The network
nodes were considered structurally connected if the number
of fibers between two nodes was ≥3 (Shu et al., 2012). We
set the thresholds to 1–5 and 10 and observed the effects of
diverse thresholds on the differential characteristics between
groups, respectively, and no significant changes were observed
between the thresholds (see Figure 1 and Supplementary
Table 1). Then, the number of valid fibers (FN) between
regions was defined as the weights of the network edges.
Eventually, each subject was constructed an FN-weighted 90× 90
matrix WM network.

Network Analysis
For each subject, the GRETNA software3 was applied to quantify
the network metric. The characteristic path length and the
global efficiency, which can reflect the structure integration,
the local efficiency, and the clustering coefficient, indicating the
structure segregation, were calculated for each participant at
both network and nodal levels. The smaller the characteristic
path length and the higher the local efficiency, the better
the structure integration. The higher the local efficiency and
the higher the clustering coefficient, the better the structure
segregation. The BrainNet Viewer4 was used to present the
network results.

Indexes at the Network Level
The characteristic path length described the mean of the shortest
path length between nodes. It can be computed as follows:

L (G) =
1

N(N− 1)

∑
i6=j∈G

dij

The global efficiency measures the efficiency of parallel
information transfer in the network. It can be computed as
follows:

Eglobal (G) =
1

N(N − 1)

∑
i6=j∈G

1
dij

The local efficiency shows how efficient the communication is
among the neighbors of each node. It can be computed as follows:

Eloc (G) =
1
N

∑
i∈G

Eglob(Gi)

3www.nitrc.org/projects/gretna/
4http://www.nitrc.org/projects/bnv/
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FIGURE 1 | Workflow of data analysis. White matter matrices were constructed based on the AAL template, an automated anatomical parcellation of the spatially
normalized single-subject high-resolution T1 volume, during which indexes (GE, SP, LE, and CE) at the network and nodal level were extracted. At the network level,
four indexes, including GE, SP, LE, and CE were used separately or combined to build a classifier. GE, global efficiency; SP, short path length; LE, local efficiency;
CE, clustering coefficient. At the nodal level, each index includes 90 features. To select the most discriminate features, LSVM (an outer LOOCV) was nested with a
feature selection produce (an inner LOOCV). LSVM, linear support vector model; LOOCV, leave-one-out cross-validation. Similar to nodal level, four indexes were
used separately or combined to build a classifier.

TABLE 1 | Demographics and neuropsychological characterizations.

HC (n = 23) SCD (n = 22) aMCI (n = 24) χ 2/F p

Gender (m/f) 14/9 11/11 11/13 1.13 0.570

Age (years) 65.91 ± 5.86 62.41 ± 5.24 65.71 ± 7.49 2.19 0.120

Education (years) 12.30 ± 2.84 10.50 ± 2.82 10.50 ± 2.96 3.02 0.056

MMSE 29.04 ± 0.93 27.14 ± 1.73 26.04 ± 1.78 21.08a < 0.001

Memory 6.05 ± 0.40 4.94 ± 0.40 4.04 ± 0.37 151.96b < 0.001

Attention 5.58 ± 0.48 5.35 ± 0.57 4.12 ± 0.83 29.79c < 0.001

Executive 5.61 ± 0.27 5.11 ± 0.43 4.31 ± 0.84 30.64b < 0.001

Values are mean ± standard deviation. All covariance analyses used gender, age, and education as covariables. The post hoc tests were corrected by Bonferroni, and
p < 0.05 was considered significant.
aHC > SCD and HC > aMCI.
bHC > SCD > aMCI.
cHC > aMCI and SCD > aMCI.

The clustering coefficient is defined as the possibility of the
neighborhoods that are connected with each other. It can be
computed as follows:

C (G) =
1
N

∑
i∈G

Ci =
1
N

∑
i∈G

2ti
ki(ki − 1)

Indexes at the Nodal Level
The shortest path length of node i shows the mean distance
between node i and other nodes. It can be computed as follows:

L (i) = max
j

d(1→ j)

The nodal efficiency for node i shows the efficiency of parallel
information transfer of this node in network G. It can be
computed as follows:

Eglob (i) =
1

N − 1

∑
j 6=i∈G

1
dij

The local efficiency of node i shows the efficiency of the
communication among the first neighbors of node i when it is
removed. It can be computed as follows:

Eloc (i) =
1

Ni(Ni − 1)

∑
j6=i∈Gi

1
dij
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The clustering coefficient of node i shows the likelihood the
neighbors of node i connected to each other. It can be computed
as follows:

C (i) =
2ti

ki(ki − 1)

In all the formulas above, N is the total number of nodes in
the network, dij is the shortest path length between node i and
node j in network G, and Gi denotes the subgraphs of node i.
Ci represents the clustering coefficient of node i, N is the total
number of nodes, t is the weighted edges, and k is the number of
nodes connecting to node i.

Statistical Analysis
General statistical analyses were performed with SPSS (version
22.0, Chicago, IL, United States). Analysis of covariance
(ANCOVA) with age, gender, and years of education as covariates
was used to estimate the group difference in neuropsychological
tests, global network metrics, and nodal properties. If the main
effects of groups were significant, post hoc t-tests were performed
to further examine the difference between any two groups.
A false discovery rate (FDR) correction was performed at a
q-Value of 0.05 to correct for multiple comparisons. Receiver
operating characteristic curve (ROC) analysis was applied to
describe the discrimination of network and nodal characteristics
on HC, SCD, and aMCI. We also did partial correlation analysis
with age, gender, and years of education adjusted to reveal
the relationship between cognition and some WM indicators
that we selected.

The LSVM-Based Classification
An LSVM method was performed using LIBSVM for Matlab5

(Chang and Lin, 2011) to differentiate aMCI or SCD from
HC with WMV metrics. The leave-one-out cross-validation
(LOOCV) was applied for the cross-validation, which has been
widely used in previous studies, especially for data with a
small sample size (Cui et al., 2016; Pereira et al., 2009). In
this dataset, multiple dimensional spaces were represented by

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/

all of the features, and each participant was a point in these
multiple dimensional spaces. The LSVM used a subset of data
(i.e., training set, n - 1 participants) as input to build a modal
that can best separate the input data into two categories (Cui
et al., 2016). Then, a relatively dependent dataset was used
(i.e., testing set, the last participant) to test this classifier.
Based on the features that have been used, the last participant
can be classified as any of the two classes (e.g., HC or
SCD), labeled as 1 or -1. If the predicted label is consistent
with the real label, then the classification is correct. After
the leave-one-out loop for two groups was finished, a final
accuracy represented by the probability to predict accurately
can be calculated, which demonstrated the performance of the
classification model.

Feature Selection at the Nodal Level
Each index (global efficiency, local efficiency, clustering
efficiency, and short path) at the node level was represented
by a 90 × 1 matrix. To boost classification performance, a
nested inner LOOCV loop was conducted, with the outer loop
to estimate classification accuracy and the inner loop to select
discriminative features and to eliminate the noninformative
features (Cui et al., 2016). Detailed steps were as follows.
First, N - 1 subjects were used as the training set, the last
participant served as the testing set for the outer LOOCV
loop. Second, all data were normalized (Cui et al., 2016).
Third, an inner LOOCV loop was performed, during which
two-sample t-tests were applied for each feature within N - 2
participants. Features below a given p-Value were selected
for inner classification models. The given p-Value was set
from 0.01 to 0.99 with a step of 0.01. In this way, 99 inter-
LOOCV were conducted, and 99 accuracies were obtained.
Optimal p was determined by the highest classification accuracy.
(4) Features thresholded with this optimal p-Value were
selected for the training set of the outer LOOCV loop. (5)
The resultant discriminative weight for each feature was
calculated to mark the relative importance of a feature to
a classifier (Mourao-Miranda et al., 2005). Notably, this

FIGURE 2 | The mean structural network matrix of each group built on the white matter. The horizontal and vertical coordinates represent 90 brain regions in the
AAL template. Values in each cell represent the mean FN between two brain areas.
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FIGURE 3 | Receiver operating characteristic (ROC) and area under the curve (AUC) or accuracy distribution when all indexes (i.e., global efficiency, local efficiency,
cluster efficiency, and short path) at the network level were combined. ROC maps shows the classification performance (A,B), where a greater AUC corresponds to
better performance. AUC and accuracy distribution maps (C–F) were built by permutation tests, during which group labels were randomly arranged 1,000 times.
Arrows in the distribution maps marker AUC or accuracy based on real group labels.

strict feature selection procedure was skipped for indexes at
the network level.

Definition of the Discriminate Features
Features selected for each outer loop were slightly different
because of the difference in the dataset (n - 1 participants for each
time). The absolute weight of features that were used for all outer
loops was averaged, which was used to indicate the discriminate
weight of each feature (Dai et al., 2012; Cui et al., 2016, Cui and
Gong, 2018). The higher the discriminate weight is, the greater
the contribution of the corresponding feature to the classifier is.

In the current study, the most discriminate features were defined
as those with averaged discriminate weight larger than 0.

Evaluation of Classification Performance
Accuracy, specificity, sensitivity, area under the ROC curve
(AUC) were estimated to quantify the classification accuracy.
As presented earlier, accuracy means the proportion of subjects
to be accurately classified. Specificity means the proportion of
subjects who can be accurately classified as HC or SCD (or
aMCI). Sensitivity means the proportion of subjects who can
be accurately classified as SCD (or aMCI). Furthermore, ROC
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analysis was used to estimate the effectiveness of each classifier.
The AUC indicates the classification performance of a classifier,
and a larger AUC represents a better performance (Fawcett,
2006). To estimate the significance of the accuracy and AUC, a
1,000 permutation test was performed to build null distributions,
during which labels for each participant were shuffled and the
whole classification procedure was reperformed.

RESULTS

Demographic Information
Age, gender, and years of education did not differ significantly
among the three groups. MMSE was significantly higher in
HC than in SCD and aMCI. Memory and executive functions
declined in the order of HC, SCD, and aMCI. The attentional
function was significantly stronger in both HC and SCD than
in aMCI (Table 1). We have reported these behavioral results in
another article as well (Tao et al., 2020).

The Mean Structural Network Matrix
The mean structural network matrix for the three groups is
presented in Figure 2. Notably, the number of fiber tracts
between a few brain regions was abundant (nearly 300), but
we chose only 25 as the maximum threshold to achieve a
better representation of the structural connectivity state between
most brain regions. A two-tailed t-test for group comparisons
of the structural network (p < 0.025) was presented in the
Supplementary Material. Most group differences were found
between HC and aMCI, while relatively few differences were
found between HC and SCD (see Supplementary Figure 2).

Classification With White Matter Indexes
at the Network Level
The LSVM classifier accurately discriminated aMCI from HC
when all network indexes (i.e., global efficiency, local efficiency,
cluster efficiency, and short path) were combined (brown lines

in Figure 3A). The result elucidated significant AUC (0.75,
p < 0.001; Figure 3E and Table 2) and accuracy (0.75, p < 0.001;
Figure 3C and Table 2, bold font), respectively. Then, LSVM
was also conducted by using the global efficiency, local efficiency,
clustering efficiency, and short path separately. Permutation tests
revealed significantly higher accuracy and AUC for all indexes
except for the clustering coefficiency (Table 2).

However, for SCD and HC, performance accuracies for all
classifiers either building on each index or the combined index
were all lower than 0.6, with nonsignificant AUCs close to 0.5
(Figures 3B,D,F).

Classification With White Matter Indexes
at the Nodal Level
Then, the LSVM was conducted at the node level. We first
combined all indexes to classify different groups. However, the
whole-brain anatomical connection pattern cannot significantly
separate aMCI or SCD from HC (Figures 4A,B).

Then, we exploited single-type metrics to build classifiers,
during which observed a double-dissociation pattern.
Specifically, path length can differentiate aMCI and HC but
not SCD and HC (Figure 4A). Notably, AUC for this classifier
was significant (0.66, p = 0.019; Figure 4C and Table 2, bold
font), while accuracy was marginally significant (0.66, p = 0.079;
Figure 4E and Table 2). Even though the significance was
marginal, there was still a trend that path length might be able to
identify aMCI from HC. In addition, the most 10 discriminative
WM features for this classifier were the left supramarginal gyrus;
left amygdala; right inferior frontal gyrus, opercular part; right
hippocampus; left temporal pole; middle temporal gyrus; right
superior temporal gyrus; left inferior frontal gyrus, triangular
part; left lenticular nucleus, pallidum; right inferior parietal, but
supramarginal and angular gyri; and right thalamus.

On the other hand, the global efficiency can significantly
identify SCD but not aMCI from HC (Figure 3). AUC (0.71,
p = 0.014; Figure 4D and Table 2, bold font) and accuracy (0.73,
p < 0.001; Figure 4F and Table 2) were all significant, with

TABLE 2 | Clustering performance based on each index.

HC vs. aMCI HC vs. SCD

Network level

Accuracy AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity

Combined 0.75 0.75 0.59 0.90 0.57 0.55 0.64 0.50

Global efficiency 0.68 0.77 0.59 0.77 0.45 0.34 0.73 0.18

Local efficiency 0.68 0.71 0.59 0.77 0.55 0.49 0.73 0.36

Clustering co-efficiency 0.16 0.09 0.18 0.14 0.50 0.52 0.59 0.41

Path length 0.70 0.76 0.55 0.84 0.39 0.41 0.36 0.41

Nodal level

Combined 0.52 0.52 0.50 0.55 0.43 0.39 0.41 0.45

Global efficiency 0.55 0.57 0.50 0.59 0.73 0.71 0.68 0.77

Local efficiency 0.61 0.63 0.64 0.59 0.32 0.29 0.41 0.23

Clustering co-efficiency 0.45 0.48 0.41 0.50 0.55 0.61 0.50 0.59

Path length 0.66 0.66 0.59 0.73 0.64 0.57 0.50 0.77
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FIGURE 4 | Receiver operating characteristic (ROC) maps and area under the curve (AUC) or accuracy distribution of a classifier built on indexes at the nodal level.
ROC maps show the classification performance (A,B), where greater AUC corresponds to better performance. AUC and accuracy distribution maps (C–F) were built
by permutation tests, during which group labels were randomly arranged 1,000 times. Arrows in the distribution maps marker AUC or accuracy based on real group
labels.

most discriminative WM features consisting of the left lenticular
nucleus, pallidum; right fusiform gyrus; and right lenticular
nucleus, pallidum.

Correlation Between Network Metrics
and Cognition
We also calculated the correlation between network properties
and cognition with gender, age, and years of education as
covariates in each group. In the SCD group, the path length of the
left supramarginal was positively correlated with memory ability

(r = 0.723, p < 0.001), but this was not the situation in the group
of HC and aMCI (Figure 5).

DISCUSSION

We investigated the topological characteristics of the WM
network that can successfully identify SCD and aMCI from HC.
Compared to the HC group, the combination of multiple indexes
at the network level was able to significantly distinguish aMCI,
but not SCD. The classifiers built on different indexes at the nodal
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FIGURE 5 | Correlation between network metrics and memory in different
groups.

level can identify SCD and aMCI from HC. Specifically, the short-
path length at the nodal level was able to significantly distinguish
aMCI from HC, whereas the global efficiency at the nodal level
was able to identify SCD from HC. The most discriminative
short-path length features include the left supramarginal, the left
amygdala, the opercularis part of the right inferior frontal, the
right hippocampus, and the left temporal pole, whereas the most
discriminative global efficiency features contain the left pallidum,
the right fusiform, and the right pallidum. Besides, we found that
the short-path length of the left supramarginal was significantly
correlated with memory performance in the SCD group.

Abnormalities in white matters, which were responsible
for transmitting information between brain regions, often
cause impairments of higher cognitive functions requiring the
collaboration of multiple brain regions. The impairments of
WM in AD have been reported in previous studies, which have
observed that WM impairments are significantly associated with
cognitive decline in AD (Overdorp et al., 2014; Bilello et al., 2015).
WM damages are one of the typical features of the pathological
development of AD (Lee et al., 2016). This WM degeneration,
representing demyelination and microhemorrhages, is also
frequently reported in aMCI and SCD (Ohlhauser et al., 2019;
Bangen et al., 2020; Li et al., 2020). In the current study, we
focused on structural properties (white matter metric) of the
brain; therefore, we selected the AAL template that was built on
high-resolution T1 volume and has been widely used in previous
brain network research (Feng et al., 2015; Qi et al., 2015; Zhuo
et al., 2018). Consistent with other studies (Wang et al., 2016;
Shu et al., 2018), disconnection symptoms and dynamic network
failure in AD were found to be of great significance in the
preclinical stages of AD, and this provides the neurostructural
basis for the altered behavioral manifestations in these stages.

Compared to aMCI, SCD is at a much earlier stage, where
the individual’s cognitive abilities are still relatively intact. Our
findings also reveal the stage-specific characteristics of WM
network disruption in each group. Both aMCI and SCD exhibit
impairments in network topological properties at the nodal
level, but indexes at the network level can only significantly
distinguish aMCI from HC, with no significant classification
power in discriminating between SCD and HC. This suggests a
progressive degeneration of whiter matter from SCD to aMCI,
from WM impairments at the local level to both local and global
levels. There is extensive evidence that SCD has similar WM
degeneration to aMCI and AD (Selnes et al., 2012; Li et al., 2016),
and the degree of degeneration is often intermediate between HC
and aMCI (López-Sanz et al., 2017). Our current study further
shows that the WM network damage in SCD has not reached
the overall level of the whole brain network as in aMCI but is
only limited to some local nodes. In this case, SCD may also
be able to compensate for the problems caused by local node
degeneration through resource allocation at the overall network
level or nodes that has been impaired, just like the alternative
enhancement of partial regional activation reported by previous
authors in functional MRI (Erk et al., 2011). This may be one of
the reasons why SCD is still able to maintain good performance
in cognitive tasks.

Based on the nodal-level analysis, we found that the
attributes that best distinguish SCD and aMCI from HC are
the global efficiency and the short-path length. These are
two indicators representing the extent of function integration
among brain regions (Bullmore and Sporns, 2012). The results
suggest that both SCD and aMCI might have pronounced
functional integration issues. They may have much more
difficulties in accomplishing those higher cognitive functions that
require multiple brain regions to collaborate together. Several
previous studies have reported altered functional integration and
functional segregation in both preclinical stages of AD (Lazarou
et al., 2019), and some investigators have suggested that enhanced
functional segregation compensates for the problems associated
with functional integration impairments (Xu et al., 2020), but the
latter was not as evident in our study. In addition, those elderly
with amyloidosis are more likely to have functional integration
problems (Fischer et al., 2015). This further confirms that SCD
and aMCI are two important preclinical risk stages for AD.

We used the fiber number of WM to build the network. The
change in the short-path length in aMCI suggests that some
of the WM pathways between the nodes have been impaired.
The changes in the global efficiency of some nodes in SCD also
indicate that the efficiency of information exchange between
these nodes and other regions of the brain has been impaired.
Some of the nodes with the greatest discriminatory validity
were identified in our analysis, and these nodes were mainly
distributed in temporal and frontal regions, which is consistent
with the sequence of pathological development in early AD
(Serrano-Pozo et al., 2011). We found a significant correlation
between the left marginal superior gyrus and memory in the
SCD group. Some studies suggest that thinner volumes in this
region are associated with an increased risk of AD (Verfaillie
et al., 2016). As part of the attentional network (Yeo et al., 2011),
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the marginal supramarginal gyrus has shown an important role
in memory encoding in several studies (Staresina and Davachi,
2006; Rubinstein et al., 2021). In addition, the literature shows
that supramarginal gyrus is often functionally involved in action
execution, simulation, and observation (Grezes and Decety,
2001), and some researchers have suggested that activation
of this component when subjects are memorizing items may
reflect the action-oriented approach to memory adopted by the
subjects (Russ et al., 2003). However, somewhat curiously, we
found that the mean path length of the left marginal superior
gyrus, in relation to other nodes of the whole brain, showed
a significant positive correlation with memory performance in
the SCD group. It appears that better structural segregation
of this region from other nodes contributes to better memory
performance. In fact, it can be observed from the scatter plot
(Figure 4) that the HC group did also have a longer mean
path length than the aMCI group. We speculate that perhaps
the region is undergoing a transition from a cost-effective
network to a random network during the SCD stage and that
some unnecessary connections to this brain region may cause
interference with memory function. This is consistent with the
phenomenon of brain dedifferentiation in aging and disease
development (Goh, 2011; Caldwell et al., 2020). This is still only
our conjecture, and follow-up studies need more experimental
evidence to further validate it.

Some limitations of our study should be mentioned. First,
our study sample is relatively small, which may affect the
generalizability of our current findings, and the seniors who
participated in the current study were from the community.
While we believe in the importance of focusing on the
community elderly, SCD from the clinic did have a higher
AD conversion rate (Jessen et al., 2020). Second, the current
study is only a cross-sectional study, and the findings need to
be confirmed by future longitudinal studies. Third, combining
other neuroimaging features such as cerebrospinal fluid markers
with the WM network alterations in the current study will
help to reveal a more comprehensive picture of the preclinical
pathological changes in AD. In conclusion, our study shows
that both SCD and aMCI have impairments in the functional
integration of WM networks relative to HC and that network
impairments in aMCI have undergone a quantitative change from
the nodal level to the network level.
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