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A B S T R A C T

Many patients with depressive disorder do not respond to conventional antidepressant treatment. There is an 
ongoing interest in investigating potential mechanisms of treatment resistance in depression to provide alter-
native treatment options involving inflammatory mechanisms. Increasing evidence implicates the NOD-like re-
ceptor pyrin domain containing 3 (NLRP3) inflammasome as a critical factor in neuroinflammation. ATP-induced 
P2X7 receptor (P2X7R) activation is a major trigger for inflammation, activating the canonical NLRP3 inflam-
matory cascade. Psychosocial stress, the primary environmental risk factor for depression, is associated with 
changes in ATP-mediated P2X7R signaling. Depression and stress response can be alleviated by Cannabidiol 
(CBD). CBD has an anti-inflammatory activity related to the regulation of NLRP3 inflammasome activation. 
However, CBD’s effects on the inflammasome pathway are poorly understood in central nervous system (CNS) 
cells, including microglia, astrocytes, and neurons. This review will emphasize some findings for neuro-
inflammation and NLRP3 inflammasome pathway involvement in depression, particularly addressing the ATP- 
induced P2X7R activation. Moreover, we will underline evidence for the effect of CBD on depression and 
address its potential impacts on neuroinflammation through the NLRP3 inflammasome cascade.

1. Introduction

Depressive disorder (DD) is characterized by depressed mood, 
anhedonia, low self-esteem, feelings of worthlessness, sleep and eating 
disturbances, and impaired cognitive function (APA, 2013). DD is one of 
the most common chronic, relapsing psychiatric disorders and is ex-
pected to be the leading cause of global disease burden by 2030 
(Mathers and Loncar, 2006). Suicidal thoughts and attempts can lead to 
death in people with DD (APA, 2013). The monoamine hypothesis in the 
pathogenesis of depression has been accepted for many years 
(Schildkraut, 1965). However, about one-third of patients do not 
respond to the current pharmacological treatments that act on the 
monoaminergic system. This finding suggests that the monoamine hy-
pothesis alone is not sufficient to explain the pathogenesis of depression 
(Sanacora et al., 2012). After the classic monoaminergic theory, new 
theories have been introduced, such as the neuroplastic (Pittenger and 
Duman, 2008), glutamatergic (Sanacora et al., 2012), and inflammatory 
theories (Hall et al., 2016), which could contribute to depression 
(Pitsillou et al., 2020). Many studies have drawn attention to increased 
inflammatory responses in depression and other stress-related 

pathologies (Slavich and Irwin, 2014; Stein et al., 2018).
Individuals with depressive disorder, particularly those with severe 

and treatment-resistant depression (Eller et al., 2008; Maes et al., 1993; 
O’Brien et al., 2007), exhibit all of the cardinal features of an inflam-
matory response, including increased expression of pro-inflammatory 
cytokines and their receptors and higher levels of acute-phase re-
actants and chemokines in peripheral blood and cerebrospinal fluid 
(Felger and Lotrich, 2013; Maes, 1995; Miller et al., 2009). Some 
research suggests that viral infections such as influenza, cytomegalo-
virus, SARS-CoV-1 and SARS-CoV-2 are associated with an increased 
incidence of depression (Jeon and Kim, 2018; Mazza et al., 2020). Also, 
inflammation markers are related to depression severity in COVID-19 
survivors in the long term (Akçay et al., 2022; Mazza et al., 2021). A 
recent meta-analysis has highlighted the significant associations be-
tween concurrent depression and inflammatory factors (Colasanto et al., 
2020). Although there is considerable evidence that peripheral and 
central inflammation plays a role in the pathophysiology of DD, the 
mechanisms underlying activation are not fully understood (Stein et al., 
2018).

In recent years, stimulation of the Nucleotide-binding and 
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oligomerization domain (NOD)-like receptor pyrin domain containing 3 
(NLRP3) inflammasome has been reported to contribute to the patho-
genesis of many neuropsychiatric disorders including DD 
(Alcocer-Gómez and Cordero, 2014; Burak et al., 2022; Cakir-Aktas 
et al., 2023; Kaufmann et al., 2017; Kursun et al., 2021). It is emphasized 
that the NLRP3 inflammasome may be a target for DD treatment in 
patients (Alcocer-Gómez et al., 2017; Arioz et al., 2019). In addition to 
elevated levels of interleukin 1β (IL-1β) and IL-18 in patients diagnosed 
with DD, increased levels of the NLRP3 inflammasome have been re-
ported in mononuclear cells isolated from peripheral blood 
(Alcocer-Gómez et al., 2014). Additionally, postmortem brain samples 
from suicide victims with depression have shown an increased expres-
sion of various innate immune genes and proteins, such as IL-1β, IL-6, 
tumor necrosis factor (TNF), and altered Toll-like receptor 4 immune 
response (Martín-Hernández et al., 2018). However, a recent 
meta-analysis did not find a consistent association between TNF-α and 
IL-1β and major depression, which could be related to inconsistencies 
between subgroups of the patients (Haapakoski et al., 2015). A recent 
postmortem study has reported that the protein and mRNA expression 
levels of NLRPs, including NLRP1, NLRP3, NLRP6, and caspase-3, were 
increased in patients who were depressed and died by suicide, compared 
to control (Ghanshyam et al., 2021). The canonical NLRP3 inflammatory 
cascade is activated when ATP binds to P2X7R. This leads to the acti-
vation of caspase-1 and the production of active IL-1β and IL-18 (Guo 
et al., 2015). The possible relationship between P2X7R and the patho-
genesis of depression has recently begun to be discussed (Bhattacharya 
and Jones, 2018; Deussing and Arzt, 2018; Silberstein et al., 2021). 
Psychosocial stress, the primary environmental risk factor for depres-
sion, is associated with changes in ATP-mediated P2X7R signaling. 
Therefore, P2X7R involvement in innate and adaptive immunity is 
important in stress-related depression (Iwata et al., 2013; Ribeiro et al., 
2019). Riberio et al. have proposed that increased extracellular ATP 
evoked by SARS-CoV-2 infection may trigger P2X7 receptor hyper-
activation, leading to NLRP3 inflammasome stimulation as a critical 
mediator of neuroinvasion and subsequent neuroinflammatory pro-
cesses as in psychiatric disorders (Ribeiro et al., 2021). The number of 
studies drawing attention to the relationship between P2X7 receptor 
activation and depression is increasing (von Mücke-Heim and Deussing, 
2023).

Cannabidiol (CBD) is a non-stimulant phytocannabinoid found in 
Cannabis sativa and related species, comprising around 50% of their 
content. Tetrahydrocannabinol (THC), cannabis’s main bioactive com-
pound, is psychoactive and addictive. However, CBD is not addictive or 
psychotomimetic (Oberbarnscheidt and Miller, 2020). CBD has various 
pharmacological effects, including anti-diabetic, antioxidant, 
anti-cancer, neuroprotective, and anti-inflammatory properties (Crippa 
et al., 2018). However, the molecular pathway of its anti-inflammatory 
activity is still poorly understood. Recently published data indicate that 
the anti-inflammatory effects of CBD are associated with the regulation 
of NLRP3 inflammasome activation (Chu et al., 2024; Huang et al., 
2019; Libro et al., 2016). Also, Hartman et al. suggest that the NLRP3 
inflammasome in microglia could be a target for CBD in stress response 
(Hartmann et al., 2023). Two recent in vitro studies in microglial cell 
lines have examined CBD’s anti-inflammatory effects experimentally 
(Rodrigues et al., 2024; Yndart Arias et al., 2023). The mechanisms of 
action of CBD on the NLRP3 inflammasome complex in microglial, 
astrocyte, and neuronal cells remain unclear.

This review examines the role of P2X7R signaling in depression from 
the perspective of the NLRP3 inflammasome pathway. Furthermore, we 
explore the potential of cannabidiol as an anti-inflammatory target for 
the treatment of depression.

2. NLRP3 inflammasome pathway

The NLRP3 inflammasome is a multiprotein complex that contains a 
cytosolic pattern recognition receptor (PRR), an adaptor protein called 

apoptosis-associated speck-like protein (ASC), and the effector enzyme 
caspase-1 (Li et al., 2021). This inflammasome complex detects various 
endogenous and exogenous danger signals and responds by promoting 
IL-1β and IL-18 maturation (Guo et al., 2015). The canonical mechanism 
of NLRP3 inflammasome formation consists of two steps: priming and 
activation. First, stress conditions induce the release of 
damage-associated molecular patterns (DAMPs), detected by 
membrane-associated pattern recognition receptors (PRRs) like Toll-like 
receptors (TLRs)(Newton and Dixit, 2012). This initial step is controlled 
by innate immune signaling, primarily mediated by toll-like receptor 
(TLR)-adaptor molecules myeloid differentiation primary response 88 
(MyD88) and/or cytokine receptors, such as the tumor necrosis factor 
receptor (TNF-R). These receptors activate pro-IL-1β, pro-IL-18, and 
NLRP3 inflammasome-related transcriptions (NLRP3, ASC, 
pro-Caspase-1) through nuclear factor-κB (NF-κB) activation 
(Bauernfeind et al., 2009; Pellegrini et al., 2017). Aside from the NF-kB 
pathway, various other signals and potential binding sites (such as 
c-Myb, Ahr, ETS family, and Sp-1) have been reported to play a role in 
regulating NLRP3 (Anderson et al., 2008). Furthermore, NLRP3 
expression may also be regulated through post-transcriptional mecha-
nisms. Various micro-RNAs (miR) have been identified as inhibitors of 
NLRP3 mRNA (Tezcan et al., 2019; Zamani et al., 2020), while HIF-2a 
triggers NLRP3 activation by producing Long non-coding (Lnc) RNA 
(Zhang et al., 2019). However, the roles of miR and Lnc RNAs are not yet 
fully understood. Proteins associated with the NLRP3 inflammasome are 
still inactive in the cellular cytoplasm after translation. This phase is 
considered the priming process.

The second signal that enables the formation of the NLRP3 complex 
is required for the activation step. The NLRP3 cytosolic receptor detects 
cytosolic damage through the P2X7 receptor. Extracellular ATP mole-
cules bind directly to the P2X7 receptor and promote K+ efflux from the 
cytosol (Perregaux and Gabel, 1994; Surprenant et al., 1996). NLRP3 
receptors sense this K+ efflux, which leads to oligomerization and acti-
vation of the NLRP3 inflammasome. Although K+ efflux is a crucial 
mechanism in the ATP-induced activation of the NLRP3 inflammasome, 
P2X7R activation leads to an open conformation, causing also Na+ and 
Ca+2 influx (Habermacher et al., 2016; Kaufmann et al., 2017). This 
triggers the formation of the intracellular NLRP3 inflammasome and 
subsequent caspase-1 activation. Effector caspase-1 cleaves inactive 
pro-IL-1β and pro-IL-18 into their active forms. These pro-inflammatory 
cytokines are then secreted from the cell, producing their inflammatory 
effects in other cells and tissues (Swanson et al., 2019). Although the 
consequences of canonical and non-canonical activation of the inflam-
masome are similar, a non-canonical NLRP3 activation has also been 
characterized (Accogli et al., 2023; Pellegrini et al., 2017). Caspase-11 
(in mice) and Caspases-4 and 5 (in humans) are proteins capable of 
recognizing intra-cytosolic LPS and bacterial mRNA and triggering the 
activation of NLRP3 inflammasome (Accogli et al., 2023; Kayagaki et al., 
2011). Caspase-11 promotes pyroptosis by cleaving Gasdermin D 
(GSDMD), leading to pore formation, ion efflux, NLRP3 activation, and 
ultimately cell death by pyroptosis (Kayagaki et al., 2015; Shi et al., 
2015). To further understand how caspase-1 and -11 interact to promote 
both canonical and non-canonical NLRP3 inflammasome activation, 
additional experiments should be carried out to clarify the molecular 
mechanisms involved (Viganò and Mortellaro, 2013).

3. P2X7R and depression from the perspective of 
neuroinflammation

The P2X7 receptor is expressed throughout the body, including in 
immune and central nervous system (CNS) cells, primarily microglia, 
astrocytes, and oligodendrocytes (Junger, 2011; Sluyter, 2017; Zhao 
et al., 2021). Although the neuronal expression of P2X7R is controver-
sial, an increasing number of studies support its presence in neurons 
(Kopp et al., 2019). The P2X7 purinergic receptors are ionotropic re-
ceptors with a structure comprising various domains. These domains 
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include the C-terminal cytoplasmic tail, the first transmembrane 
domain, the extracellular domain, the second transmembrane domain, 
and the N-terminal cytoplasmic tail (Junger, 2011; Sluyter, 2017). ATP 
binds to sites situated in the extracellular domain and promotes pore 
opening. Additionally, the C-terminus is the most unique domain in the 
P2X family and determines the biological properties of P2X7R (Kopp 
et al., 2019). The P2X7R receptor, unlike other members of the P2X 
family, requires a higher concentration of extracellular ATP (2–4 mM) 
(Jacobson and Müller, 2016; Khakh and North, 2012). P2X7R’s high 
activation threshold and relatively slow desensitization are crucial in 
chronic inflammatory diseases (Andrejew et al., 2020).

P2X7R is an important link between mood disorders and immune 
dysregulation. Previous studies suggest that P2X7R signaling acts as a 
translator of psychosocial stress in the CNS (Iwata et al., 2013, 2016). 
Psychosocial stress induces the release of the DAMP molecule ATP in the 
prefrontal cortex and hippocampus. ATP-induced P2X7R pathways lead 
to inflammatory cytokine production (IL-1β, IL-18, IL-6, and TNFα) via 
the NLRP3 and NF-kB pathways primarily in microglia and probably to a 
lesser extent in astrocytes (Franklin et al., 2018; Iwata et al., 2013; Iwata 
et al., 2016; von Mücke-Heim and Deussing, 2023). The P2RX7 gene has 
previously been associated with a higher risk for depression and is 
implied as a candidate gene for depression (McQuillin et al., 2009). 
Studies have shown that there may be a relationship between some 
polymorphisms in the P2X7 receptor gene and the development of 
depression (Halmai et al., 2013; Hejjas et al., 2009). In a recent study, 
peripheral blood mRNA expression of a cluster of six inflammatory 
genes (P2X7R, IL-1β, IL-6, TNFα, glucocorticoid receptor, CXCL12) was 
found to identify treatment-resistant patients (Cattaneo et al., 2020). 
The authors described an association between P2X7R, inflammatory 
cytokines, and FKBP5 mRNA levels. Moreover, P2X7R was the best 
discriminator between treatment-resistant and all other depressed pa-
tients in the cohort (Cattaneo et al., 2020). The occurrence of 
antidepressant-like behaviors in mice with genetic deletion of the P2X7 
receptor or administration of some selective/non-selective P2X7 recep-
tor antagonists shows the importance of P2X7 receptors in the devel-
opment and treatment of depression (Boucher et al., 2011; Pereira et al., 
2013).

JNJ-54175446 is a CNS-penetrant high-affinity and selective P2X7R 
antagonist in development for the treatment of unipolar mood disorder. 
Recently, a double-blind, placebo-controlled, randomized study has 
been conducted to assess its safety, pharmacokinetics, and effects in 
patients with DD (Recourt et al., 2023). DD patients tolerated a single 
dose of 600 mg of the drug, followed by once-daily doses of 150 mg of 
the drug. It did not have a significant effect on mood as assessed using 
the self-rated depression scales; however, it decreased ex-vivo IL-1β 
release by lipopolysaccharide (LPS)-stimulated peripheral white blood 
cells in the presence of the P2X7 receptor agonist 3′-O-(4-benzoylben-
zoyl)-ATP (BzATP). Recourt et al. have hypothesized that total sleep 
deprivation (TSD) is a behavioral challenge model that allows for con-
current demonstration of mood modulation and changes in cytokine 
release by JNJ-54175446 following P2X7 stimulation (Recourt et al., 
2023). However, CSD (combined with light therapy) reduced depressive 
symptoms on both self-reported and clinician-rated rating instruments, 
which lasted until the end of the observation period (day 10). This 
improvement duration on mood is longer than previously reported in the 
literature, which may have affected the ability to evaluate its potential 
antidepressant effect when administered post-TSD. Furthermore, when 
the P2X7R is activated under elevated neuronal activity and pathology, 
pharmacological antagonism is only expected to elicit an effect when 
sufficiently high ATP concentrations activate the channels (Bodin and 
Burnstock, 2001). It is challenging to translate its mood-modulating 
effects observed in animal models of depression to a human context. It 
is under phase II clinical trial as a potential antidepressant agent. This 
phase II trial is a multi-center, randomized, double-blinded, placebo--
controlled study and is still carried out across five centers in the United 
Kingdom (https://clinicaltrials.gov/study/NCT04116606).

4. CBD and depression

The isolation and structure of CBD were first described in 1940 
(Adams et al., 1940) and remained largely unexplored for many years. 
Due to worldwide legal restrictions, there are limited studies on the 
therapeutic potential of CBD (Leonard and Aricioglu, 2023). In the early 
1990s, the discovery of the CB1 and CB2 cannabinoid receptors in the 
central nervous system and the identification of endocannabinoids 
renewed interest in researching cannabinoid compounds (Zuardi, 2008). 
This led to increased studies on CBD, driven by exploring its potential 
therapeutic benefits. Research has shown that it has anticonvulsant, 
anxiolytic, analgesic, and neuroprotective properties and also does not 
have the addictive effects associated with THC (Crippa et al., 2018). 
Unlike THC and related phytocannabinoids, CBD has very weak activity 
at CB1 and CB2 receptors (Leonard and Aricioglu, 2023). Although CBD 
has a low affinity for CB1 and CB2 receptors, it can function as an 
allosteric modulator at these receptors. CBD inhibits the enzymatic 
breakdown and uptake of anandamide, thereby raising anandamide 
levels and promoting endocannabinoid signaling through CB1, CB2, and 
the vanilloid receptor 1 (TRPV1) (Silote et al., 2019). CBD affects not 
only the endocannabinoid and endovanilloid systems but also the 
serotonergic system. It can enhance 5-HT1A-mediated neurotransmis-
sion (Russo et al., 2005), and many of CBD’s behavioral effects appear to 
be influenced by 5-HT1A receptors (Campos et al., 2012; Resstel et al., 
2009; Sartim et al., 2016; Zanelati et al., 2010). In addition to the 
serotonergic system, CBD can also regulate many other different trans-
mitter systems. CBD is also a weak antagonist of mu and delta opioid 
receptors and a partial agonist of dopamine 2 receptors (Mlost et al., 
2020). These interactions with many different types of molecular pro-
cesses demonstrate its complex pharmacology.

Preclinical studies have shown that CBD may be useful in treating a 
variety of psychiatric disorders, such as schizophrenia, post-traumatic 
stress disorder, substance abuse, obsessive-compulsive disorder, anxi-
ety, and depression (Campos et al., 2017). Potential mechanisms for the 
antidepressant effects of CBD have been suggested, including 5-HT1A 
receptor agonism, neuroplasticity (mTOR, BDNF, and synaptogenesis), 
and epigenetic mechanisms (Campos et al., 2017; Silote et al., 2019). 
The initial experimental evidence regarding CBD’s antidepressant-like 
effects in rats indicated that the impact of CBD was inhibited when 
WAY100635, a 5HT1A antagonist, was used as a pre-treatment in this 
study (Resstel et al., 2009). Zanelati et al. investigated the antidepres-
sant effects of CBD and also whether these responses depended on the 
activation of 5-HT1A receptors and on hippocampal expression of 
brain-derived neurotrophic factor (BDNF). Systemic CBD treatment 
reduced immobility time in the forced swimming test in mice, and 
WAY100635 pretreatment blocked CBD-induced effects. However, CBD 
treatment failed to change hippocampal BDNF levels (Zanelati et al., 
2010). A single CBD injection induced a rapid antidepressant-like effect 
in the olfactory bulbectomy mouse model, this acute effect was associ-
ated with increased extracellular 5-HT and glutamate levels in the 
ventromedial prefrontal cortex (vmPFC). Moreover, the 5HT1A-receptor 
antagonist WAY100635 prevented the behavioral and neurochemical 
effects of CBD (Linge et al., 2016). CBD’s acute antidepressant effects 
were associated with increased expression of synaptophysin and PSD95 
in the medial prefrontal cortex (mPFC) and elevated BDNF levels in both 
mPFC and hippocampus (Sales et al., 2019). The behavioral effects of 
CBD were eliminated when the TrkB antagonist or the mTOR inhibitor 
rapamycin was injected into the intracerebroventricular area. Its 
antidepressant-like effects may be related to rapid changes in synaptic 
plasticity in the mPFC through activation of the BDNF-TrkB signaling 
pathway. Regarding the effects of CBD’s hippocampal neurogenesis, a 
CBD-rich diet led to increased neural progenitor cell proliferation in the 
hippocampus of mice over six weeks. This effect seemed to depend on 
CB1 receptors, as it was absent in animals lacking these receptors (Wolf 
et al., 2010). Campos et al. showed that CBD reversed the anxiogenic 
effect and decreased neurogenesis in wild-type mice exposed to chronic 
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unpredictable stress (CUS) (Campos et al., 2013). However, the 
anti-stress properties of CBD were not seen in transgenic GFAP/thymi-
dine kinase mice, in which neurogenesis was suppressed. The effects of 
CBD were attenuated by the administration of pharmacological antag-
onists targeting CB1 and CB2 receptors (Campos et al., 2013). These 
findings suggest that CBD’s capacity to alleviate stress is contingent 
upon its facilitation of hippocampal neurogenesis. However, the 
involvement of neurogenesis in the behavioral effects of CBD appears to 
depend on the duration of treatment and the behavioral paradigm uti-
lized. For instance, Schiavon et al. (2016) confirmed that acute (single 
injection, 3 and 30 mg kg− 1) and chronic (15d, 3, 30 mg kg− 1) treatment 
with CBD causes an antidepressant-like effect; however, the chronic 
treatment resulted in different findings that neurogenesis increased at 3 
mg kg− 1, but decreased at 30 mg kg− 1 dose (Schiavon et al., 2016). CBD 
can also affect epigenetic mechanisms by regulating DNA methylation in 
brain regions relevant to depression neurobiology (Domingos et al., 
2022). Sales et al. found that stress decreases DNA methylation and DNA 
methyltransferase (DNMT) activity in the hippocampus while increasing 
it in the prefrontal cortex. However, treatment with CBD and a DNMT 
inhibitor prevented these alterations in both brain regions (Sales et al., 
2020). In a current study, the effects of early stress on mitochondrial 
damage and oxidative stress in female mice were examined in the 
maternal separation (MS) mouse model (Martín-Sánchez et al., 2022). It 
was determined that female mice in the MS-exposed and CBD-applied 
group had significantly less immobility time in the tail suspension test 
than the MS group that did not receive CBD. Although the antidepres-
sant effect of CBD has been determined behaviorally, it has not been 
shown to reverse mitochondrial metabolic changes (Martín-Sánchez 
et al., 2022). The antidepressant effect of CBD was examined in a chronic 
stress depression model in rats, and it was found that there was a he-
donic effect with increased sucrose preference after three weeks of 
treatment (Gáll et al., 2020). All these results show that CBD has an 
antidepressant effect, but its mechanism of action is still unclear.

5. The role of CBD in NLRP3 inflammasome pathway

Published studies have reported that CBD provides an improvement 
in various inflammatory-related diseases, including neurodegenerative 
diseases, through modulation of important pro-inflammatory cytokines, 
including TNF-α, IL-1β, IL-6, and a transcription factor, NF-kB (Chu 
et al., 2024; Dos-Santos-Pereira et al., 2020; Huang et al., 2019; Liu 
et al., 2020). In the LPS model of depression, CBD reduced immobility 
time in the tail suspension test and increased sucrose preference 
(Florensa-Zanuy et al., 2021). CBD reduced cortical NF-kB activation 
and IL-6 levels in both plasma and brain in mice. Additionally, CBD 
decreased the kynurenine/tryptophan and kynurenine/serotonin ratios 
in the hippocampus and cortex in the LPS model with mice 
(Florensa-Zanuy et al., 2021). The recently published data further sup-
port the notion that CBD possesses anti-inflammatory properties, which 
are closely linked to its ability to regulate the activation of inflamma-
somes (Huang et al., 2019; Libro et al., 2016). For example, CBD has 
been reported to exert hepatoprotective effects against nonalcoholic 
steatohepatitis in a mouse model and has shown that the antihepatitis 
effect of CBD is associated with the NLRP3 inflammasome pathway 
(Huang et al., 2019). A recent in vitro study showed that CBD inhibited 
NLRP3 inflammasome activation following LPS + ATP stimulation, 
resulting in reduced IL-1β levels in THP-1 macrophages and primary 
human bronchial epithelial cells (Suryavanshi et al., 2022). Moreover, 
CBD treatment reduced pain, inflammation, and the levels of NLRP3, 
ASC, caspase-1, IL-1β/18, and TNF-α in mice with oral ulcers (Qi et al., 
2022). An in vitro study with a SARS-CoV-2 recombinant human novel 
coronavirus spike glycoprotein model suggested that CBD decreased the 
protein levels of NLRP3 inflammasome components (Corpetti et al., 
2021). A recent study has shown that the effects of CBD on the inflam-
masome complex in human THP-1 monocytes and CBD inhibited K+

output and reduced inflammasome formation by directly binding to 

P2X7 receptors (Liu et al., 2020). The authors stated that further ex-
amination of CBD’s effects on P2X7 receptors is needed to elucidate the 
mechanisms of CBD’s anti-inflammasome activity (Liu et al., 2020). A 
recent study has compared the anti-inflammatory effects of CBD and Δ 
(9)-tetrahydrocannabinol in human microglial cells infected with HIV 
(Yndart Arias et al., 2023). CBD reduced the production of various in-
flammatory cytokines and chemokines such as MIF, SERPIN E1, IL-6, 
IL-8, GM-CSF, MCP-1, CXCL1, CXCL10, and IL-1 β compared to 
Δ(9)-THC. Additionally, CBD deactivated caspase 1 and reduced NLRP3 
gene expression, which plays a crucial role in the inflammasome 
cascade. Rodrigues et al. have recently investigated the effects of CBD 
treatment on pro-inflammatory markers in lipopolysaccharide 
(LPS)-challenged BV2 microglia (Rodrigues et al., 2024). They found 
that CBD inhibited the LPS-induced pro-inflammatory responses by 
suppressing iNOS and NLRP3/Caspase-1-dependent signaling cascades, 
reducing nitric oxide, IL-1β, and TNF-α concentrations (Rodrigues et al., 
2024). Although there is recent evidence regarding CBD’s 
anti-inflammasome activity in human microglial cells, no study has 
investigated CBD’s effects on P2X7 receptors in the NLRP3 inflamma-
some cascade in microglial cells. Furthermore, there is currently no 
molecular-level evidence regarding the interaction between CBD and 
the NLRP3 pathway in animal stress models. It is important to investi-
gate the effects of CBD treatment on P2X7 receptors in microglial cells 
and other CNS cells, such as astrocytes and neuronal cells, through in 
vivo experiments.

6. Conclusion

Neuroinflammation plays a crucial role in the pathophysiology of 
many CNS disorders, including depressive disorders. The NLRP3 
inflammasome is a critical participant in neuroinflammation and is 
responsible for releasing pro-inflammatory cytokines and triggering the 
inflammatory response. Based on the evidence mentioned in this review, 
the relationship between depression and neuroinflammation is 
apparent. In addition, current antidepressants are both inadequate in 
reducing depressive symptoms and have a slow onset of action. Thus, 
new treatment strategies involving inflammasome pathways are an area 
of interest. Considering the antidepressant effects of CBD and its effects 
on NLRP3 inflammasome pathways, it may be a potential antidepressant 
agent. In vitro studies in microglial cell lines have recently experimen-
tally examined the effects of CBD anti-inflammasome; however, it is still 
unclear how these effects are caused. Also, in vivo experiments are 
needed to show CBD treatment and its neuropsychiatric effects at both 
molecular and behavioral levels. CBD’s broad therapeutic effects in 
neuropsychiatric disorders may be explained by its general anti-stress 
response due to ATP-mediated P2X7R. Considering that P2X7R plays 
an important role in mood disorders and the NLRP3 inflammasome 
pathway, CBD’s anti-inflammasome effects in depression may related to 
P2X7R. It’s crucial to study the effects of CBD treatment on P2X7 re-
ceptors in CNS cells like microglial, astrocytes, and neuronal cells 
through in vivo experiments. In conclusion, we highlight the capacity of 
CBD to suppress inflammation by modulating the NLRP3 inflammasome 
pathway, suggesting that CBD may have a potential therapeutic role in 
depressive disorders.
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NLRP3. Accogli, Théo 53, 137–151. https://doi.org/10.1016/j.jare.2023.01.001.

Adams, R., Hunt, M., Clark, J., 1940. Structure of cannabidiol, a product isolated from 
the marihuana extract of Minnesota wild hemp. I. J. Am. Chem. Soc. 62 (1), 
196–200.
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Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A 
receptors. Br. J. Pharmacol. 159 (1), 122–128. https://doi.org/10.1111/j.1476- 
5381.2009.00521.x.

Zhang, P., Cao, L., Zhou, R., Yang, X., Wu, M., 2019. The lncRNA Neat1 promotes 
activation of inflammasomes in macrophages. Wardle, Susan G 10 (1), 1495.

Zhao, Y.F., Tang, Y., Illes, P., 2021. Astrocytic and oligodendrocytic P2X7 receptors 
determine neuronal functions in the CNS. Front. Mol. Neurosci. 14, 641570 https:// 
doi.org/10.3389/fnmol.2021.641570.

Zuardi, A.W., 2008. Cannabidiol: from an inactive cannabinoid to a drug with wide 
spectrum of action. Mattos, Paulo 30, 271–280.

E. Akcay and H. Karatas                                                                                                                                                                                                                      Brain, Behavior, & Immunity - Health 41 (2024) 100853 

7 

https://doi.org/10.1038/s41577-019-0165-0
https://doi.org/10.3389/fphar.2019.00451
https://doi.org/10.3389/fphar.2019.00451
https://doi.org/10.1002/eji.201343800
https://doi.org/10.1002/eji.201343800
https://doi.org/10.1016/j.neuropharm.2022.109366
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref101
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref101
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref101
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref101
https://doi.org/10.1038/s41598-023-32927-4
https://doi.org/10.1016/j.pbiomolbio.2019.05.004
https://doi.org/10.1111/j.1476-5381.2009.00521.x
https://doi.org/10.1111/j.1476-5381.2009.00521.x
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref105
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref105
https://doi.org/10.3389/fnmol.2021.641570
https://doi.org/10.3389/fnmol.2021.641570
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref107
http://refhub.elsevier.com/S2666-3546(24)00131-5/sref107

	P2X7 receptors from the perspective of NLRP3 inflammasome pathway in depression: Potential role of cannabidiol
	1 Introduction
	2 NLRP3 inflammasome pathway
	3 P2X7R and depression from the perspective of neuroinflammation
	4 CBD and depression
	5 The role of CBD in NLRP3 inflammasome pathway
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing interest
	Data availability
	References


