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The mRNA vaccines from Pfizer/BioNTech and Moderna were granted emergency
approval in record time in the history of vaccinology and played an instrumental role in
limiting the pandemic caused by SARS-CoV-2. The success of these vaccines resulted
from over 3 decades of research frommany scientists. However, the development of orally
administrable mRNA vaccine development is surprisingly underexplored. Our group
specializing in Salmonella-based vaccines explored the possibility of oral mRNA vaccine
development. Oral delivery wasmade possible by the exploitation of the Semliki Forest viral
replicon and Salmonella vehicle for transgene amplification and gene delivery, respectively.
Herein we highlight the prospect of developing oral replicon-based mRNA vaccines
against infectious diseases based on our recent primary studies on SARS-CoV-2.
Further, we discuss the potential advantages and limitations of bacterial gene delivery.
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INTRODUCTION

Edward Jenner’s innovative contribution played a pivotal role in the ultimate eradication of
smallpox and served as the harbinger of vaccination. This was followed by the works of Louis
Pasteur, who spearheaded the development of live-attenuated cholera vaccine and inactivated
anthrax vaccine in humans in 1897 and 1904, respectively. The field of vaccine research soon
became popular, and vaccines were developed against a plethora of infectious diseases of medical
and veterinary importance. First-generation traditional vaccines based on the use of live, live-
attenuated, and inactivated organisms were instrumental in the control of measles, polio, rubella,
mumps, classical swine fever, and many other diseases, and responsible for the eradication of
smallpox in humans and rinderpest in cattle. Although live and live-attenuated vaccines are
effective, they may pose significant health risks to vaccinated individuals, including the development
of disease, transmission to healthy individuals, and reversion to a virulent form and particularly in
individuals with compromised immune system (1–5). All this changed with the advent of molecular
biology and recombinant DNA technology, which paved the way for the development of safer
vaccines. However, DNA vaccines did not achieve their expected clinical success owing to limited or
poor immunogenicity (6, 7). Technological refinements were made to improve DNA vaccine
efficacy (8–15), but the risk of mutagenesis induced by exogenous DNA integration has limited their
use in humans (16–19). This has led to a renewed interest in the use of RNA in vaccines
and therapeutics.
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Synthetic RNA vaccines fall into two main categories: non-
replicating and self-amplifying mRNA vaccines. The non-
replicating mRNA vaccine is a straightforward approach
wherein administered mRNA is directly translated in the
cytoplasm of transfected cells to produce immunogenic
proteins. The extent of non-replicating mRNA vaccine-induced
antigen expression is proportional to the number of transfected
cells and thus, requires the injection of a large dose of mRNA.
This can be overcome by the use of self-amplifying RNA
replicons from alphaviruses, such as Sindbis virus (20), Semliki
Forest virus (SFV) (21), and Venezuelan equine encephalitis
virus (VEE) (22). Different vector systems, namely replication-
competent viral particles, replication-deficient viral particles, and
DNA-launched-mRNA vector approaches, have been exploited
for transgene expression (reviewed in 23, 24). DNA-launched-
mRNA vectors were engineered by deleting the structural genes
from the genome and replacing them with the target genes (21,
25). The resulting vector backbone with non-structural proteins
(nsp1–4) forms a replicase complex that drives efficient
transgene expression by a self-amplifying mechanism (21, 24).
The mRNA vaccines developed to combat SARS-CoV-2
constitute the first success story in the long history of mRNA
vaccine development. Nonetheless, oral delivery of an mRNA
vaccine has surprisingly not been exploited. In this article, we
highlight a strategy for the development of oral replicon-based
Frontiers in Immunology | www.frontiersin.org 2
mRNA vaccines by taking cues from our recent publications and
discussing the advantages of Salmonella-mediated oral
gene delivery.
mRNA VACCINES: A BRIEF HISTORICAL
BACKGROUND

The vaccines developed against SARS-CoV-2 by Pfizer/
BioNTech and Moderna constitute the first success stories in
mRNA vaccine history. Although the delivery of mRNA
wrapped in cationic liposomes was shown to produce proteins
in human cells in 1989 (26), the potential of mRNA as a vaccine
has yet to be exploited. During these past 3 decades, many
scientists studied mRNA, and collective scientific advances
enabled the production of the first successful mRNA vaccine in
record time (Figure 1A). Some of the most important inventions
to the adaptation of mRNA vaccination were the chemical
modification of mRNA and lipid nanoparticles for delivery.
Without lipid nanoparticle encapsulation, administered mRNA
would be detected by the immune system and probably degraded
by RNases. Of note, mRNA was shown to elicit TLR3-mediated
immune activation of dendritic cells (DCs) (30), and bacterial
RNA can prime DCs for higher IL-12 secretion (31). Replacing
A

B

FIGURE 1 | History and design of mRNA vaccines. (A) Timeline depicting some of the key milestones that contributed to the first successful mRNA vaccines
developed against COVID-19. The timeline was adapted from Sahin et al., 2014 (ref. 27) Hou et al., 2021 (28); and Dolgin, 2021 (29). (B) The DNA-launched-mRNA
vaccine design for bacterial delivery. pSFV3-lacZ, an SFV replicon-based vector, was used after making several modifications. 1- The ampicillin resistance marker
was replaced with asd, an auxotrophic marker to enable antibiotic-free maintenance and delivery of the vector. 2- The SP6 promoter was replaced with the
cytomegalovirus (CMV) promoter. 3- The SV40 promoter was placed just before the SFV sub-genomic core promoter to enable direct nuclear transcription of the
vaccine constructs. 4- lacZ was replaced with multiple cloning site (MCS) sequences. nsp 1-4 from SFV constitute the replicon, which drives efficient transgene
expression through RdRp. pA, polyadenylation signal; Ori, pBR origin of replication; RdRp, RNA dependent RNA polymerase; nsp, non-structural protein; SFV,
Semliki Forest virus.
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uridine with pseudouridine, the chemical modification that
diminished immune recognition of administered mRNA, paved
the way for mRNA treatments (32). The encapsulation of mRNA
by lipid nanoparticles (LNPs) provided an effective and safe
delivery platform (reviewed in 33). The discovery of increased
protein expression and potent antibody responses to the SARS-
CoV-2 spike protein in its stabilized prefusion conformation (34)
is vital to the efficacy of mRNA vaccines. The developments and
progress in mRNA vaccines against infectious diseases have been
reviewed elsewhere (35, 36).
mRNA DELIVERY TECHNOLOGIES:
PROGRESS AND LIMITATIONS

The poor uptake of mRNA by cells is associated with the rapid
degradation of naked mRNA by extracellular RNAses (37–41).
Developments of efficient mRNA delivery platforms have been
fruitful in the last decade. From advancements in transfection
reagents and liposomes to nanoparticles and nanoemulsions, in
vivo antigen presentation and the immune response to mRNA-
based vaccines have recently improved (42–51). The
aforementioned mRNA complexing strategies have been shown
to affect mRNA stability during storage (52). Thus, a continuous
supply of raw materials is crucial for the uninterrupted
production of mRNA vaccines. Such requirements can prove
challenging at times when the demand is high (52–57).
Additionally, substituting rare codons with frequently used
synonymous codons and introducing modified nucleosides
have been shown to enhance mRNA translation and stability
in the context of vaccination (reviewed in 38). A major
disadvantage associated with base modifications is that they
may result in altered mRNA secondary structure, which may
influence translation and protein folding. These alterations may,
in turn, prove detrimental to efficacy (58–60). One of the major
drawbacks with in vitro transcribed RNA is the presence of
dsRNAs that trigger the innate immune response and reduces
the vaccine efficacy. Advancement such as cellulose-based
purification was shown to remove the dsRNA byproducts
leading to the lower type I interferon response and improving
the efficacy of a self-amplifying mRNA vaccine against Zika virus
(61). Continuous efforts have been made to minimize the
drawbacks associated with mRNA vaccines, enabling an array
of these vaccines to enter phase IIb clinical trials (38, 62–67).
Most of the current mRNA vaccines against infectious disease
are administered using the conventional delivery routes, namely
intramuscular, subcutaneous, intradermal, or intranodal routes.
Most of these routes of administration require injection and
specific conditions for storage and transport. Furthermore, the
concerns associated with the stability of these vaccines and
the addition of adjuvants to enhance immunogenicity increase
the cost of production and pose toxicity threats (68, 69).
Despite the success of mRNA vaccines in controlling infectious
diseases, the limitations associated with their production and
administration demonstrate the need to develop better and safer
routes of administration for mRNA vaccines (70, 71).
Frontiers in Immunology | www.frontiersin.org 3
IS IT POSSIBLE TO ORALLY DELIVER
mRNA VACCINES?

Despite three decades of history supporting mRNA vaccine
development and the successful rollout of mRNA vaccines during
the COVID-19 pandemic, the possibility of oral delivery has
surprisingly been underexplored (71). This could be attributed to
the highlyunstable nature ofmRNAand the gut posing a significant
barrier for mRNA delivery. However, some of the oral antigen
delivery strategies such as yeast ghosts, microencapsulated antigens
and microbial adhesions have been developed to overcome the
harsh conditions in the gut (reviewed in 72). But they suffer from
major limitation of poor intestinal epithelial barrier crossing and
have not been explored to deliver mRNA (72). Further, lipid-based
approaches such as liposomes, bilosomes and immunestimulating
complexes (ISCOMs) also provide with a potential delivery vehicle
for oral biologic delivery (reviewed in 71). The oral delivery of
mRNA vaccines is possible due to the exploitation of an alphaviral
replicon and Salmonella bactofection for mRNA amplification and
gene delivery, respectively. Our group specialized in the
development of Salmonella-based vaccines against diseases of
veterinary and medical importance (73–79), exploited this
platform for the development of an oral mRNA vaccine. Further,
we exploited the Semliki Forest virus replicon for mRNA
amplification (23, 24). We made several modifications to the
original vector backbone (pSFV3) to enable transcription in host
cells and plasmid maintenance in bacteria (Figure 1B) (25). The
SP6 promoter was replaced with the Cytomegalovirus (CMV)
promoter to enable transcription by mammalian RNA
polymerase. The replacement of the ampicillin selection marker
with the aspartate-semialdehyde dehydrogenase (asd) auxotrophic
marker allows for antibiotic-free plasmidmaintenance anddelivery
(80). The Salmonella strains used for gene delivery carry a deletion
in the asd gene, creating balanced-lethal host-vector systems.
Diaminopimelic acid (DAP), the product of asd, is a vital
component of the bacterial cell wall, and asd mutants will not
survive unless DAP is supplemented in growth media or the asd
gene is complemented from a plasmid vector. Thus, asd serves as a
powerful antibiotic-independent selection maker for bacterial
delivery. This DNA-launched-mRNA vector design was exploited
for the Salmonella-enabled oral delivery of a replicon-basedmRNA
vaccine against SARS-CoV-2 (25, 81, 82). The detailed mechanism
of vector delivery, transgene amplification, and the generation of an
immune response upon oral administration of Salmonella carrying
the SFV replicon vector encoding vaccine immunogens is furnished
in Figure 2. The findings demonstrate the possibility and potential
of bacteria-mediated gene delivery for the development of oral
replicon-based mRNA vaccines against infectious diseases.
ADVANTAGES AND LIMITATIONS OF
Salmonella-MEDIATED ORAL
GENE DELIVERY

The delivery of vaccines through the oral route can elicit a
potent mucosal response considering the extensive presence of
May 2022 | Volume 13 | Article 884862
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gut-associated lymphoid tissues (GALT). The bacterial species,
Salmonella has the ability to interact with immune cells in
Payer’s patch, leading to efficient induction of the mucosal
response (83, 84). Mucosal vaccines play a pivotal role in
limiting infections caused by digestive and respiratory
pathogens. Moreover, gut bacteria can influence SIgA
Frontiers in Immunology | www.frontiersin.org 4
production in the lungs through CD103+ DCs (85). In
agreement, we and others have documented the elicitation of
mucosal response in respiratory sites by oral Salmonella-based
vaccine administration (82, 86). Further, Salmonella can
translocate through M cells in the intestine and reach organs
such as the liver and spleen, eliciting a systemic response as well
FIGURE 2 | Mechanism of gene delivery, transgene expression, and induction of immune response. Upon oral administration, Salmonella Typhimurium is translocated from
the luminal surface to submucosa by specialized M cells in the gut epithelium. Bacteria then invade antigen-presenting cells (APCs), such as macrophages and dendritic cells
(DCs), and spread to different organs like the liver and spleen through lymphatics and the bloodstream. The vector encoding the Semliki Forest virus (SFV) replicon (nsp1-4)
and SARS-CoV-2 immunogens is released within the host cell cytoplasm through bacterial lysis. Transcription of the delivered plasmid takes place in the cell nucleus, and,
following in situ translation, the nsp1-4 proteins form an RNA-dependent RNA polymerase (RdRp) complex. The RdRp complex then recognizes the sub-genomic promoter
and flanking conserved sequence elements (CSE), leading to enhanced mRNA amplification of vaccine genes. The resulting mRNAs translated to produce immunogenic
proteins. The APCs process and present antigens to CD8+ and CD4+ T cells via MHC I and MHC II, respectively, leading to the elicitation of the T cell response. DCs can
present antigens directly to B cells or follicular DCs (FDCs). FDC stores antigens for a longer time, periodically displaying them to cognate B cells. B cells then differentiate to
specific antibody-secreting plasma cells and memory B cells. MHC, major histocompatibility complex; nsp, non-structural protein; CD, cluster of differentiation; CTL, cytotoxic T
cell; Th, T helper cell; CSE- Conserved sequence elements. This figure was created with the help of the Biorender online tool (https://app.biorender.com/). The figure and
description are reproduced with permission from Jawalagatti et al., 2022 (reference 82). ©The American Society of Gene and Cell Therapy.
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(87–89). One of the most important advantages of Salmonella is
its innate ability to invade and proliferate in professional
antigen-presenting cells (APCs), such as dendritic cells (DCs)
(90) and macrophages (91), during which it directly delivers the
DNA cargo to these cells. As antigens must be formed within
the APC or cross-presented to an APC to elicit a cellular
response (92), gene delivery and antigen expression within
APCs result in robust cellular immunity along with the
induction of a potent humoral response. Moreover, vaccine
production can be easily scaled up, and a high number of doses
can be prepared rapidly at an inexpensive rate. Importantly,
bacteria-mediated vaccine delivery does not require additional
adjuvants or delivery systems, which further cuts down the cost
of manufacturing and limits the frequency of vaccine-
associated adverse events (68, 69). Most important of all, the
availability of licensed oral Salmonella Typhi vaccines provides
the possibility of direct translation to humans. Further, the
availability of a licensed live-attenuated Vibrio cholerae vaccine
(Vaxchora; https://www.fda.gov/media/98688/download)
provides with additional bacterial vector to develop vaccines
against diseases of medical importance. The fact that
Salmonella can be lyophilized permits a thermostable way to
dispatch the vaccines and represents progress towards needle-
free mass oral immunizations. Collectively, the data suggest the
highly prospective nature of exploiting bacteria to develop oral
mRNA vaccines with the ability to elicit potent systemic and
mucosal immune responses. The intranasal delivery could also
be exploited to develop potent mucosal mRNA vaccines.
However, as the vaccine uses live-attenuated bacterium poses
a significant safety and regulatory hurdle. The intranasal route
is more suitable and safer for delivery of mRNA through
polymeric delivery systems. The advantage of oral vaccine
over an intranasal vaccine would be superior patient
compliance and easy mass administration. Therefore,
bacteria-mediated delivery of mRNA vaccines for mucosal
vaccine development would be feasible when administered
orally rather than intranasally.

One of the major limitations of live-attenuated bacteria is
safety. However, the availability of tested and proven licensed
vaccines provides safer delivery options. Furthermore, well-
established tools to modify the bacterial genome provide an
opportunity to create safer mutants (93). Another major
limitation of using live-attenuated organisms for gene delivery
is a hindrance from pre-existing immunity that can seriously
affect vaccine efficacy (94, 95). Both SIgA and IgG could
contribute to the pre-existing immunity against Salmonella.
Nevertheless, this limitation could be overcome by deleting the
O-antigen ligase (rfaL) or any other gene(s) from the bacterial
genome that mask the bacteria from detection by the immune
system (77). However, several studies have shown the positive
influence of pre-existing immunity and recorded stronger
immune responses against the delivered antigen by Salmonella
vectors (reviewed in 96). Thus, the effect of pre-existing
immunity on heterologous antigen delivery is likely negligible
or less variable. Of note, the effect of pre-existing immunity on
viral vectors is more pronounced than on bacterial vectors (96).
Frontiers in Immunology | www.frontiersin.org 5
ORAL REPLICON-BASED mRNA VACCINE
AGAINST SARS-COV-2

Our proof-of-principle studies using SARS-CoV-2 (25, 81, 82)
provide evidence for the development of oral replicon-based
mRNA vaccines against infectious diseases. Salmonella is an ideal
bacterial vector owing to its unique ability to target GALT upon
oral administration, resulting in both systemic and mucosal
immune responses in vaccinated individuals. The possibility of
oral delivery was partly enabled by creating a DNA-launched-
mRNA design of the SFV replicon that essentially drives gene
expression by a self-amplifying mRNA mechanism (25).
Although the research on RNA vaccines and therapeutics
spans over 3 decades, the possibility of oral mRNA vaccine
delivery was yet to be explored. To the best of our knowledge, our
studies are the first to demonstrate oral replicon-based mRNA
vaccine delivery. To this end, we designed a multivalent SFV
replicon-based vaccine targeting receptor-binding domain
(RBD), heptad repeat domain (HR), membrane glycoprotein
(M), and epitopes of nsp13 and employed Salmonella
Typhimurium for gene delivery (25). The administration of the
vaccine was highly safe in mice and hamsters inoculated both
orally and intramuscularly (25, 82). The vaccine elicited potent
Th1-dominated humoral and cellular immune responses in mice
against all the target antigens, suggesting efficient antigen
production and presentation (25, 82). Furthermore, RBD
expressed after Salmonella delivery was confirmed to be
antigenically intact in macrophage-like cells (82). We recorded
the difference in mucosal immune response induction between
oral and intramuscular routes of vaccine administration,
highlighting the feasibility of exploiting oral administration for
mucosal vaccine development (82). Most importantly, the
vaccine protected hamsters against live SARS-CoV-2, and
complete protection was elicited by oral immunization against
viral replication and lung disease (82). Moreover, a robust cross-
protection against the B.1.617.2 delta variant was evidenced
following oral immunization in hamsters (82) and mice (81).
The fact that an intranasal vaccine durably protected against
SARS-CoV-2 variants (97, 98) and dimeric IgA had superior
neutralizing activity (99) underscore the efficacy of the mucosal
response exerted by oral vaccines in protection against rapidly
replicating variants.
CONCLUSIONS AND FUTURE
DIRECTIONS

Our proof-of-principle studies have unraveled a novel method
for the development of oral mRNA vaccines. The availability of
some licensed live-attenuated bacterial vaccines increases the
prospects of adopting such vaccines in the clinic. However, more
studies using relevant bacterial species in suitable preclinical
models are necessary to prove the hypothesis. Moreover, the
possibility of other bacterial species, such as Shigella, could also
be tested to optimize the choice of a bacterial vector.
May 2022 | Volume 13 | Article 884862
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