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Simple Summary: Breast cancer is the second most common diagnosed malignancy in women
worldwide. In this study, we examine the feasibility of breast tumor characterization based on
[18F]FDG-PET/CT images using machine learning (ML) approaches in combination with data-
preprocessing techniques. ML prediction models for breast cancer detection and the identification
of breast cancer receptor status, proliferation rate, and molecular subtypes were established and
evaluated. Furthermore, the importance of most repeatable features was investigated. Results
displayed high performance of malignant/benign tumor differentiation and triple negative tumor
subtype ML models. We observed high repeatability of radiomic features for both high performing
predictive models.

Abstract: Background: This study investigated the performance of ensemble learning holomic models
for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from
[18F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Addition-
ally, machine learning (ML) models were compared with conventional data analysis using standard
uptake value lesion classification. Methods: A cohort of 170 patients with 173 breast cancer tumors
(132 malignant, 38 benign) was examined with [18F]FDG-PET/CT. Breast tumors were segmented
and radiomic features were extracted following the imaging biomarker standardization initiative
(IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five
supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme.
Data pre-processing methods were incorporated prior to machine learning, including outlier and bor-
derline noisy sample detection, feature selection, and class imbalance correction. Feature importance
in each model was assessed by calculating feature occurrence by the R-squared method across MC
folds. Results: Cross validation demonstrated high performance of the cancer detection model (80%
sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative
tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual
receptor status and luminal A/B subtype models yielded low performance (0.46–0.68 AUC). SUVmax

model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype.
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Conclusions: Predictive models based on [18F]FDG-PET/CT images in combination with advanced
data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive
triple negative breast cancer subtype.

Keywords: breast cancer; radiomics; machine learning; PET/CT; data pre-processing; triple negative

1. Introduction

Breast cancer is the most common cancer in females, with over two million cases
per year [1]. Among patients with a suspicious imaging abnormality at screening, image
guided biopsy is used to confirm breast cancer diagnosis [2,3]. In breast cancer treatment
assessment of receptor status (estrogen (ER), progesterone (PR) and Her2-neu receptor
(HER2)) by immunohistochemistry (IHC) from breast biopsy is used for tumor subtype
classification. Breast cancer molecular subtypes as determined by IHC (Luminal A, Luminal
B, Her2 positive and Triple Negative) guide treatment decisions [4]. Nonetheless, breast
cancer subtyping from biopsy sampling has limitations as it is subject to sampling bias and
cannot fully capture intra-tumor heterogeneity [5–7]. In addition, there is its inherently
invasive nature.

18F-fluorodeoxyglucose positron emission tomography/computed tomography
([18F]FDG-PET/CT) is a sensitive hybrid imaging method for detecting distant metastases
and lymph node metastases in breast cancer patients [8] and for assessing treatment re-
sponse [9,10]. Recently, dedicated PET/CT breast imaging protocols have shown potential
for the classification and initial staging of primary tumors [11–13]. Despite first promising
results for the non-invasive characterization of breast tumors, conventional PET/CT image
analysis, including the standardized uptake value (SUV), tumor-to-background ratio (TBR),
and metabolic tumor volume, remains of limited use for the differentiation of benign and
malignant breast tumors and for molecular subtyping of breast cancers [14]. Therefore,
several studies have performed radiomic analysis to further the value of [18F]FDG-PET/CT
in this context [15–17].

Radiomic analysis combined with machine learning (ML) has shown promise for char-
acterizing tumor heterogeneity [18,19], assessing therapy response [20–22], and improving
prognostic stratification of cancer patients [23,24]. However, the lack of repeatability for
radiomic models has been noted as a major bottleneck for a clinical adoption [25,26]. The
Imaging Biomarker Standardization Initiative (IBSI) [27] as well as optimized radiomics [15]
and ComBat feature normalization [28] have been proposed as methodological consider-
ations to support building quantitative radiomic models that can be translated reliably
into the clinics. Radiomics combined with ML is prone to challenges originating from
the characteristics of the input data itself, such as low sample count [29], imbalanced
disease subgroups [30,31], high-dimensionality of data [32,33], and outliers [34,35]. To
address these limitations, data preparation steps are necessary [36,37], yet data prepa-
ration approaches remain underrepresented in the field of hybrid imaging radiomics.
Considering that breast cancer molecular subtypes are naturally imbalanced, with one
subgroup of a given subtype, such as more aggressive triple negative (TN) or HER2
positive, being significantly underrepresented than hormone receptor subtypes (ER/PR
positive) [20–22], we hypothesize that breast cancer in vivo prediction models benefit from
data preparation approaches.

Therefore, the objectives of this study are: (a) to establish prediction models for breast
cancer detection and the identification of breast cancer receptor status, proliferation rate,
and molecular subtypes from [18F]FDG-PET/CT images with ML, (b) to investigate the
effect of data pre-processing on breast tumor characterization ML models, and (c), to
compare ML-based prediction models with conventional SUV-based approaches.
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2. Materials and Methods
2.1. Patients

One hundred and seventy patients (median age, 57.6 years; range, 18–86 years) were
examined with [18F]FDG-PET/CT imaging between 2009 and 2014 as part of a prospective
study, which has been previously reported [11,13,38] and approved by the institutional
review board of the Medical University of Vienna (EK 510-2009). Written informed consent
was obtained from all patients prior to the imaging examinations. The inclusion criteria
were as follows: age 18 years or older; and an abnormality at mammography or breast
ultrasound (asymmetric density, architectural distortion, suspicious microcalcifications, or
breast mass classified as Breast Imaging Reporting and Data System (BI-RADS category 0
or 4–5). Exclusion criteria included pregnancy, lactation, prior treatment (e.g., breast biopsy
before PET/CT, neoadjuvant chemotherapy), or inadequate patient positioning resulting
in considerably compressed or deformed imaging. For all patients, the following clinical
information was recorded: height, weight, body mass index (BMI), and age. See Figure 1
for the study design of our analysis.
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2009 and 2014, approved by the institutional review board provided data records for 170 patients.
[18F]FDG-PET/CT of the breast was performed with a dedicated breast imaging protocol using a
combined whole-body PET/CT system. 173 lesions were delineated and extracted following the
imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature
extraction principles. Feature redundancy reduction was performed resulting in 77 features. Monte
Carlo cross validation was utilized to generate 100 training vs. validation folds. Pre-processing
steps were performed over training data. Ensemble learning scheme was utilized to establish
predictive models. All machine learning models underwent confusion matrix analytics, sham data
analysis, and Area Under the Receiver Operator Characteristics Curve (AUC) analysis across MC
folds and the conventional PET SUV analysis. VOI = Volume of Interest; BMI = Body Mass Index;
ER = Estrogen; PR = Progesterone; HER2 = Human Epidermal Growth Receptor 2; PET–Positron
Emission Tomography; CT–Computed Tomography.

2.2. Histopathologic Analysis

Diagnosis was established by an experienced specialized breast pathologist (ZBH).
All lesions were verified by image-guided needle biopsy or surgery. For all invasive breast
cancers, histopathology results were reviewed for tumor subtype according to the World
Health Organization (WHO) classification [39], and tumor stage and grade according to
Elston and Ellis [40]. Breast cancer intrinsic subtype was determined by immunohisto-
chemistry based on estrogen receptor (ER), progesterone receptor (PR), human epidermal
growth receptor 2 (HER2) status, and Ki-67 expression according to current guidelines [41],
and defined as luminal A (ER/PR positive, Ki67 < 15%), luminal B (ER/PR positive, HER2
negative, Ki-67 ≥ 15% or ER/PR positive, HER2 positive), HER2 positive (ER/PR negative,
HER2 positive), or triple negative (TN, ER/PR negative, HER2 negative) [42,43]. Patients
with equivocal HER2 status were evaluated using chromogenic in situ hybridization to
detect gene amplification. Patients with amplified genes were considered HER2 positive
and patients whose genes were not amplified were considered as HER2 negative. In terms
of Ki-67 expression, patients with ≥15% proliferation were considered as positive, while
patients with <15% proliferation were classified as negative. HER2 positive and TN breast
cancers were considered more aggressive breast cancers with a worse prognosis than
luminal A/B breast cancers.

2.3. PET/CT

[18F]FDG-PET/CT of the breast was performed with a dedicated breast imaging pro-
tocol using a combined whole-body PET/CT system (Biograph 64 TruePoint®; Siemens
Healthineers, Erlangen, Germany) with a high-resolution PET and a 64-row detector CT
system. Patients were required to fast for at least 5 h before receiving an intravenous
bolus injection of 200–350 MBq [18F]FDG based on body weight with blood glucose
level < 150 mg/dL (8.3 mmol/L). After an uptake time of 60 min, PET/CT imaging was
performed over one PET bed position with the patient consistently in the prone posi-
tion [11,13,38]. The low-dose CT scan without CT contrast administration was acquired for
attenuation correction covering a region from the base of the skull to the upper abdomen.
Then, the PET acquisition was performed over the same region with 5 min acquisition time
per bed position. CT images were reconstructed with 2 mm slice thickness. PET images
were reconstructed using the iterative TrueX algorithm (Siemens), which incorporated
resolution recovery [44,45]. Four iterations per 21 subsets were used with a matrix size of
168 × 168, a transaxial field of view (FOV) of 605 mm (pixel size of 3.6 mm), and a section
thickness of 5 mm.
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2.4. Lesion Delineation

PET/CT images were delineated in the Hybrid 3D software (ver. 4.0.0., Hermes
Medical Solutions, Stockholm, Sweden). PET-based SUV values were normalized by a
cubic volume of interest (VOI) over the mediastinum to serve as background reference
for TBR calculations [46]. Three-dimensional isocount-based lesion delineations were
performed semi-automatically on the PET images by a nuclear medicine specialist, and
then reviewed by two radiologists (Figure 2). Based on previously suggested minimum
voxel count for radiomic analysis [47] the smallest analyzed lesion size was 1.56 cm3.
Overall, 167 patients had one primary lesion delineated, while three patients had two
delineated lesions, resulting in overall 173 lesions.
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Figure 2. 18F-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-
PET/CT) view of a breast cancer patient with semi-automatically delineated volume of interest (VOI)
in the PET image. Windowing: hot iron palette with SUV body weight (SUVbw) of 6.5 for PET and
range of −100 to 200 Hounsfield units (HU) for CT. The patient underwent imaging procedure in
prone position and view is shown following the radiological convention.

2.5. Feature Extraction

Patient demographics (age, height, weight, body mass index (BMI)), conventional SUV
PET (SUVmean, SUVmax, SUVmin, SUVpeak and SUVTLG) and radiomic PET/CT features
were combined to form a holomics dataset [25,48]. In order to support reproducibility of
our study, radiomic features with “strong” and “very strong” consensus were extracted fol-
lowing the IBSI guidelines [27], combined with optimized feature extraction principles [15]
from the 173 lesions. For each lesion, 48 PET features, 50 CT features, and 14 fusion
PET/CT features were extracted and merged with patient demographics and SUV features,
resulting in 121 features per lesion. See Supplemental Table S1 for the list of IBSI-conform
radiomic features.

2.6. Feature Redundancy Reduction

Covariance matrix analysis [49] was performed across the 120 features where fea-
tures with absolute Pearson correlation coefficient greater than 0.95 were considered as
redundant, resulting in 77 features for further analysis.
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2.7. Predictive Model Establishment

Mixed ensemble learning of five Random Forest (RF) algorithms with various hyperpa-
rameter values [50] was utilized for model establishment to minimize the effect of method
bias and to increase the predictive performance (Supplemental Table S2). The final model
decision was obtained by majority vote across the five model predictions. The ensemble
model scheme was utilized to establish breast cancer detection (malignant vs. benign), ER,
PR, HER2, Ki-67, triple negative, and luminal A/B predictive models.

2.8. Model Performance Estimation

Hundred-fold Monte Carlo (MC) cross-validation with a training-to-validation ratio of
90%–10% was utilized for each model [51]. To estimate the performance of the established
models compared with random guesses, sham data analysis was performed by random
label permutations as done previously [37,52]. Confusion matrix (CM) analyses were
employed to estimate model performance including accuracy (ACC), sensitivity (SENS),
specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV), and
area under the receiver operator characteristics curve (AUC) across the MC folds.

2.9. Estimating the Effect of Data Preparation

This study utilized data preparation methods prior to ML over the training dataset
of each MC fold. These methods covered a range of preprocessing steps including outlier
and borderline sample detection [34,53], feature ranking and selection [54,55], and class
imbalance correction [56–58]. Feature ranking was performed by R-squared approach [59]
where the 15 highest-ranking feature per MC fold were selected from the training set for
ML analysis. Methods were utilized in a predefined order of steps (Supplemental Table S3).
In order to estimate the effect of these methods on ML predictive performance, each model
was established twice within the Monte Carlo cross-validation scheme: with and without
data preparation.

2.10. Feature Importance Estimation

To estimate the feature importance per predictive model, the feature occurrences as
selected by the R-squared ranking were calculated across the individual MC folds.

2.11. Conventional PET Correlation Analyses

Conventional PET correlation analyses were performed for each patient subgroup
according to malignant/benign tumor status, receptor status, proliferation rate, and molec-
ular subtype. SUVmean, SUVmax, SUVmin, SUVpeak and SUVTLG PET-based features were
analyzed by using the ANOVA p-value test method (Microsoft Excel 2016 software) with
significance threshold of p < 0.05.

3. Results
3.1. Patients

Our cohort demonstrated highly imbalanced disease subgroups (Table 1). Out of 170
patients, 132 patients had a malignant breast tumor (78%) and 38 patients had a benign
tumor (22%); 11 patients were classified as triple negative (6%), 22 as HER2 positive (13%),
and 14 as luminal A (9%) vs. 81 as luminal B (81%). Furthermore, 88 patients were ER
positive (52%), 78 were PR positive (46%), and 73 had a high number of Ki-67 positive cells
(43%).



Cancers 2021, 13, 1249 7 of 18

Table 1. Patient cohort characteristics for malignancy, estrogen (ER), progesterone (PR), human
epidermal growth receptor 2 (HER2), Ki-67 protein expression, triple negative, and luminal A/B
status. NA = Not Available.

Patient Characteristics (n = 170) Value

Age (years), median (IQR) 57.6 (18–86)

Lesion volume (cm3), median (IQR) 12.8 (6.2–26.9)

Malignancy n (%)
Malignant 132 (78)

Benign 38 (22)

Estrogen (ER) n (%)
− 17 (10)
+ 88 (52)

NA 65 (38)

Progesterone (PR) n (%)
− 27 (16)
+ 78 (46)

NA 65 (38)

Ki-67 n (%)
− 26 (15)
+ 73 (43)

NA 71 (42)

HER2 n (%)
− 84 (49)
+ 22 (13)

NA 64 (38)

Triple negative n (%)
Yes 11 (6)
No 95 (56)
NA 64 (38)

Luminal A/B n (%)
A 14 (8)
B 81 (48)

NA 75 (44)

3.2. Model Performance Estimation
3.2.1. Breast Cancer Detection

The model for differentiation of benign and malignant breast tumors/breast cancer
detection with data preparation yielded 80% sensitivity, 78% specificity, 80% accuracy and
0.81 AUC, compared to the same model without data preparation (80% sensitivity, 59%
specificity, 69% accuracy and 0.71 AUC). See Figure 3 for the performance comparison of
the breast cancer detection models.
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Figure 3. Performance comparison of breast cancer detection machine learning (ML) predictive mod-
els, with and without data pre-processing. ACC = Accuracy; SENS = Sensitivity; SPEC = Specificity;
NPV = Negative Predictive Value; PPV = Positive Predictive Value. Performance is expressed in
percentages (%).

3.2.2. Breast Cancer Subtyping

The highest cross-validation performance was achieved with the molecular subtyping
ML model for triple negative breast cancer with data preparation which yielded 85%
sensitivity, 78% specificity, 82% accuracy and 0.82 AUC. In contrast, the same model without
data preparation yielded 59% sensitivity, 94% specificity, 75% accuracy and 0.76 AUC. See
Figure 4 for the performance comparison of the triple negative models.
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Data preparation did not impact ML model performance for the prediction of individ-
ual receptor status and proliferation rate (0.46–0.68 AUC).

Table 2 summarizes the Monte Carlo cross-validation performance of all ensemble
predictive models with and without data preparation. Predictive performance of all models
over sham data yielded 0.47–0.59 AUC (Supplemental Table S4).

Table 2. Monte Carlo cross-validation performance of all ensemble predictive models with and without data preparation.
Confusion matrix values are expressed in percentages (%). AUC is expressed in ratio.

Model Data Preprocessing SENS SPEC NPV PPV ACC AUC

ER
No 83 40 70 58 62 0.63
Yes 82 56↑ 78↑ 65↑ 69↑ 0.68↑

PR
No 74 36 58 54 55 0.56
Yes 78↑ 35 61↑ 54 56↑ 0.55

Ki-67
No 68 39 55 53 53 0.63
Yes 65 45↑ 56↑ 54↑ 55↑ 0.65↑

HER2
No 17 84 50 51 50 0.46
Yes 17 84 50 51 50 0.46

Luminal A/B
No 17 87 51 57 52 0.62
Yes 16 89↑ 51 59↑ 53↑ 0.52

Triple negative No 57 94 68 90 75 0.76
Yes 85↑ 78 84↑ 79 82↑ 0.82↑

Breast Cancer Detection
(Malignant vs. Benign)

No 80 59 75 66 69 0.71
Yes 80 78↑ 79↑ 78↑ 80↑ 0.81↑

ACC = Accuracy, AUC = Area under the receiver operator characteristic curve, SENS = Sensitivity, SPEC = Specificity, NPV = Negative
Predictive Value, PPV = Positive Predictive Value, ER = Estrogen, HER2 = Human Epidermal Growth Receptor 2, PR = Progesterone. Sign ↑

indicates performance increase in pre-processed training datasets compared to original datasets.

3.3. Feature Importance Estimation
3.3.1. Breast Cancer Detection

In the cancer detection predictive model, nine out of ten most relevant features for
breast cancer detection originated from PET images. Features with highest occurrence
number (n = 100) were five PET gray level co-occurrence matrix (GLCM) features (sum
entropy, energy, difference entropy, information correlation 1, dissimilarity), two PET
histogram features (skewness, uniformity), PET neighborhood grey tone difference matrix
(NGTDM) contrast and SUVmax feature. High occurrence was also observed in PET GLCM
joint maximum (n = 92), SUVmean (n = 90) and patient demographics age feature (n = 85).
See Figure 5 for all selected features in the breast cancer detection ML model.

3.3.2. Breast Cancer Subtyping

In the triple negative predictive model eight out of ten most relevant features origi-
nated from PET images. Features with highest occurrence number (n = 100) were four PET
GLCM features (contrast, difference entropy, dissimilarity, sum average), two PET NGTDM
features (contrast, strength), PET histogram kurtosis, PET intensity range, PET + CT fusion
cluster shade and SUVmean feature. High occurrence was also observed in PET GLCM
sum entropy (n = 93), SUVmax (n = 93), PET GLSZM large zone high grey level emphasis
(n = 89), PET GLCM cluster prominence (n = 88) and PET histogram skewness feature
(n = 81). See Figure 6 for all selected features in the triple negative ML model.
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Figure 5. Occurrence of high-ranking features across the 100 Monte Carlo folds in cancer detection
predictive model. NGTDM = neighborhood grey tone difference matrix; GLSZM = gray level size
zone matrix; GLCM = gray level co-occurrence matrix; SUVmax = maximum standard uptake value;
SUVmean = mean standard uptake value; SUVmin = minimal standard uptake value; skew = skewness;
z.perc = zone percentage; entr = entropy; info.corr.1 = information correlation 1; joint.max = joint
maximum; lze = large zone emphasis; kurt = kurtosis; corr, correlation; joint.entr = joint entropy;
inv.diff = inversed difference.
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Figure 6. Occurrence of high-ranking features across the 100 Monte Carlo folds in triple neg-
ative predictive model. NGTDM = neighborhood grey tone difference matrix; GLCM = gray
level co-occurrence matrix; GLSZM = gray level size zone matrix; SUVmax = maximum stan-
dard uptake value; SUVmean = mean standard uptake value; kurt = kurtosis; sum.avg = sum
average; diff.entr = difference entropy; clust.shade = cluster shade; sum.entr = sum entropy;
lzhge = large zone high grey level emphasis; clust.prom = cluster prominence; skew = skewness;
info.corr.1 = information correlation 1.

3.4. Conventional PET Correlation Analysis

Supplemental Table S5 summarizes SUV correlation metrics for malignant-vs-benign
breast tumors (SUVmax p = 0.0002) as well as malignant tumors stratified by receptor status
and molecular triple negative subtype (SUVmax p = 0.000001). Significant differences in
SUVmax distributions were present in ER (SUVmax p = 0.00016), PR (SUVmax p = 0.003), and
Ki-67 (SUVmax p = 0.003) subgroups. In contrast, HER2 (SUVmax p = 0.54) and luminal A/B
subgroups (SUVmax p = 0.81) demonstrated low correlation.

The highest performance of the SUV models was demonstrated by SUVmax in cancer
detection (0.76 AUC) and predicting triple negative subtype (0.70 AUC). See Figure 7 for
comparison of AUC performance of SUVmax and holomics-based predictive models in
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cancer detection and triple negative subtype. See Supplemental Table S6 for comparison of
holomics-based and SUV-based ML predictive performance across all models.
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4. Discussion

This study investigated the performance of ML predictive models based on [18F]FDG-
PET/CT ML analysis of 173 breast tumors in 170 patients with and without data prepa-
ration. Our study shows that data pre-processing contributes to model performance of
the breast cancer detection ML model (80% vs. 69% accuracy, 0.81 vs. 0.77 AUC) and
the aggressive triple-negative breast cancer subtype ML model (82% vs. 75% accuracy,
0.82 vs. 0.76 AUC). Nonetheless, our findings regarding the molecular subtype ML models
also imply that data pre-processing alone does not warrant performance improvement,
unless there is already an identifiable pattern in the imbalanced subgroups. The low
performance observed in our molecular subtype ML models is in agreement with ra-
diomics studies investigating the predictability of molecular subtypes in breast cancer with
dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted
imaging [60–62]. We consider that the low performance of these models is due to the
fact that compared with individual receptors, molecular subtypes such as the triple neg-
ative subtype are determined by the information from all receptors and carry distinct
radiomics signatures.

Feature importance estimation analysis in our two highest performing models (breast
cancer detection and triple negative, both with data preparation) revealed that PET is
the most important information source to establish these models. Specifically, 16 out of
18 prominent features and 18 out of 20 prominent features selected across MC folds were
from PET in the two models respectively (Figures 5 and 6). Furthermore, only two and
three of PET features were conventional SUV parameters respectively. The prominent
role of SUVmax was identifiable in both models (n = 100 for breast cancer detection and
n = 93 for triple negative) implying, that radiomics and conventional SUV metrics in
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combination can maximize the predictive performance of these models instead of building
on only one of these feature sets. These findings are in alignment with recent studies
investigating the importance of PET radiomic and SUV parameters in characterizing
tumors in vivo [37,50]. Radiomic PET feature types represented a wide range in both
models, where most prominent features were extracted from the neighborhood gray tone
difference (NGTDM) and gray level co-occurrence (GLCM) matrices. These matrices are
both designed to describe heterogeneity characteristics of lesions [27]. As an example, the
NGTDM contrast feature which was identified as high-ranking (n = 100) in both models,
reflects on spatial intensity changes in between neighboring voxels.

The low importance of CT features in both models needs to be interpreted with caution.
While CT may not represent heterogeneity patterns on its own, it contributes to PET
attenuation correction as part of the PET/CT hybrid scanner [63], therefore, any prominent
role identified in PET is inherently influenced by the presence of CT as well. Furthermore,
the GLCM cluster shade PET/CT fusion feature was identified with high importance
(n = 100) in the breast cancer detection. This feature implies that the co-occurrence pattern
of spatially-overlapping PET and CT voxels can contribute to differentiate malignant and
benign breast lesions.

Patient age was the only demographics feature identified as highly important (n = 85)
in the breast cancer detection model [64], while it was present with negligible importance
(n = 11) in the triple negative predictive model. To date, no studies of cancer detection or
triple negative subtype prediction based on PET/CT radiomics in compliance with IBSI
has been performed, hence the comparison of our findings on feature repeatability to other
studies remains of interest.

To date, studies that have analyzed radiomic features based on [18F]FDG-PET/CT
in patients with breast cancer have focused on building models to predict pathological
complete response to neoadjuvant chemotherapy or to differentiate breast carcinoma
from breast lymphoma [20,22,65]. Antunovic et al. reported AUCs of 0.70–0.73 across all
predictive models [22]; Li et al. reported AUCs of 0.72 and 0.73, respectively, without and
with patient age incorporated [20]; and Ou et al. reported AUCs of 0.81 and 0.76 for PET
and CT models, respectively [65]. Huang et al. [66] reported mean AUCs of 0.75 and 0.68
for one-year and two-year recurrence-free survival, respectively, from using PET/MRI-
based models. The sample size of the patient cohort in all these studies ranged from
44–113 patients, which is lower compared to that used in our work (n = 170). In addition,
none of the above studies utilized data preprocessing approaches and they also did not
build on mixed ensemble learning to minimize method selection bias in their relatively
small patient cohorts.

To date, data pre-processing steps have been rarely discussed in PET-based radiomic
studies. Zhou et al. [67] implemented class imbalance correction in a breast cancer cohort
of 55 patients in their MRI-based radiomics study; specifically, the minority subclass was
corrected using the Synthetic Minority Oversampling Technique (SMOTE). They reported
AUCs of 0.81–0.87 across six different predictive MRI-based models to predict response
to neoadjuvant chemotherapy [67]. Cysouw et al. [37] performed imbalance correction
applying the SMOTE algorithm, and in addition they utilized principal component analysis
to reduce the high number of features while retaining 95% of the observed variance to
characterize prostate cancer in [18F]DCFPyL PET. Xie et al. [36] investigated class imbalance
solutions in a cohort of head and neck cancer patients in their [18F]FDG-PET/CT-based
radiomics study, by testing various resampling techniques for generating minority subclass
samples and for cleaning noisy and redundant data. They reported performance increase
of 0.32 (AUC) with applying data resampling techniques.

Our study differed in several aspects to the aforementioned studies. First, Zhou et al.
and Cysouw et al. did not consider the presence of noisy/borderline data samples which
may decrease the overall performance of the established models [68–70]. Second, none of
the prior studies handled outliers in their training datasets.
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In our study, conventional PET-based correlation analysis showed that SUVmax,
SUVmean, and SUVmin were significantly different between malignant and benign tumors,
which is in agreement with prior publications [11,71,72]. For predicting individual breast
cancer receptor status and proliferation rate, conventional PET correlation analysis showed
that SUVmax and SUVmean were significantly different according to ER and PR status, and
according to Ki-67 protein expression. For predicting molecular subtype, significance dif-
ferences in standard SUV metrics were found only for the triple negative subtype (SUVmax
and SUVmean, p < 0.001 for both) while for the HER2 and luminal A/B subtype, standard
SUV metrics showed no significant differences. Although there were significant differences
in SUV metrics for ER and PR expression and the triple negative subtype, SUV-based
models resulted in poor predictive performance.

Compared with the radiomics ML models, the SUV-based models had a lower AUC
performance for differentiating between malignant and benign tumors (0.76 AUC vs.
0.81 AUC) as well as triple negative subtypes (0.70 AUC vs. 0.82 AUC). Performance
difference is even more expressed in other confusion matrix analytics metrics, where we
observed lower accuracy (ACC) performance of SUV-based models in cancer detection
(56% vs. 80%) as well as in triple negative subtype prediction (74% vs. 82%).

Our study had limitations: our analysis was based on data from a single center only.
Nevertheless, we extracted highly-repeatable radiomic features from our data as of the
IBSI-standard together with optimized radiomic parameter sets [15,27]. In addition, we
utilized Monte Carlo cross-validation scheme in combination with ensemble learning to
minimize the effect of selection bias in both our data and ML methods. Last, we performed
sham data analysis by random label permutation to estimate the performance compared to
random guess.

Considering the high repeatability of our identified high-ranking features and the
high reproducibility nature of RF classifiers [73], we consider that our findings could be
reproduced by other centers building on our methodological approaches. The results of our
study indicate that future radiomic studies can benefit from data pre-processing steps before
conducting ML analyses especially if the given disease subgroups are highly imbalanced.

Of note, this study did not aim to investigate solid vs. invasive tumor sensitivities
independently, rather, the effect of data preparation on overall ML performance which
analyzes all types of tumors. Nevertheless, lesion delineation in our study was PET-driven.
PET has high sensitivity, but at the same time it is prone to partial volume effects which
naturally results in overestimating lesion volumes. Therefore, we assume that boundary
regions of invasive tumors were not underrepresented in our analysis.

5. Conclusions

The diagnostic accuracy of [18F]FDG-PET/CT of breast cancer detection and prediction
of the aggressive triple negative molecular subtype of breast cancer improved following the
use of advanced data pre-processing in radiomic models. Radiomics analysis of [18F]FDG-
PET/CT aid the differentiation of benign and malignant tumors in patients that cannot be
assessed sufficiently with conventional breast imaging and who are not candidates for MRI.
Results indicate that aggressive triple negative breast cancers that often require intensified
or presurgical treatment carry distinct radiomics signatures and can be separated from less
aggressive subtypes. However, radiomics analysis of [18F]FDG-PET/CT is limited in value
for the prediction of individual receptor status and proliferation rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/6/1249/s1. Supplemental Table S1: Imaging Biomarker Standardization Initiative (IBSI)
reporting structure of the study. The information presented herein is based on the IBSI guidelines,
Supplemental Table S2: Algorithms settings of the 5 RF models employed in the ensemble learning
scheme, Supplemental Table S3: Data preparation pipelines across all machine learning predictive
models, Supplemental Table S4: Machine learning results of best performing models (per reference
label) over sham data, Supplemental Table S5: Conventional positron emission tomography (PET)-
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based correlation analysis, Supplemental Table S6: Holomics-based vs. standard uptake value
(SUV)-based ML performance comparison across all predictive models.
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