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Abstract

The use of hip joint simulators to evaluate the tribological performance of total hip replace-

ments is widely reported in the literature, however, in vitro simulation studies investigating

the tribology of the natural hip joint are limited with heterogeneous methodologies reported.

An in vitro simulation system for the complete natural hip joint, enabling the acetabulum and

femoral head to be positioned with different orientations whilst maintaining the correct joint

centre of rotation, was successfully developed for this study. The efficacy of the simulation

system was assessed by testing complete, matched natural porcine hip joints and porcine

hip hemiarthroplasty joints in a pendulum friction simulator. The results showed evidence of

biphasic lubrication, with a non-linear increase in friction being observed in both groups.

Lower overall mean friction factor values in the complete natural joint group that increased

at a lower rate over time, suggest that the exudation of fluid and transition to solid phase

lubrication occurred more slowly in the complete natural hip joint compared to the hip hemi-

arthroplasty joint. It is envisaged that this methodology will be used to investigate morpho-

logical risk factors for developing hip osteoarthritis, as well as the effectiveness of early

interventional treatments for degenerative hip disease.

Introduction

Osteoarthritis (OA) causes pathological degenerative changes that affect the whole joint [1]

leading to pain and loss of function [2, 3]. Primary total hip replacement (THR) is often used

to alleviate the pain and disability caused by advanced OA of the hip, however, many younger

patients require revision surgery after 15–20 years, and outcomes following this procedure are

not always as favourable in terms of patient satisfaction and function [2, 4]. It is hypothesised

that tribological studies of complete natural hip joints using in vitro simulations would be of

benefit for investigating relationships between hip geometry and degenerative joint disease

such as OA, as well as investigating the efficacy of early interventional treatment, which may

delay the onset of OA [5–8].
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In vitro simulation studies investigating the tribology and function of THR prostheses are

widely reported in the literature, however, studies exploring the friction and wear between two

contacting natural cartilage surfaces have been focussed largely on reciprocating motion fric-

tion studies using cylindrical osteochondral plugs [9–11]. Despite the natural hip joint being

relatively congruent, contact between the two articulating surfaces changes under different

weight-bearing conditions and the femoral head is slightly spheroidal in shape compared to

the more spherical acetabulum [12]. This makes biomechanical analysis of the natural hip

joint more complex compared to the artificial hip joint and therefore to date, research investi-

gating complete natural hip joint tribology in vitro has been limited and heterogeneous in

nature [13–18]. Tribology of the hip joint following hemiarthroplasty, where only the femoral

head is replaced with a prosthesis, has also been investigated experimentally using both in silico
and in vitro methods [19–21], albeit to a lesser degree than THR tribology.

The main aim of this study was to develop a complete in vitro simulation model, initially

using natural porcine hip joints and a pendulum friction simulator, in order to investigate the

tribology of the complete natural hip joint. The method was developed to facilitate hips with

different morphologies, and to be easily modifiable for use with human tissue and different

simulation systems, e.g. a physiological hip joint simulator. The methodology was assessed by

conducting in vitro simulations on a group of complete, anatomically matched porcine hip

joints and a group of porcine hip hemiarthroplasty joints, and with the intent of testing hip

joints positioned with different acetabula and femoral orientations in future studies. The data

associated with this paper is available from the University of Leeds Data Repository [22].

Materials and methods

Pendulum friction simulator

A ProSim pendulum friction simulator (Simulation Solutions Ltd., Stockport, UK), which is

a pneumatically loaded single station simulator, was used for the in vitro simulations in this

study (Fig 1). Hip joints were inverted with respect to anatomical position in the simulator,

which applied an axial load through the femoral head and applied motion via a flexion-exten-

sion (FE) rocker. A piezoelectric force transducer attached to the front of a self-aligning

friction measuring carriage, and therefore aligned with the FE axis, measured any forces

transferred between the bearing surfaces as the FE rocker moved back and forth. The carriage

itself was mounted on a pressurised hydrostatic oil bearing and was designed so that any tor-

que created by sample misalignment and incidental movement of the carriage in a medial-lat-

eral direction, i.e. not due to friction between the two surfaces arising from FE motion,

would be negligible. This was important for testing biological tissue that may not be of uni-

form and/or symmetrical geometry, as this could give rise to additional torque from concom-

itant movement of the carriage. The magnitude of FE frictional torque created by the samples

being tested was determined by converting the force data from the piezoelectric transducer

into a voltage signal using a charge amplifier. The transducer was able to measure frictional

torque to a minimum value of 0.5 Nm (1% of the maximum range of the transducer, which

was 50 Nm), with friction factors measurable in the range of 0.01–0.5 [23].

Natural tissue fixture design

Fixtures were developed to facilitate the orientation and positioning of natural acetabula with

varying angles of version and inclination, and natural femoral heads to be positioned with dif-

ferent combinations of angles in all three planes. The risk of experimental artefact was reduced

by enabling natural hips of different sizes to be potted centrally with the centre of rotation

(COR) of the head and acetabulum aligned with the pendulum friction simulator. The position
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of the samples in the simulator was checked using an alignment rod (supplied by the manufac-

turer), which was designed to pass through holes in the FE rocker and friction measuring car-

riage, arranged in series corresponding to the COR of the simulator.

Acetabulum. A test pot allowing sufficient access and control over the acetabulum during

potting and removal of the specimen, whilst also reducing the risk of impingement between

the components during testing, was designed and manufactured from stainless steel. A potting

methodology using an inclinometer was developed, which provided a consistent and repeat-

able way of orientating the acetabulum whilst controlling the degree of inclination and version

to be applied to the acetabulum (Fig 2). This method provides two independent variables that

can be used in future in vitro simulations to replicate different in vivo morphologies, for exam-

ple a retroverted acetabulum.

Natural femoral head potting jig. The potting jig was a modular design with inter-

changeable fixtures enabling femoral heads of different diameters to be correctly positioned.

Potting discs of varying depths, designed to be used with femoral heads of different radii,

were manufactured and the selected disc was vertically aligned with the centre of the test fix-

ture base, once attached to the top bar of the potting jig (Fig 3A). The jig was designed so that

once fully assembled, positioning the superior surface of the natural femoral head against the

underside of the disc, aligned the centre of the head with the centre height of the FE rocker,

to which the femoral sample was attached during the test. The potting jig enabled movement

between the ring and the arm (inclination), and between the assembly attachment and a

slotted base post (version), thus enabling the position and orientation of the sample to be

controlled.

Natural femoral head test fixture. The test fixture consisted of a Delrin1 test pot, offset

to accommodate the anatomical offset of the femur whilst maintaining vertical alignment of

the head with the direction of axial loading from the simulator. Samples were held in place

Fig 1. Pendulum friction simulator. Schematic diagram of the pendulum friction simulator. FE: flexion-

extension; A/D: analogue to digital converter.

https://doi.org/10.1371/journal.pone.0184226.g001
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during positioning and potting using a potting ring and cone point pins (Fig 3B and 3C). The

test pot was secured to a Delrin1 top plate and stainless steel base plate, designed to be moved

in two orthogonal directions so that different femoral shaft sizes/shapes and positions could be

accommodated.

Fig 2. Porcine acetabulum potted using an inclinometer. (A) Inclinometer with attachment used to

orientate and position the acetabulum and (B) potted porcine acetabulum showing the position of the

specimen in the test pot. The dorsal—ventral and cranial—caudal directions correspond to the inclination and

version angles respectively. PMMA: polymethyl methacrylate; D: dorsal; V: ventral; Cr: cranial; Ca: caudal.

https://doi.org/10.1371/journal.pone.0184226.g002

Fig 3. Femoral head test pot and potting fixture. Femoral head test pot and potting fixture (A) with (B) the

porcine femoral head orientated and positioned using the acetabulum and (C) the femur positioned in the test

pot before cementing, held in position using the potting ring and cone point pins.

https://doi.org/10.1371/journal.pone.0184226.g003
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Natural tissue sample preparation. Hip joints from porcine right hind legs were har-

vested from 25 week old donor pigs, with an average weight of 80 kg, 24–48 hours following

slaughter at a local abattoir. Hip joints received from the abattoir had only minimal and vary-

ing amounts of pelvic bone attached, and therefore, the orientation of the joint in this study

was defined by the relationship to the reference frame of the simulator. The horizontal simula-

tor base formed the transverse plane, and the anteroposterior axis and FE motion occurred

in the sagittal plane. Cartilage surfaces were kept hydrated with phosphate buffered saline

throughout the harvesting and potting procedures. The diameter of the hip joints were mea-

sured using the harvested femoral head and a set of circular gauges. As the heads were slightly

aspherical, size selection was based on there being no interference of the femoral head from

the gauge in the cranial—caudal direction, which corresponded to the FE direction of motion.

This diametric measurement was used to select the correct sized potting disc for the complete

natural joint studies, and for selecting a size-matched cobalt chrome (CoCr) metal head for the

hemiarthroplasty studies.

Simulations for the complete natural hip and hip hemiarthroplasty studies were conducted

with the acetabula positioned with the same orientation so that between-group comparisons of

friction factor could be made.

Harvested tissue was potted using a three-stage process, and all tissue samples were secured

in their respective test pots using polymethyl methacrylate (PMMA) bone cement.

1. Acetabula were positioned and potted with the transverse acetabular ligament uppermost

and central region of the articular cartilage inferiorly. Samples were centred and aligned

with the COR of the simulator using a potting jig previously developed by Lizhang [24],

that had been modified to accommodate the manufactured acetabulum test pot [25]. In

brief, this custom made rig consisted of a base plate, on which the acetabulum pot was cen-

tred, and a vertical track with moveable collar. The size-matched CoCr head was attached

to a rod, which was clamped via an arm onto the vertical track, and lowered onto a setting

block before fixing the collar in place. A range of setting blocks to be used with heads of dif-

ferent radii were available and designed so that once the arm was resting on the collar, the

centre of the CoCr head matched the centre height of the friction measuring carriage,

which was where the acetabulum was seated during the test. The setting block was replaced

with the acetabulum pot and the acetabulum, which was placed into PMMA cement whilst

it was in a workable state, was pushed gently down into the cement using the femoral head

until the arm rested on the collar. This aligned the centre of the acetabulum with the simu-

lator, and the inclinometer was used to concurrently position all samples with neutral ver-

sion and an inclination angle equivalent to 45˚ (Fig 2B). Acetabular version and inclination

were defined as the angle between the acetabular rim plane and the sagittal and transverse

planes of the simulator respectively. This acetabula orientation replicated the default set-up

used in a study of porcine hip hemiarthroplasty joints by Lizhang et al. [20], thus enabling

the mean friction factor values in this group to be compared with those from this previously

published tribological study.

2. Porcine femurs were positioned in the potting ring so that the articulating surfaces of the

femoral head and acetabulum were congruous, and with the head in anatomical alignment

with the potted acetabulum. This was achieved using an alignment mark placed opposite

the midpoint of the transverse acetabular ligament and bony reference point on the femoral

neck (Fig 3B). The bony reference point was a linear elevation, running inferiorly between

the equator of the femoral head and the distal end of the intertrochanteric ridge, just above

the lesser trochanter. These two landmarks were identified as being repeatable anatomical
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PLOS ONE | https://doi.org/10.1371/journal.pone.0184226 September 8, 2017 5 / 15

https://doi.org/10.1371/journal.pone.0184226


reference points that could be used to align the joint during exploratory work, which was

conducted prior to the development of this methodology.

3. The potted acetabulum was replaced with the femoral head test pot fixture and the femur

was inverted, whist maintaining its orientation from Stage 2 in the potting ring. The femo-

ral shaft was positioned centrally in the test pot of the head test fixture (Fig 3C), and the

COR was obtained by raising the head up to the correct diametral sized potting disc (Fig

3A). The shaft was secured by pouring PMMA cement into the test pot, which was allowed

to fully cure before removing the potting ring, ensuring that the sample didn’t move once

positioned.

Hemiarthroplasty model

Hemiarthroplasty tests were conducted using natural acetabula and size-matched CoCr femo-

ral heads (DePuy Synthes, Leeds, UK). Acetabula were potted using the method described

above, and the CoCr heads were mounted and tested using an existing fixture. This consisted

of a moveable vertical spigot that could be adjusted to set to the correct COR using slip gauges

and a Vernier height gauge.

Measurement of friction

In vitro simulations were conducted on porcine hemiarthroplasty specimens (n = 5) and com-

plete, matched natural porcine hip joints (n = 5). Samples were fixed into the simulator with

the acetabula pot seated in the friction measuring carriage and the head attached to the FE

rocker (Fig 4). Once in the simulator, the position of the samples was checked by passing the

alignment rod through the holes in the FE rocker and friction measuring carriage. Tests were

only conducted if the rod passed through both alignment holes. Friction was determined via

the piezoelectric transducer (Fig 1), which measured the frictional torque generated between

the contacting surfaces of the femoral head and acetabulum. The lubricant for all tests was a

25% volume-to-volume concentration of newborn calf serum, diluted with deionised water,

which had a protein content similar to human synovial fluid [26].

Fig 4. Hemiarthroplasty and natural joint samples. Pendulum friction simulator with (A) porcine hemiarthroplasty and (B)

complete porcine hip joints in situ with 25% bovine serum lubricant before testing.

https://doi.org/10.1371/journal.pone.0184226.g004
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Loading and motion conditions previously reported for testing porcine hemiarthroplasty

samples were used [20], where simulations were run at a frequency of 1 Hertz for 7,200 cycles

(i.e. 2 hours). A single sinusoidal dynamic load ranging from 25 N (swing phase) to 800 N

(stance phase peak load) was applied through the femoral head, whilst simultaneously apply-

ing ± 15˚ FE motion (Fig 5). The input profile simulated non to full weight-bearing through

one hind limb of a donor pig weighing on average 80 kg. The loading profile was designed to

be comparable with the loads experienced through the hip joint during a quadrupedal gait

cycle [27–29], and due to pigs having a smaller range of motion during normal gait than

bipedal humans [29, 30], a motion of ± 15˚ of flexion to extension was used to reduce the risk

of any bony impingement. To account for any additional frictional torque arising from mis-

alignment due to the complex geometry of the joint, the data was normalised using a mean

frictional offset value calculated from two-minute 800 N constant load tests (± 15˚ FE), which

were conducted before (pre-test) and after (post-test) each dynamic profile study. Pre and

post-test frictional torque was measured during mid-flexion and mid-extension (Fig 5), which

enabled any differences in flexion and extension torque measurements arising from off-centre

loading of the aspherical samples to be accounted for [20].

Data analysis

Friction factor ( f ) was calculated using Eq (1) from the true torque magnitude (Tt) detected by

the piezoelectric transducer, where r is the radius of the bearing surfaces (meters) and Wp is

Fig 5. Simulator motion and loading profiles. Motion and dynamic (25 N to 800 N) and constant (800 N)

loading profiles for one cycle. The orange shaded area shows where data is gathered at the mid-flexion and

mid-extension points during the constant load pre and post-tests, and the purple shaded area shows the peak

load (i.e. 800 N) high velocity phase where the dynamic profile test data is collected from. FE: flexion-

extension.

https://doi.org/10.1371/journal.pone.0184226.g005
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the peak load (Newtons):

f ¼
Tt

r �Wp
ð1Þ

The mean friction factor for each one-second cycle of the dynamic load tests, was calculated

from the data collected during the peak load (i.e. 800 N) high velocity phase, and friction factor

for the constant load tests (example raw data plots shown in Fig 6A) was calculated using data

taken from where the head was vertically loading the cup, (i.e. 0˚ FE), corresponding with the

high velocity phase of the cycles, as shown in Fig 5. Mean frictional offset ( fo) was calculated

using data from the constant load tests conducted before (fb) and after ( fa) each dynamic pro-

file study Eq (2):

fo ¼
fb þ fa

2
ð2Þ

Friction data was normalised ( fn) by subtracting the frictional offset (fo) from the mean

dynamic friction factor (fd) of each logged cycle Eq (3) to give a friction value for the test:

fn ¼ fd � fo ð3Þ

Example raw data plots measured during a single simulator cycle and the corresponding

normalised dynamic profile test plot, adjusted for mean frictional offset following post-pro-

cessing, are shown in Fig 6.

Mean friction factor values and 95% confidence limits (CL) throughout the two-hour tests

was calculated, and a two-way analysis of variance (ANOVA) was carried out on friction factor

by bearing couple (i.e. hemiarthroplasty and complete joint), and time (i.e. cycle number)

using SPSS predictive analytics software (version 19, IBM, New York, US), where p < 0.05.

Time was discretised into three levels and analysed at the one-minute (start; 60 cycles), two-

hour (end; 7200 cycles) and twenty-minute (1200 cycles) time points. The latter was an arbi-

trary time point enabling data from the initial stages to be compared with data from the start

and the end of the tests.

In addition to the quantitative analysis of friction, a qualitative macroscopic evaluation of

the specimens’ articulating cartilage surfaces was conducted, both before and after the simula-

tion, in order to identify any visible damage or changes in surface appearance following

testing.

Results

Complete natural porcine hip joints (n = 5) and porcine hip hemiarthroplasties (n = 5) with a

diametral range of 35–37 mm were successfully positioned with the required anatomical orien-

tation and joint centre height, enabling in vitro tribological testing to be conducted in the pen-

dulum friction simulator. During the two-hour test period, an initial rapid increase followed

by gradual rise in friction factor was observed for all samples in both groups (Fig 7). Mean fric-

tion factor in the hemiarthroplasty group was 0.031 ± 0.020 at the start of the test and then

increased, plateauing at 0.047 ± 0.006 after *1,500 cycles (i.e. *25 minutes). Friction factor

for the complete porcine hip joint group increased from an initial mean value of 0.004 ± 0.011

to a mean value of 0.022 ± 0.003 during the same time period, however, the friction factor did

not plateau and continued to gradually increase with a value of 0.035 ± 0.003 being recorded

after two hours. The effects of both bearing couple and time had a statistically significant effect

on the friction factor (p< 0.001), however, the interaction between these two variables was

In-vitro simulation of natural hip joints
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Fig 6. Data plots taken from a hemiarthroplasty test showing normalisation of the friction factor using

constant load test data during the post-processing stage. (A) Data plots of the friction factor measured

during one cycle of the 2-minute 800 N constant load tests conducted before (pre-test) and after (post-test)

the dynamic profile study, which was used to calculate the mean frictional offset value (fo). The mean frictional

offset was -0.025 in this example, which was calculated using Eq 2. (B) Raw data plot of the friction factor

In-vitro simulation of natural hip joints
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not significant (p = 0.109). Throughout the two-hour in vitro simulations, the mean friction

factor was lower in the complete natural hip group when compared to the hip hemiarthro-

plasty group, and this was significantly different at the 60, 1200 and 7200 second time points

(ANOVA; p<0.001). A Bonferroni post hoc analysis showed that friction factor at the 60 sec-

ond time point was significantly different to the friction factor recorded at both the 1200 sec-

ond and 7200 second time points (both p<0.05), however, there was no significant difference

in friction factor when comparing the 1200 and 7200 second time points (p = 0.139).

Changes in the appearance of the lunate surface and small areas of chondral damage were

observed during the macroscopic evaluation of the tested acetabula. This was largely discolor-

ation and small superficial scratches, which were evenly dispersed across the lunate surface of

complete natural joint specimens, but located more centrally on the hemiarthroplasty speci-

mens. There was also evidence of slightly deeper chondral lesions on the tested hemiarthro-

plasty specimens, with small fissures being observed on two of the acetabula. Some slight

discoloration was observed superiorly on some of the tested natural femoral heads.

Discussion

Osteoarthritis is a common form of degenerative joint disease, and it is generally accepted that

the direct and indirect healthcare costs from treating hip OA using THR are expected to rise

due to an aging population [31, 32]. Investigative studies exploring associations between hip

joint morphology and risk factors for developing OA, and research studying the effectiveness

of early interventional techniques for the treatment of hip OA, are therefore important areas of

study for addressing both the increasing socioeconomic burden of the disease and for improv-

ing patient outcomes.

measured during a single cycle of a dynamic profile study plotted against the same data set with the mean

frictional offset value applied (i.e. normalised) using Eq 3, and (C) the section of the graph where the

normalised data (fn) for the reported values is taken post-processing. The pale yellow shaded areas highlight

the data collection area. FE: flexion-extension.

https://doi.org/10.1371/journal.pone.0184226.g006

Fig 7. Mean friction factor for hemiarthroplasty and complete natural joint groups. Mean friction

factor ± 95% confidence limits for the complete porcine hip joints (n = 5) and porcine hip hemiarthroplasties

(n = 5) tested in the pendulum friction simulator for two-hours.

https://doi.org/10.1371/journal.pone.0184226.g007
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Historical pendulum studies of the natural hip joint have been reported in the literature by

Unsworth et al. [18], O’Kelly et al. [16], and Roberts et al. [33], however, the experimental

methodology does not appear to facilitate the testing of specimens using different orientations

or varying geometric parameters, which is necessary in order to replicate different hip joint

morphologies. Studies of complete natural hip joint tribology, conducted using servo hydraulic

testing systems, have been reported by Ferguson et al. [13], who performed creep-consolida-

tion tests using constant and cyclic loads before and after labral resection, and by Song et al.

[17], who measured resistance to rotation. This was performed by applying rotational displace-

ment with an axial compressive load, also before and after labrectomy, over ten 13-second

cycles. Cadaveric human hip joints were investigated in both of these studies; however, not all

of the test parameters were physiological.

In this study, an in vitro simulation system for the complete natural hip joint with potting

fixtures enabling the orientation of both the femur and acetabulum to be controlled to simulate

different joint morphologies, and with the joint COR aligned with that of the simulator, was

successfully developed. The new fixtures and methodology were assessed by conducting in
vitro simulations on porcine hip joints in a pendulum friction simulator so that mean friction

factor values could be analysed and appraised. The potting methodology that was developed

enabled both complete natural hip, and hip hemiarthroplasty joints, to be positioned and

tested in the simulator with the joint COR aligned with that of the simulator. Setting the cor-

rect COR, together with the normalisation of the data to account for any extra biomechanical

torque not due to the application of the loading profile, ensured that as far as possible any

experimental artefact arising from the set-up or complex hip geometry was reduced.

Friction factor measured during the hemiarthroplasty tests displayed similar trends and val-

ues to those reported by Lizhang et al. [20], in a similar study of hip hemiarthroplasty tribology

where extra-large clearances were used. In the complete natural joint group, mean friction fac-

tor increased from 0.004 to 0.035, with an overall mean value for the two-hour test of 0.022.

Heterogeneous methodologies and the use of cartilage from different anatomical locations

make it difficult to make direct comparisons between this study and previously published in
vitro cartilage-on-cartilage tribological studies, however, the results do fall within the range of

values (0.003 to 0.08) for friction between two cartilage surfaces that have been reported in the

literature [10, 11, 18, 33–35].

The non-linear time response observed in both sample groups is most likely attributed to

the viscoelastic response and biphasic nature of the cartilage, where, as the fluid support

decreases the load gradually transfers to the solid phase [36, 37]. Friction factor did not plateau

in the complete natural hip joint group indicating that the samples had not reached equilib-

rium at the end of the two-hour test. This trend is consistent with data obtained by McCann

et al. [35] who studied in vitro friction in the natural knee joint. The natural hip in this study

set-up has a spatially varying and time dependent load on the femoral head cartilage compared

to the spherical CoCr head of the hemiarthroplasty. This means that exudation of fluid from

the cartilage will have been slower, and hence the friction factor was lower and took longer to

rise compared to the hemiarthroplasty model. These findings are reinforced by the pin-on-

plate work of Forster et al. [38]. Additionally, fluid trapped between the deforming asperities

of two cartilage surfaces, compared to having only one cartilage surface (i.e. acetabulum) in

the hemiarthroplasty group, would have slowed down fluid exudation [39]. Porcine hip geom-

etry is slightly more aspherical than that of human hips and it is acknowledged that this could

have affected the results of the hemiarthroplasty tests. The difference between two diametral

measurements taken orthogonally in the anteroposterior and superoinferior directions from

porcine and human femoral heads with no obvious pathology (both n = 6), was reported to be

3.53 mm ± 1.78% and 1.0 mm ± 1.2% respectively [40]. It is reasonable to assume that a similar
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degree of asphericity exists in the articulating surfaces of the paired acetabula. Poorer confor-

mity between the metallic, spherical CoCr head and the native cartilage of the aspherical por-

cine acetabulum could, therefore, result in areas of high contact stresses that are unevenly

distributed around the acetabulum. This may explain why higher mean friction values and a

greater degree of acetabular chondral damage was observed in the hemiarthroplasty group

when compared to the complete natural hip joint group, where the acetabulum was articulat-

ing against a natural femoral head. The poorer congruity and distribution of the load observed

in the hemiarthroplasty model could lead to abrasive wear and erosion of the acetabular carti-

lage over time, which is consistent with clinical findings [41–43].

The main limitation of using a pendulum friction simulator for conducting the simulations

was that an axial load was applied through the femur, rather than through the acetabulum of

the pelvis, and only one axis of motion (flexion-extension) was applied. Consequently, the nor-

mal loading and osteokinematics that the hip joint is normally subjected to in vivo (e.g. flex-

ion-extension, abduction-adduction, medial and lateral rotation) could not be reproduced in
vitro, which may result in some abnormal stresses being applied to the joint. Additionally,

although the friction factor data was normalised to account for any slight misalignment of the

joint, this process did not factor in any potential damaging effects that this may have had on

the articulating surfaces of the joint. These factors may explain the minor areas of damage that

were observed on the lunate surface of the native acetabula after running the complete natural

joint simulations for only a relatively small number of cycles (i.e. over two hours).

Bovine calf serum has been used as a lubricant extensively in tribological investigations of

the hip joint, however, it has been acknowledged that the viscosity and composition varies

from synovial fluid, which is much more complex and contains hyaluronic acid, different pro-

teins, enzymes and lipids [44]. Hyaluronic acid gives synovial fluid its viscoelastic properties

[45], and surface phospholipids have been shown to contribute to articular cartilage boundary

lubrication [46], meaning both are important factors when considering natural joint lubrica-

tion. It was beyond the scope of this study to address this, however, it is proposed that a lubri-

cant containing hyaluronic acid and phospholipids, which together have been reported to

reduce friction in cartilage models [47], should be considered in future natural joint tribologi-

cal studies. Additionally, using tissue sourced from a slaughtered animal could potentially

affect the lubrication regime of the joint, particularly that of boundary lubrication. This is

largely due to the absence of viable chondrocytes that produce and maintain the extracellular

matrix [37]. Nonetheless, these limitations did not detract from the main aim of this study,

which was to develop an in vitro simulation system for the natural hip joint with potting fix-

tures enabling the orientation of both the femur and acetabulum to be controlled in future

studies.

In future work, this methodology will be adapted for use with in vitro simulation systems

that are able to simulate a more physiological movement, and this will provide a robust system

for testing complete natural animal and/or human hip joints. The continuous cyclic loading

used throughout the simulation, where the cartilage is unloaded for only relatively short peri-

ods during the swing phase, is representative of continuous walking, unlike input profiles that

use a stop-dwell-start protocol to facilitate periods of relaxation and re-hydration of the carti-

lage matrix. If longer duration tests are to be considered in the future, then this type of simula-

tion profile could provide a more realistic in vivo representation of activities of daily living that

could be generalised to the wider population [48, 49]. Additionally, different hip joint mor-

phologies relating to the acetabulum (e.g. retroversion, steep inclination angle), and proximal

femur (e.g. varying degrees of femoral version), will be simulated and explored by using the

fixtures designed in this study to vary the orientation of the acetabulum and/or femur. The use

of pelvic and femoral coordinate systems, for example as defined and recommended by the
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International Society of Biomechanics [50], will be important for facilitating this work in

future studies. This will enable morphological risk factors for the development of hip OA to be

investigated by simulating different hip geometries and pathologies, as well as pre-clinical test-

ing of early interventional treatments for hip OA.
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