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Phylogenetic placement refers to a family of tools and methods to analyze, visualize, and
interpret the tsunami of metagenomic sequencing data generated by high-throughput
sequencing. Compared to alternative (e. g., similarity-based) methods, it puts
metabarcoding sequences into a phylogenetic context using a set of known reference
sequences and taking evolutionary history into account. Thereby, one can increase the
accuracy of metagenomic surveys and eliminate the requirement for having exact or close
matches with existing sequence databases. Phylogenetic placement constitutes a
valuable analysis tool per se, but also entails a plethora of downstream tools to
interpret its results. A common use case is to analyze species communities obtained
from metagenomic sequencing, for example via taxonomic assignment, diversity
quantification, sample comparison, and identification of correlations with environmental
variables. In this review, we provide an overview over the methods developed during the first
10 years. In particular, the goals of this review are 1) to motivate the usage of phylogenetic
placement and illustrate some of its use cases, 2) to outline the full workflow, from raw
sequences to publishable figures, including best practices, 3) to introduce themost common
tools and methods and their capabilities, 4) to point out common placement pitfalls and
misconceptions, 5) to showcase typical placement-based analyses, and how they can help
to analyze, visualize, and interpret phylogenetic placement data.

Keywords: phylogenetic placement, evolutionary placement, phylogenetics, metagenomics, metabarcoding,
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1 INTRODUCTION

Advances in sequencing technologies enable the broad sequencing of genetic material in
environmental samples (Edwards and Holt, 2013; Sunagawa et al., 2013), for instance, from
water (Karsenti et al., 2011; Giner et al., 2016; Lacoursière-Roussel et al., 2016), soil (Dupont
et al., 2016; Mahé et al., 2017), and air (Clare et al., 2022), which is known as environmental DNA
(eDNA, Deiner et al., 2017; Ruppert et al., 2019), or from the human body (Curtis et al., 2012; Methé
et al., 2012; Matsen, 2015; Wang et al., 2015) and other sources (Hanson et al., 2016; ElRakaiby et al.,
2019; Gohli et al., 2019; Lorimer et al., 2019). Crucially, this enables the ecological survey of a
community of organisms in their immediate environment (i. e., in situ), and allows to directly study
the genetic composition of species communities (from viruses to megafauna); a field known as
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metagenomics (Thomas et al., 2012; Escobar-Zepeda et al., 2015;
Oulas et al., 2015; Lindgreen et al., 2016).

Metagenomic data typically stem from so-called High-
Throughput Sequencing (HTS, Pettersson et al., 2009; Reuter
et al., 2015; Goodwin et al., 2016) technologies, such as Next
Generation Sequencing (NGS, Logares et al., 2012; Mardis, 2013),
as well as later generations (Niedringhaus et al., 2011; Pareek
et al., 2011; Mignardi and Nilsson, 2014; Heather and Chain,
2016; Mardis, 2016). For a sample of biological material, these
technologies typically produce thousands to millions or even
billions of short genetic sequences (also called “reads”) with a
length of some hundred base pairs length each. Over the past
decades, decreasing costs and increasing throughput of
sequencing technologies have caused an exponential growth in
sequencing data (Muir et al., 2016), which has now passed the
peta-scale barrier (Katz et al., 2022).

Amajor analysis step inmetagenomic studies is to characterize
the reads obtained from an environment by means of comparison
to reference sequences of known species (Desai et al., 2012). A
straight-forward way to accomplish this is to quantify the
similarity between the reads and reference sequences. We
obtain an indication of possible novelty if the sequence
similarity to known species is low (Temperton et al., 2012;
Peabody et al., 2015). However, such approaches do not
provide the user with the evolutionary context of the read,
and have been found to incorrectly identify sequences (Koski
and Golding, 2001; Clemente et al., 2011; Mahé et al., 2017).

Instead, general phylogenetic methods can be used directly to
classify and characterize the reads, providing highly accurate and
information-rich results (Brady and Salzberg, 2009; Segata et al.,
2012; Truong et al., 2015; Jamy et al., 2019; Beghini et al., 2021).
However, trying to resolve the phylogenetic relationships between
millions of short reads and the given reference sequences
represents a significant computational challenge. Furthermore,
as most phylogenetic methods require an alignment of sequences,
metagenomic data can often not be used directly, as whole-
genome reference data might not be available or
computationally intractable. Instead, specific marker genes can
be targeted (or filtered from the metagenomic data), which are
genetic regions that are well-suited for differentiating between
species (Ren et al., 2016). The use of marker genes to identify
species is called DNA (meta-)barcoding (Deiner et al., 2017;
Hebert et al., 2003; Savolainen et al., 2005; Kress and Erickson,
2008); see Section 2.2 for details.

A powerful and increasingly popular class of methods to
identify and analyze diverse (meta-)genomic (barcode) data is
the so-called phylogenetic placement (or evolutionary placement)
of genetic sequences onto a given fixed phylogenetic reference
tree. By placing unknown, anonymous sequences (in this context
called query sequences) into the evolutionary context of a tree,
these methods allow for the taxonomic assignment of the
sequences (i. e., the association of genomic reads to existing
species, for example Auladell et al., 2019; Jamy et al., 2019;
Hleap et al., 2021). Moreover, they can also provide
information on the evolutionary relationships between these
query sequences and the reference species/sequences, and thus

go beyond simple species identification. Phylogenetic placement
has found applications in a variety of situations, such as data
cleaning and retention (Mahé et al., 2017), inference of new clades
(Dunthorn et al., 2014; Bass et al., 2018), estimation of ecological
profiles (Keck et al., 2018), identification of low-coverage
genomes of viral strains (Mühlemann et al., 2020),
phylogenetic analysis of viruses such as SARS-CoV-2 (Morel
et al., 2020; Turakhia et al., 2021), and in clinical studies of
microbial diseases (Srinivasan et al., 2012).

When analyzing the resulting data, there are two complementary
interpretations of phylogenetic placement: 1) as a set of individual
sequences, placed with respect to the reference phylogeny, e. g., for
taxonomic assignment, phylo-geographic tracing, or even possible
clinical relevance; 2) as a combined distribution of sequences on the
tree, characterizing the sampled environment at a given point in time
or space to examine the composition of a species community as a
whole, for instance as a means of sample ordination and
visualization, and association with environmental variables.

In this review, we provide an overview of existing methods to
conduct phylogenetic placement, as well as post-analysis methods
for visualization and knowledge inference from placement data.
We also discuss some practical aspects, such as common pitfalls
and misconceptions, as well as caveats and limitations of these
methods. We mainly refer to metagenomic input data (or more
accurately, metabarcoding data, see below for details) as it
represents the most common use case, but also highlight some
alternative use cases where phylogenetic placement is employed
for other types of sequence data.

2 PHYLOGENETIC PLACEMENT

2.1 Overview and Terminology
The modern approach to phylogenetic tree inference is based on
molecular sequence data, and uses stochastic models of sequence
evolution (Arenas, 2015) to infer the tree topology and its branch
lengths (Felsenstein, 2004; Yang, 2006). Note that the
computational cost to infer the optimal tree under the given
optimality criterion grows super-exponentially in the number of
sequences (Felsenstein, 2004). In addition, large trees comprising
more than a couple of hundred sequences are often cumbersome
to visualize, rendering the approach challenging for current (e. g.,
metagenomic) large datasets. Furthermore, the lack of
phylogenetic signal contained in the short reads of most HTS
technology usually does not suffice for a robust tree inference
(Dunthorn et al., 2014; Bininda-Emonds et al., 2001; Moret et al.,
2002; von Mering et al., 2007). Hence, phylogenetic placement
emerged from the demand to obtain phylogenetic information
about sequence sets that are too large in number and too short in
length to infer comprehensive phylogenetic trees (Matsen et al.,
2010; Berger et al., 2011). In a metagenomic context, a set of
sequences obtained from an environment such as water, soil, or
the human body, is here called a sample. This is often the data that
we intend to place, and might have further metadata associated
with it, e. g., environmental factors/variables such as temperature
or geo-locations where the sample was taken.
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Generally, the input of a phylogenetic placement analysis is a
phylogenetic Reference Tree (RT) consisting of sequences
spanning the genetic diversity that is expected in the
sequences to be placed into the tree. The tree can be rooted or
unrooted; in the latter case however, a “virtual” root (or top-level
trifurcation) is used in the computation as a fixed point of
reference (Czech et al., 2019). Then, for a single sequence
(e. g., a short read), in this context called a Query Sequence
(QS), the goal of phylogenetic placement is to determine the
branches of the RT to which the QS is most closely evolutionarily
related. Note that the RT is kept fixed, that is, the QSs are not
inserted as new branches into the tree, but rather “mapped” onto
its branches. Hence, the phylogenetic relationships between
individual QSs are not resolved.

This is the key insight that makes it possible to efficiently
compute the placement of large numbers of QSs. By only
determining the evolutionary relationship between the
sequences of the RT and each individual QS, the process can
be efficiently parallelized, and the required processing time scales
linearly in the number of QS. Furthermore, this allows us to
consider multiple branches as potential Placement Locations for a
given QS, representing uncertainty in the placement, often
expressed as a probability (or confidence) of the QS being
placed on that branch. This uncertainty might result from
weak phylogenetic signal, or might indicate some other issue
with the data, as explained later. In Maximum-Likelihood (ML)
based placement (see Section “Maximum Likelihood Placement”
for details), these probabilities are computed as the Likelihood
Weight Ratio (LWR) resulting from the evaluation of placing the
QS attached to an additional (hypothetical) branch into the tree.
Hence, for historic reasons, the probability of a placement
location (one QS placed on a specific branch) is often called
its LWR, and for a given QS, the sum of LWRs over all branches is
1 (equivalent to the total probability). See Figure 1 for a glossary
of the terminology, and see Table 1 for an overview of different
placement tools, and which of the aforementioned quantities they
can compute.

In other words, phylogenetic placement can be thought of as
an all-to-all mapping from QSs to branches of the RT, with a
probability for each placement location, as shown in Figures
2D,E. We can however also interpret each such placement
location as if it was an extra branch inserted into the RT, as
shown in Figures 2B,C. In particular, maximum likelihood
placement makes use of its underlying evolutionary model to
also estimate the involved branch lengths that are altered
through the insertion of a QS, see Figure 2B for details. This
interpretation highlights the aspect of each individual QS being
part of the underlying phylogeny. For example, this allows its
taxonomic assignment to that clade of the reference tree where
the QS shows the highest accumulated placement probability, as
explained later.

2.1.1 Misconceptions
In the existing literature, and from our experience in teaching the
topic as well as supporting the users of our software, some
concepts of phylogenetic placement are not always well
explained or understood. Although we have introduced these

concepts above already, we briefly address two common
misconceptions here, for clarity.

Firstly, a common misconception is that the tree is amended
by the QSs, that is, that new branches are added to the RT, and
that the phylogenetic relationships of the QSs with each other are
hence resolved. This is not the case; instead, the RT is kept fixed,
the QSs are only aligned against the reference alignment, but not
against each other (in ML placement), and the QSs are mapped
only to the existing branches in the RT. This mapping can
however be interpreted “as if” the QS was a new terminal
node (leaf or tip) of the tree, usually inserted (or “grafted”)
into the branch with the most probable placement location,
which can be useful in some applications.

Secondly, a further common misconception is that a QS is
only placed onto a single branch, or that only the best (most
likely) placement location is taken as the result for each placed
QS. Instead, each branch is seen as a potential placement

FIGURE 1 | Glossary and abbreviations.

TABLE 1 | General purpose placement tools. This table compares the features of
the general purpose (i. e., not use-case specific) phylogenetic placement
tools. Columns are as follows. Alignment: Does the tool need the QSs to be
aligned against the reference alignment? Multiple: Does the tool produce multiple
placement locations per QS, or just a single (best) one? Uncertainty: Is there
some measure of uncertainty (such as LWR) assigned to each placement
location? Branch Length: Does the tool compute the involved branch lengths
at each placement location for each QS.

Placement Tool Alignment Multiple Uncertainty Branch Lengths

PPLACER yes yes yes yes
RAXML-EPA yes yes yes yes
EPA-NG yes yes yes yes
RAPPAS no yes yes no
APPLES no no no yes
APP-SPAM no no no yes
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location with a certain probability, which sum to one over the
tree. It can however be useful to reduce the placement
distribution of a QS to only its most probable placement
location. Also, for practical reasons, typically not all
locations are stored in the resulting file (or even considered
in the computation by application of heuristics), as low
probability locations can often be discarded to save storage
space and downstream processing time; see Section “File
Format” for details. Lastly, some placement methods do
only output a single best placement, see Table 1.

In summary, phylogenetic placement yields a distribution of
potential locations of where a QS could be attached in the RT–but
it does not extend the RT by the QS with an actual branch.

2.1.2 File Format
Placement data is usually stored in the so-called jplace format
(Matsen et al., 2012), which is based on the json format (Bray,
2018; Douglas, 2018). See Figure 3 for an example. It uses a
custom augmentation of the Newick format (Archie et al., 1986)
to store the reference tree, where each branch is additionally
annotated by a unique edge number, so that placement locations
can easily refer to the branches. For each QS (named via the list "n"),
the format then stores a set of possible placement locations (in the list

"p"), where each location is describedby the values: 1)"edge_num",
which identifies the branch of this placement location,
2) "likelihood", which is used by maximum likelihood based
placement methods, 3) "like_weight_ratio" (LWR), which
denotes the probability (or confidence) of this placement location for
the given QS, 4) "distal_length" and
5) "pendant_length", which are the branch lengths involved
in the placement of the QS for the given placement location; see
Figure 2B for an explanation of these lengths.

These five data fields are the standard fields of the jplace
format; further fields can be added as needed. As noted above,
typically not all placement locations for a given QS are stored in
the file, as low probability placements unnecessarily increase the
file size without providing substantial information; in that case,
the sum of the stored LWR values might actually be smaller
than 1.

The format furthermore allows for multiple names in the "n"
list, as well as assigning a “multiplicity” to each such name (by
using a list called "nm" instead of "n"). For instance, this allows
to only store the placement locations for identical reads once,
while keeping track of the original raw abundances of these reads
or OTUs. A pair of a "n"/"nm" list and a "p" list is called a
“pquery”, and describes a set of placement locations for one or

FIGURE 2 | Overview of phylogenetic placement. Here, we show the typical process, focused on ML-based placement. For the sake of simplicity, we here omit
heuristics and other algorithmic improvements. Alignment-free placement works conceptually in an analogous way, but does not compute tree likelihoods. (A) Pipeline
and data flow. The input to phylogenetic placement are the Reference Tree (RT) and its corresponding Reference Alignment (RA), as well as the set of Query Sequences
(QSs) that we are interested in. The placement algorithm computes potential placement locations of a QS on the branches of the RT, for each QS in the input.
(B) Terminology. The nodes D and P belong to the Reference Tree (RT). When placing a Query Sequence (QS), the branch between these nodes is split into two parts by
a temporary new node C, which serves as the attachment point for another temporary new node Q that represents the QS. Note that these two new nodes are only
conceptually inserted into the RT–they represent the mapping of the QS onto that branch. The pendant branch leads to Q. The original branch is split into the proximal
branch, which leads towards the (possibly virtual) root of the RT, and the distal branch, which leads away from the root. (C) A single QS is placed onto a single branch
(that is, one placement location). Vertical distances symbolize branch lengths. Note that the QS is located at a certain position along its Reference Tree branch (splitting
that branch into distal and proximal parts), and has a (pendant) branch length of its own. At this step, ML-based placement computes the likelihood of the RT with the QS
as a (temporary) extra branch. For one single QS, this step is then repeated at every branch of the tree. (D)Once the likelihoods of placing the QS onto every branch have
been computed, the Likelihood Weight Ratios (LWRs) for this QS are computed. They express the confidence of placing the QS onto each branch, and can be
interpreted as a probability distribution of theQS across the tree (and hence sum to one across all branches). In the image, we omit pendant branch lengths for the sake of
simplicity. (E) The process is repeated for every QS, yielding an LWR-weighted “mapping” of each QS to each branch. We can visualize this as a cumulative distribution
across all QSs on the tree, coloring branches according to the total sum of the LWRs at that branch over all QS. See Figure 4A for a real-world example of this.
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more (identical) QSs. This structure is then repeated for each QS
that has been placed.

To our knowledge, the GENESIS library (Czech et al., 2020) is the
only general purpose toolkit for working with, and manipulating,
placement data in jplace format. It also incorporates many of
the downstream visualization and analysis techniques we describe
later on. Some other tools that offer basic capability to work with
jplace files are BoSSA (Lefeuvre, 2018), GGTREE (Yu et al.,
2017), and TREEIO (Wang et al., 2020), all of which can read
jplace files for processing in R.

With the release of several placement tools that do not use the
ML framework, see Section “Distance-Based Placement”, the
jplace file format (Matsen et al., 2012) may require an
update. The standard is written currently (as of version
3) with placement properties such as branch lengths and
likelihood scores in mind, which do not translate well to other
types of placement algorithms (pers. comm. with S. Mirarab, July
2020). Furthermore, it might be helpful to support sample names,
multiple samples per file, and additional per-sample or even per-
query annotations and other metadata in the file format. Being
based on json, this can already be achieved now by adding these
entries ad-hoc, but would lack support by parsers if not properly
standardized.

2.2 Types of Query Sequences
In principle, any type of genetic sequence data can be subjected to
placement, as long as the reference sequences span the genomic

regions where the query sequences originate from. Apart from the
availability of suitable reference sequences used to construct a
reference tree (see Section “Sequence Selection”), the primary
limiting factor is the extent to which a given placement tool
supports the data. Currently, the majority of placement tools
supports nucleotide (DNA/RNA) and amino acid (protein)
data. Many placement methods require query reads to be
aligned to the reference, i. e. they need to be homologs.

2.2.1 Metabarcoding and Amplicons
For the above reasons, a common approach to obtain
sequences is metabarcoding (Deiner et al., 2017; Hebert
et al., 2003; Savolainen et al., 2005; Kress and Erickson,
2008). In metabarcoding, one or several marker or
barcoding genes, such as 16S (Weisburg et al., 1991), 18S
(Meyer et al., 2010), ITS, COI, etc. (Woese and Fox, 1977;
Woese et al., 1990; Ji et al., 2013; Sunagawa et al., 2013) are
typically chosen to compute the reference alignment, and
appropriate primers are selected to enable metabarcode
sequencing of the sample (Deiner et al., 2017). A marker
gene should be universally present in the studied organisms,
and ideally should only occur once in the genome of each
organism (Dunthorn et al., 2014; Nguyen et al., 2014), i. e., be
single-copy. In practice, marker genes often occur multiple
times per genome, possibly requiring the need for copy
number correction. A marker gene should exhibit
sufficient between-species variation to distinguish them
from each other, but show low within-species variation
(Kress and Erickson, 2008). Using a metabarcoding
approach has several advantages: it targets loci of interest
and focuses the sequencing effort there (incidentally also
limiting the size of the reference MSA), barcoding genes are
typically well suited for phylogenetics (stable regions to aid
alignment paired with variable regions to discriminate
organisms), and the approach is generally cost-effective.
Such approaches use amplicon sequencing (Peabody et al.,
2015; Hugerth and Andersson, 2017), wherein only DNA
originating from the targeted region is amplified using the
Polymerase Chain Reaction (PCR, Bartlett and Stirling,
2003), thus yielding the subsequent sequencing of any
remaining DNA fragments from other regions highly
improbable. The resulting amplicon sequences have been
shown to be well-suited for phylogenetic placement (Mahé
et al., 2017; Janssen et al., 2018).

However, PCR-based amplifications are known to introduce
biases in the abundance of the sequencing reads, as some
fragments may be copied with a higher likelihood than others
(Morgan et al., 2010; Logares et al., 2014). Similarly, a further bias
that skews abundance results exists as different organisms may
have a different number of copies of the targeted gene, ranging
from single copies to 15 copies, depending on the organism (Lee
et al., 2009). Some methods exist that attempt to account for copy
number bias (Kembel et al., 2012; Angly et al., 2014; Pereira-
Flores et al., 2019) as well as for PCR amplification bias (Love
et al., 2016; Silverman et al., 2021).

When an untargeted sequencing approach is chosen
instead (such as shotgun metagenomic sequencing), using

FIGURE 3 | Jplace format for phylogenetic placement. The exemplary
file consists of a reference "tree" in a custom Newick format that annotates
edge numbers in curly brackets, followed by two pqueries, which is the term
for combined lists of sequence names and their placement locations.
The first pquery contains two placement locations ("p") for two query
sequences ("n"), and the second contains a single location ("p") for two
other sequences including their multiplicities/abundances ("nm"). The order
to interpret the values per location is given via the "fields" list, and
highlighted by colors here; additional "metadata" and a "version" of the
file format can be given. Example adapted from (Matsen et al., 2012).
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a broader scope for the reference sequences may be advisable,
such as using whole genome data. This might only be feasible
for small genomes such as some viruses or mitochondrial
DNA. Alternatively, a sensible approach is to filter out any
reads that did likely not originate from the genetic regions
that constitute the reference alignment. This can be achieved,
for example, using HMMSEARCH from the HMMER-package
(Eddy, 1995; Eddy, 1998), which allows the user to obtain a
list of reads that have an alignment score above a given
threshold. Similarly, so-called mitags (Logares et al., 2014)
represent a shotgun-based alternative to amplicon
sequencing.

Recently, placement methods have emerged that do not
require the alignment of query sequences to a reference, and
some do not even require the references to be aligned against each
other (see Section “Distance-Based Placement”). However,
establishing that query reads and reference sequences are
homologous is still necessary.

2.2.2 Sequencing Technologies
A further consideration is the choice of sequencing technology,
with the primary property being the length of the resulting
sequencing reads. So far, the vast majority of studies utilizing
phylogenetic placement have relied on short-read sequencing
technologies such as NGS, using by now well established
protocols to perform broad low-cost sequencing (van Dijk
et al., 2014). However, this approach produces very short
(150-400 nucleotide) reads, that typically only cover fragments
of a reference gene. For universal single-copy markers, this can
limit their applicability to phylogenetics due to the lower
information content. However, the approach has been applied
successfully to other types of data (Piredda et al., 2021; Cardoni
et al., 2022).

More recent sequencing technologies, called third
generation sequencing, or long-read sequencing (LRS),
yield individual reads that cover entire genes, or even
entire genomes (Amarasinghe et al., 2020). While
placement was originally developed for short read
sequencing, longer read lengths typically increase the
phylogenetic signal contained in reads, thus increasing the
reliability of phylogenetic methods. Indeed, such sequence
data have been shown to overcome this fundamental hurdle to
phylogenetically resolving the relationships between query
sequences that originally gave rise to phylogenetic placement
(Jamy et al., 2019).

An emerging third way to obtain longer reads is to combine
short reads into longer so-called Synthetic Long-Reads (SLRs),
which have been used successfully to characterize metagenomes
(Sharon et al., 2015; Kuleshov et al., 2016) and which improve
upon short-read metabarcoding approaches for taxonomic
classification (Jamy et al., 2019; Ritter et al., 2020; Jeong et al.,
2021).

Related to this is the assembly of genomes from
metagenomic sequences (MAGs, Tyson et al., 2020), a
technique which has recently been shown to reliably obtain
multi-loci data from highly diverse data sources and
environments (Parks et al., 2017). MAGs may be a

beneficial input for phylogenetic placement, especially for
methods that are able to directly handle such assemblies in
their entirety (Metin et al., 2021). Other placement methods
may also benefit from sequence assemblies when combined
with marker gene extraction, as it potentially increases the
number of viable query sequences.

2.2.3 Clustering
Once the wet-lab sequencing strategy has been determined, a user
eventually obtains a (typically large) set of sequences. After
quality control, a potential next step is to consider if, and
how, to cluster these raw sequences in order to reduce the
amount of data that has to be processed, often at the cost of
losing information. Common choices include clustering by
similarity threshold (≥ 97%) resulting in Operational
Taxonomic Units (OTUs, Blaxter et al., 2005; Edgar, 2010; Fu
et al., 2012;Westcott and Schloss, 2015; Rognes et al., 2016), more
strictly based on single nucleotide differences resulting in
Amplicon Sequencing Variants (ASVs, Callahan et al., 2016),
or more recent alternatives such as SWARM clustering (Mahé
et al., 2021). These methods are most commonly used for
clustering reads from marker regions, and hence applicable in
the placement context; for a comprehensive review of clustering
methods, see (Zou et al., 2020).

If possible, it is recommended to avoid clustering, in order
to retain potential phylogenetic signal; this choice however
also depends on study design and goals. However, even if
sequences are not clustered, we strongly recommend
dereplication, that is, removal of exact (strict) duplicates of
sequences, to avoid unnecessary redundant computations. For
the same reason, sequence dereplication is also useful when
pooling the sequences from multiple samples together and
placing the resulting set via a single placement run. Tools that
offer this capability include USEARCH (Edgar, 2010), and
VSEARCH (Rognes et al., 2016), as well as the placement-
specific CHUNKIFY command in GAPPA (Czech et al., 2020).

2.2.4 Outgroup Rooting
Finally, an often overlooked source of query sequences are
high-quality reference sequence databases. Here, the use-case
of placement shifts away from taxonomic assignment: instead
such data can be used to attempt an outgroup rooting of an
existing tree, using already classified sequences (Hubert et al.,
2014; Liede-Schumann et al., 2020; Morel et al., 2020). The
result of placement, in this case, is a set of suggested branches
on which to root the tree, including a probability estimate for
each root placement onto each branch (Liede-Schumann
et al., 2020).

2.3 Reference Sequences, Alignment, and
Tree
The phylogenetic reference tree (RT), inferred from a set of
reference sequences (RSs) using their alignment (Reference
Alignment, RA), is the foundation and scaffold for conducting
phylogenetic placement. Ideally, to avoid duplicating work, to
ensure high quality, and to provide stable points of reference for
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comparison between studies, suitable reference trees should be
provided by the respective research/organismal communities.
First efforts for microbial eukaryotes are on their way (Berney
et al., 2017; Del Campo et al., 2018; Rajter and Dunthorn, 2021;
Rajter et al., 2021), although some of these are not designed
explicitly for phylogenetic placements, but more taxonomic
groups will follow. Recently, efforts have also been made to
produce reference trees for higher order animals, such as fish
(Collins et al., 2021). As references are however not yet available
for all taxonomic groups, we here provide an overview of the
process (see also Mahé et al., 2017, Rajter et al., 2021, for practical
examples).

2.3.1 Sequence Selection
As phylogenetic placement cannot infer evolutionary
relationships below the taxonomic level of the reference tree,
the first step is the selection of suitable RSs, which should 1) cover
the diversity that is expected in the query sequences (QSs), and
2) be well-established and representative for their respective
clades to facilitate meaningful interpretation. In order to
capture unexpected diversity and potential outliers, it can be
advantageous to include a wider range of sequences as well (Mahé
et al., 2017), or to run preliminary tests and filtering (placement-
or similarity-based) with a broad reference to ensure that all
diversity in the QSs is accounted for.

In many cases, the selection process is (unfortunately) labor-
intense, as it requires hand-selecting known sequences from
reference databases such as SILVA (Pruesse et al., 2007; Quast
et al., 2013; Yilmaz et al., 2014), NCBI (Benson et al., 2009; Sayers
et al., 2009), GREENGENES (DeSantis et al., 2006; McDonald et al.,
2012), or RDP (Wang et al., 2007; Cole et al., 2014). This manual
process however also often provides the highest quality, and
allows to optimally assemble the RSs for a given project. See
also (Balvočiūtė and Huson, 2017) for a comparison of these
databases.

Important selection criteria are the number of sequences to be
selected, as well as their diversity; both of which depend on the
study design and goals. Generally, a number of RSs in the order of
hundreds to a few thousands has shown to provide enough
coverage for most QS datasets, while still being small enough
to properly visualize their phylogeny and to conduct all necessary
computations in reasonable time. Often, it is sufficient to include
a single species to represent a whole clade (Rajter and Dunthorn,
2021). Depending on the types of downstream analyses, it can be
a disadvantage to select sequences that are too similar to each
other (i. e., closely related species, or different strains of the same
species), as this can spread the placement distribution across
nearby branches. In other words, placements with similar
probability in many branches are mostly a consequence of
reference alignment regions for which large subtrees contain
(almost) identical sequences. This is however expected when
conducting taxonomic assignment at species or below-species
level, and the reference should be built with the targeted
taxonomic resolution in mind.

On the other hand, if the QSs contain enough phylogenetic
signal (e. g., when using long reads, whole genome data, or when
the target gene has sufficient variability), including multiple

representatives of a taxonomic group might allow to obtain
more finely resolved placements. For example, in short
genomes such as HIV or arthropod mitochondria, where
mutations are not concentrated in specific regions but spread
all over the genome, reads matching a reference alignment region
likely show a decent amount of variation, making placements
exploitable (Linard et al., 2020).

Lastly, the RSs need to at least span the genomic region that the
QSs come from. For a more robust inference of the RT however, it
can be advantageous to include a larger region with more
phylogenetic signal. Theoretically, if one wanted to place shotgun
sequences from entire genomes, whole-genomeRSswould be needed.

As an alternative to manual selection, the Phylogenetic
Automatic Reference Tree (PhAT, Czech et al., 2018) is a
method that uses reference taxonomic databases to select
suitable RSs which represent the diversity of (subsets of) the
database. In cases where taxonomic resolution at the species-level
does not require expert curation, the PhATmethod can provide a
basis for rapid data exploration, and help to obtain an overview of
the data and its intrinsic diversity.

2.3.2 Reference Alignment Computation
Next, for ML-based tree inference and placement, the RSs need to be
aligned against each other to obtain the reference alignment (RA).
Typically, this is conducted with de novomultiple sequence alignment
tools such as T-COFFEE (Notredame et al., 2000), MUSCLE (Edgar,
2004), MAFFT (Katoh et al., 2002), and others; see (Kemena and
Notredame, 2009; Pervez et al., 2014; Chatzou et al., 2016) for reviews.
Recently, MUSCLE v5 introduced an interesting new approach that
generates alignment ensembles to capture alignment uncertainty
(Edgar, 2021, preprint). In the ML framework, the QSs also need
to be aligned against the RA, see next section.

2.3.3 Tree Inference
Finally, given the RA, a phylogenetic tree of the RSs is inferred,
which is henceforth used as the reference tree (RT); see (Kapli
et al., 2020) for a general review on this topic. In theory, any
method that yields a fully resolved (bifurcating) tree is
applicable, e. g., neighbor joining (Saitou and Nei, 1987),
maximum parsimony (Sankoff, 1975), or Bayesian inference
(Holder and Lewis, 2003; Yang, 2006). In practice however,
maximum likelihood (ML) tree inference (Yang, 2006; Dhar
and Minin, 2016) is preferred, in particular when using ML-
based placement, as otherwise inconsistencies in the assumed
models of sequence evolution can affect placement accuracy.
To this end, common software tools include IQ-TREE
(Nguyen et al., 2015), FASTTREE2 (Price et al., 2010), and
RAxML (Stamatakis, 2014; Kozlov et al., 2019); see (Zhou
et al., 2018) for a review and evaluation of ML-based tree
inference tools. An open research question in this context is
how to incorporate uncertainty in the tree inference (and in the
alignment computation) with phylogenetic placement
(Huelsenbeck et al., 2001; Ronquist, 2004; Edgar, 2021).

2.3.4 Alignment of Query Sequences
For many placement methods, the query sequences need to be
aligned against the reference alignment. In principle, de novo
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alignment methods can be deployed to obtain a comprehensive
alignment of both the reference and query sequences. These tools
are however not intended for HTS data, and are not well suited for
handling the heterogeneity of phylogenetic placement data, with
(typically) longer, curated, high-quality reference sequences, and
short lower-quality reads (query sequences).

Hence, with the rise of high-throughput sequencing,
specialized tools have been developed that extend a given
(reference) alignment without fully recomputing the entire
alignment. In the context of phylogenetic placement, there are
two additional advantages that can be exploited to improve
efficiency: 1) query sequences only need to be aligned against
the reference, but not against each other (as their phylogenetic
relationship is not resolved during placement), and 2) insertions
into the reference that result from aligning a QS against the
reference can be omitted as they do not contain any phylogenetic
signal for the placement of the QS.

In the simplest case, only the reference alignment and query
sequences are required as input. For instance, the hmmalign
command of HMMER (Eddy, 1995; Eddy, 1998) can align query
sequences to the reference alignment using a profile Hidden
Markov Model (HMM) built from the reference alignment.
Note that the option -m has to be set in order to not insert
columns of gaps into the reference. Alternatively, the MAFFT

command --addfragments (Katoh and Frith, 2012) uses an
internally constructed guide tree built from a pairwise distance
matrix of the reference alignment to aid the alignment process;
here, the option --keeplength has to be set to not add columns
of gaps to the reference.

Furthermore, the PAPARA tool (Berger and Stamatakis, 2011;
Berger and Stamatakis, 2012) can be used that was specifically
developed to target phylogenetic placement. It takes the RT as
additional input, and uses inferred ancestral sequences at the
inner nodes of the tree to improve the alignment process. Here,
the option -r has to be set to not insert columns of gaps into the
reference. Similarly, PAGAN (Löytynoja et al., 2012) also utilizes
the information in the reference tree, but it does extend the
reference alignment with gaps as needed for the query sequence,
causing higher computational effort during placement.

Note that typically, read mapping tools such as BOWTIE2

(Langmead and Salzberg, 2012) or BWA (Li and Durbin, 2009;
Li and Durbin, 2010) are not recommended for phylogenetic
placement, as they expect low-divergent sequences as input, e. g.,
from a single species.

2.4 General Purpose Placement Methods
Once initial tasks such as reference tree creation and sequence
alignment are completed, the actual placement can commence.
There exist several distinct algorithmic approaches for
conducting the core part of phylogenetic placement, which we
introduce here; see Table 1 for an overview.

2.4.1 Maximum Likelihood Placement
Maximum Likelihood (ML) is a statistically interpretable and
robust general inference framework, and one of the most
common approaches for phylogenetic tree inference
(Felsenstein, 2004; Yang, 2006; Dhar and Minin, 2016). It

works by searching through the super-exponentially large
space of potential tree topologies for a given set of sequences
(taxa), and computing the phylogenetic likelihood of the
sequence data of these taxa being the result of the
evolutionary relationships between the taxa as described by
each potential tree, while also computing branch lengths of
the tree. The result of this inference is the tree topology one is
able to find using some heuristic search strategy that best (most
likely) “explains” the underlying sequence data. Due to the NP-
hardness of the tree search problem, the best tree one can find
might not be the globally best one.

To calculate this likelihood, MLmethods use statistical models
of sequence evolution that describe substitutions between
sequences (insertions and deletions are mostly ignored; it is
hence also called a substitution model), see (Arenas, 2015) for
a review. Consequently, the estimated parameters of these models
are an inherent property of the resulting phylogenetic tree. The
choice of model parameters also directly informs the specific
branch lengths of a tree, interpreting a tree under a different set of
model parameters thus may lead to inconsistencies. Therefore,
under the ML framework, we strongly recommend to use the
same substitution model and parameters for tree inference and
for phylogenetic placement.

Based on the general ML tree inference framework, ML-based
phylogenetic placement works in two steps: First, the QSs are
aligned against the RA as described above, and second, using the
resulting comprehensive alignment with both reference and
query sequences, the QSs are placed on the RT using the
maximum likelihood method to evaluate possible placement
locations (Matsen et al., 2010; Stark et al., 2010; Berger et al.,
2011).

Standard methods used in ML tree inference use search
heuristics to explore some possible tree topologies for a given
set of sequences. Instead, for a given QS, ML-based placement
only searches through the branches of the reference tree (RT) as
potential placement locations for the QS. That is, each branch of
the RT is evaluated as a placement location, and branch lengths of
the involved branches are optimized, following the same
approaches as for de novo tree inference. However, the distal
and proximal branch lengths of the placement (see Figure 2B for
details) are typically re-scaled, so that their sum is equal to the
original branch length in the RT. Finally, the phylogenetic
likelihood of the tree with the QS amended as a temporary
extra taxon is calculated.

For each QS and each branch of the RT, this process yields a
likelihood score (which is stored in the jplace format, see
Section “File Format”). The Likelihood Weight Ratio (LWR) of a
placement location is then computed as the ratio between this
likelihood score and the sum over all likelihood scores for the QS
across the entire tree (von Mering et al., 2007; Strimmer and
Rambaut, 2002). These likelihood scores sum to one across all
branches, and hence express the confidence (or probability) of the
QS being placed on a given branch.

The first two tools to conduct phylogenetic placement in an
ML framework were the simultaneously published (as preprints)
PPLACER (Matsen et al., 2010) and RAxML-EPA (Berger et al.,
2011). Both build on the same general ML concepts, but use
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different strategies for improving computational efficiency, e. g.,
by heuristically limiting the number of evaluated branches
(potential placement locations). Additionally, PPLACER offers a
Bayesian placement mode. The more recent EPA-NG (Barbera
et al., 2018) tool combines features from both PPLACER and
RAxML-EPA, is substantially faster and more scalable on large
numbers of cores, and hence is the recommended tool for ML-
based placement.

2.4.2 Ancestral-Reconstruction-Based Placement
Recently, multiple methods were introduced that do not rely on
aligning query sequences to a referenceMSA. The first such group
of methods is based on reconstructing ancestral states at interior
nodes of the reference tree, again using an ML framework. From
these ancestral sequences, k-mers are generated and associated
with the branches of the reference tree. Subsequently,
phylogenetic placement is performed by comparing the
constituent k-mers of a QS with the set of k-mers indexing the
reference tree branches, thereby obviating the need for QS
alignment. This is the general approach used in both RAPPAS
(Linard et al., 2019) and LSHPLACE (Brown and Truszkowski,
2012).

It should be noted that using this procedure, distal and
pendant branch lengths of a given RT branch are determined
during the association of k-mers with RT branches, meaning that
all placements on a given branch have the same fixed location.
This means that an additional step to conduct branch length
optimization that is not directly offered by RAPPAS or LSHPLACE

may be required to obtain more realistic placement branch
lengths. RAPPAS however does produce multiple placements
per QS and calculates a confidence measure akin to the LWR,
yielding a distribution for placing a single QS onto different
branches of the tree.

2.4.3 Distance-Based Placement
Finally, the most recent placement approaches utilize methods
from distance-based phylogenetic inference.

For example, APPLES (Metin et al., 2019) is based on the
least-squares criterion for tree reconstruction (Felsenstein,
2004). For a given tree, the least-squares method calculates
the difference between the pairwise sequence distances and the
pairwise patristic distances (i. e., the path lengths between two
leaves). A least-squares optimal tree is the tree for which this
difference is minimized. In APPLES, this criterion is used to
score possible placement locations of a QS on an existing tree,
returning the branch which minimizes the between-distances
difference. A key advantage of the least-squares approach is its
ability to efficiently handle reference trees with hundreds of
thousands of leaves, which is currently not computationally
feasible using ML methods. Further, the method does not
require an alignment of the sequences involved, requiring
only a measure of pairwise distance between them. Note
however that as these methods still require a reference tree,
computing a reference MSA may still be needed, unless the tree
is inferred via distance-based methods as well. Consequently,
even unassembled sequences, such as genome skims
(Dodsworth, 2015), may be used both as reference and query

sequences. Recently, an updated APPLES-2 was published that
further improves upon the scalability and accuracy of the tool
(Metin et al., 2021). Note also that APPLES can take as input,
but does not require, aligned sequences.

The most recent alignment-free method is APP-SPAM (Blanke
and Morgenstern, 2021). It utilizes the concept of a spaced-word,
which can be understood as a type of k-mer for which only some
characters have to be identical for two subsequences to be
considered as having the same k-mer. This relaxed equality
definition is informed by a binary pattern, indicating for each
site of a spaced word whether it should be taken into account (1)
or disregarded (0). Building on this, the tool calculates pairwise
distances between a QS and the RSs based on the number of
shared spaced-words. Subsequently, the tool identifies the
placement branch of a QS as either the terminal branch of the
closest RS, or the branch leading to the parental node of the LCA
of the two closest RSs, depending on the strength of the signal of
the closest RS. Notably, APP-SPAM is able to provide both distal and
pendant branch lengths for the placements it produces, and does
so using an estimated phylogenetic distance (the Jukes-Cantor
distance, Jukes and Cantor, 1969). Note that both APPLES and
APP-SPAM only produce a single placement per QS and can
therefore not offer statistical measures of placement
uncertainty such as the LWR.

Generally, distance-based placement methods produce
results with lower accuracy compared to ML-based
placement, though this gap appears to be narrowing. These
newer approaches do however expand the scope of placement
to sizes of reference trees, and lengths of reference sequences,
that are orders of magnitude larger than what is currently
possible with ML methods.

2.5 Application-Specific Placement
Methods
Several additional placement methods exist. We provide a survey
of these in this section. The placement methods covered in this
section set themselves apart through their more specific use-cases,
however this does not imply that their scope of use is necessarily
limited.

2.5.1 Viral Data
A particularly challenging use case for phylogenetic methods is
the investigation of viral data, with a highly relevant example
coming from the SARS-CoV-2 pandemic. Due to the dense
sampling involved in studying such viral outbreaks, differences
between individual taxa in a prospective tree may only be due to a
very low number of, or even single, mutations. Consequently the
amount of phylogenetic signal is generally very low, complicating
tree reconstruction (Morel et al., 2020). Yet, distinguishing
between major viral variants and identifying them precisely
from a given clinical sample is crucial for epidemiological
studies. In this context the USHER software was introduced that
specifically focuses on phylogenetic placement of SARS-CoV-2
sequences (Turakhia et al., 2021). In contrast to ML methods,
USHER uses a Maximum Parsimony (MP) approach, and does
not operate on the full sequence alignment. This allows the
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method to focus directly on individual mutations, and
consequently only use a fraction of the runtime and memory
footprint of conventional ML placement methods. Note that the
accuracy of MP-based phylogenetic methods can suffer when one
or more lineages in the tree have experienced rapid evolution that
results in long branch lengths. In such cases MP may incorrectly
determine such lineages to be closely related, an effect termed
long branch attraction (Felsenstein, 1978; Bergsten, 2005). While
this is less of an issue for very closely related sequences such as
SARS-CoV-2 or other (but not all) viral data, it may yield the
application of such approaches to different types of data more
challenging.

2.5.2 Gene Trees
In principle, all placement methods aim to provide the location of
a QS on a phylogeny that accurately reflects the underlying
pattern of speciation, i. e., the species tree. In practice, the
reference tree is typically only inferred on a single gene (16S,
18S, ITS, etc.), yielding a gene tree which may substantially differ
from the species tree, called gene-tree discordance (Degnan and
Rosenberg, 2009). Alternatively, we may have multiple such gene
trees that induce a species tree, and subsequently want to perform
query placement onto the species tree via placement onto the
constituent gene trees (Sunagawa et al., 2013). Currently, only
two placement methods are able to handle such cases: INSTRAL
and DEPP. INSTRAL (Rabiee and Mirarab, 2019) performs
placement of QSs for a species tree induced by a set of gene
trees. It does so by first placing into the individual gene trees using
existingML placement methods, then re-inferring the species tree
from the extended gene trees. In contrast to this, DEPP (Jiang
et al., 2021, preprint) only considers the problem of discordance
between a gene tree and its species tree and attempts to account
for this during the placement into the species tree. The approach
is based on a model of gene tree discordance learned from the
data using deep neural networks that yields an embedding of
given sequences into a euclidean space. Incidentally, this makes
DEPP the first and so-far only phylogenetic placement method to
incorporate machine learning. DEPP then uses the pairwise
distances that result from the embedding of both reference
and query sequences as input to APPLES, which computes the
least-squares placement of the QSs.

2.5.3 Other Use Cases
Some further tools make application-specific usage of placement.
The first pertains to the specific case of samples containing
sequences from exactly two organisms, and the task of
identifying their respective known reference organisms. The
tool MISA was developed with this specific use-case in mind
(Balaban and Mirarab, 2020).

The second relates to either placing morphological sequences
from fossils typically represented by binary characters (presence/
absence of a trait) or Ancient DNA (aDNA) sequences. Placing
ancient DNA sequences is generally challenging for analysis
because of the high degree of degradation due to the age of
the DNA molecules, generally shorter read lengths ranging
between 50 and 150 base pairs, and post-mortem deamination
(Hofreiter et al., 2001). The PATHPHYNDER tool aims to solve this

use-case (Martiniano et al., 2022, preprint). Like USHER,

PATHPHYNDER operates on nucleotide variants, focusing on
single nucleotide polymorphisms. Furthermore, phylogenetic
placement has been used for placement of fossils (Berger and
Stamatakis, 2010; Bomfleur et al., 2015) using morphological
data. This approach uses the maximum likelihood framework to
use the signal from mixed morphological (binary) and molecular
partitions in the underlying MSA.

Lastly, phylogenetic placement has also been proposed as a
way to perform OTU clustering. The HMMUFOTU (Zheng et al.,
2018) tool implements this specific use-case, along with
automated taxonomic assignment (see also Section
“Taxonomic Classification and Functional Analysis”). A
unique characteristic in comparison to other placement tools
is that HMMUFOTU also performs QS alignment and uses this
information to pre-select promising placement locations.

2.6 Workflows Based on Phylogenetic
Placement
Over the last decade, several pipelines have been published that
use phylogenetic placement tools as their core method, building
on it and using its result in various ways.

2.6.1 Automated Analysis Pipelines
One class of placement pipelines focus on simplifying the overall
use of placement methods, typically providing the user with the
option to use a pre-computed reference tree, obviating the need
for manual selection of reference taxa (Stark et al., 2010; Carbone
et al., 2016; Douglas et al., 2018; Carbone et al., 2019; Douglas
et al., 2020; Erazo et al., 2021; Sempéré et al., 2021). A number of
these pipelines also automate the generation of key metrics and
downstream analysis steps. Among these pipelines, of particular
note is PICRUST2 (Douglas et al., 2018; Douglas et al., 2020),
which stands out for accounting for 16S copy number correction,
and providing the user with a prediction of the functional content
of a sample. Similarly, PAPRICA (Erazo et al., 2021) is a pipeline
that computes metabolic pathway predictions for bacterial
metagenomic sample data.

2.6.2 Divide-And-Conquer Placement
A further key challenge for existing phylogenetic placement tools
is scalability with regards to the size of the reference tree. While
more recent methods have shown significant improvements in
both the memory footprint and execution time required when
placing QSs on reference trees on the order of 105 reference taxa
(see Section “Distance-Based Placement”), such input sizes
remain extremely challenging for ML-based placement
methods. A number of workflows have been proposed to scale
existing placement methods for this use-case by splitting up the
reference tree into smaller subtrees on which phylogenetic
placement is then performed, creating a divide-and-conquer
approach to phylogenetic placement (Mirarab et al., 2012;
Czech et al., 2018; Czech et al., 2020; Koning et al., 2021;
Wedell et al., 2021). These approaches vary primarily in how
they select subtrees. SEPP (Mirarab et al., 2012) and PPLACERDC

(Koning et al., 2021) generate a subtree based on the topology of
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the reference tree. SEPP is a general boosting technique in
particular for highly diverse reference trees (Liu et al., 2012;
Mirarab et al., 2012). Further, a multi-level placement approach
exists (Czech et al., 2018; Czech et al., 2020), which first places
onto a broad RT, and then extracts QSs in pre-selected clades of
that RT to place them again onto clade-specific high-resolution
RTs. Finally, PPLACER-XR (Wedell et al., 2021) selects a set of
neighboring reference branches based on similarity to each query
sequence, out of which it creates a subtree. Note that in this case,
when decomposing the reference tree differently for every query
sequence, scalability with regards to the number of query
sequences is severely reduced.

A central promise of placement on very large trees is to simplify
the curation and engineering tasks involved in creating a reference
tree, as here a typical challenge is to decide which taxa to include in
the tree. If placement can instead be performed on a tree
encompassing an entire database, the curation challenge is
circumvented. However, as another common issue with reference
tree generation is the inclusion of overly similar reference sequences
resulting in unclear or fuzzy placement signal, divide-and-conquer
placement approaches may not be sufficient on their own.

2.6.3 Evaluation of Placement Tools
Lastly, PEWO is an extensible testing framework specifically
aimed at benchmarking and comparing different phylogenetic
placement softwares (Linard et al., 2020). It includes a wide
range of datasets and thus provides an important resource for
identifying which placement tool is best suited for specific
use-cases by evaluating the accuracy of existing tools, given
some dataset. PEWO does so using a pruning-based
evaluation procedure, where a subset of leaves is removed
from a reference tree. This subset of sequences is subsequently
used as input QSs for placement. The accuracy of a placement
is calculated as the number of nodes between the best
placement location, and the original location of the QS on
the reference tree (called the node distance). This basic
approach is used for evaluation in most publications that
introduce new placement approaches. Note that the node
distance measures two sources of error: error introduced by
the placement algorithm, and error introduced by the pruning
of the reference tree. In contrast to this, the “delta error” used
in the evaluation of APPLES measures the additional error
introduced through placement, in addition to the error
introduced by the process of altering the reference tree
through pruning (Metin et al., 2019). This new metric is
however not yet included in the PEWO workflow.
Nevertheless, the usefulness of a comprehensive and
standardized testing framework cannot be emphasized
enough, as it substantially facilitates further advancement
and standardization in the field and the development of
novel methods.

3 VISUALIZATION AND ANALYSIS

As mentioned before, there are two ways to conceptualize
phylogenetic placement: 1) as an assignment (or mapping) of

individual sequences to the branches of a phylogeny, usually
taking the (n-)most likely placement location(s) of each sequence,
or 2) as the distribution of all sequences of a sample across the
tree, taking their respective abundances and placement
probabilities into account. The former is similar to taxonomic
assignment, but with full phylogenetic resolution instead of
resolution at the taxonomic levels only, while the latter focuses
on, e. g., species communities and their diversity as a whole. In the
following we provide an overview of analysis methods that make
use of such data.

3.1 Abundances and Multiplicities
In both interpretations, an important consideration is whether to
take sequence abundances into account. When working with
strictly identical sequences, or sequences resulting from some
(OTU) clustering, the number of occurrences of each sequence or
size of each cluster can be used as additional information for
interpreting, e. g., community structure. On the one hand,
including their abundances with the placement of each
sequence yields information on how prevalent the species of
these sequences are; for example, this can provide insight into the
key (most abundant) species in environmental samples. On the
other hand, dropping abundances and instead considering each
sequence once (as a singleton) is more useful for estimating total
diversity and taxonomic composition. For example, this way the
number of distinct sequences can be regarded as a proxy for the
number of species that are present in a sample. Whether to
include abundances should hence be decided depending on the
type of analysis conducted.

In the jplace format, these abundances can be stored as the
so-called “multiplicity” of each placement (Matsen et al., 2012), in
the "nm" data field. Unfortunately, the fasta (Pearson and
Lipman, 1988) and phylip (Felsenstein, 1981) formats used as
input to placement do not natively support abundance
annotations, and current placement tools often do not handle
them automatically, meaning that the information can be lost.
However, the CHUNKIFY workflow (Czech et al., 2018; Czech et al.,
2020) mentioned in Section “Clustering” takes abundances into
account and annotates them as multiplicities in the resulting
jplace file. Furthermore, GAPPA (Czech et al., 2020) offers a
command to edit the multiplicities as needed, for example setting
them post-hoc to the initial sequence abundance determination.

3.2 Visualization
Prior to more in-depth analyses, a first step in most workflows is a
visualization of the immediate results. Following the two
interpretations of phylogenetic placement (and hence,
depending on the research question at hand), there are several
ways to visualize placement results.

First, individual placements can be shown as actual
branches attached to the RT, e. g., Figure 2C. Typically,
only the most likely placement location per sequence is
used for this, in order to avoid cluttering of the tree; this
hence omits the information about uncertainty. This can be
conducted by generating trees from placement results, e. g., in
Newick format. Tools to this end are GAPPA (Czech et al.,
2020) and GUPPY, which is part of PPLACER (Matsen et al., 2010).
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This can subsequently be visualized via standard tree viewing
tools (for a review, see Czech et al., 2019). Note however that
such a visualizations can quickly become overloaded when the
number of QSs becomes large.

Second, the LWR distribution of a single sequence can be
visualized, to depict the uncertainty in placement across the tree,
for example with GGTREE (Yu et al., 2017) and ITOL (Letunic and
Bork, 2016; Letunic and Bork, 2019).

Third, the distribution of all sequences can be visualized
directly on the reference tree, for example as shown in
Figures 2E, 4A, taking their per-branch probabilities (and
potentially their multiplicities/abundances) into account. This
gives an overview of all placements, and can for example reveal
important clades that received a high fraction of placements, or
indicate whether placements are concentrated in a specific region
of the tree. These visualizations can directly be generated by
GAPPA (Czech et al., 2020) and ITOL (Letunic and Bork, 2016;
Letunic and Bork, 2019); furthermore, GUPPY, can produce tree
visualizations in the phyloXML format (Han and Zmasek, 2009),
which can subsequently be displayed by tree viewer tools such as
ARCHAEOPTERYX (Han and Zmasek, 2009).

3.3 Placement Quality and Uncertainty
Quantification
An important post-analysis aspect is quality control, both in
order to assess the suitability of the RT for the given placed
sequences (to, e. g., test for missing reference sequences), and in
order to assess the placed sequences themselves. Assuming a
‘perfect’ reference tree that exactly represents the diversity of the
query sequences, the theoretical expectation is that each sequence
gets placed onto a leaf of the tree with an LWR close to 1. Ignoring
sequencing errors and other technical issues, deviations from this
expectation can be due to several issues.

To this end, plotting the histograms or the distribution of the
confidences (LWRs) across all placements can be useful,
Figure 4C. A more involved metric is the so-called Expected
Distance between Placement Locations (EDPL, Masten et al.,
2010), which for a given sequence represents the uncertainty-
weighted average distance between all placement locations of that
sequence, or in other words, the sum of distances between
locations, weighted by their respective probability, see
Figure 4D. The EDPL is a measure of how far the likely
placement locations of a sequence are spread out across the
tree. It hence can distinguish between local and global
uncertainty of the placements, that is, between cases where
nearby edges constitute equally good placement locations
versus cases where the sequence does not have a clear
placement position in the tree (Matsen et al., 2010). These
metrics can be explored with GAPPA (Czech et al., 2020) and
GUPPY (Matsen et al., 2010); see their respective manuals for the
available commands.

Examining the distribution of placement statistics, Figures
4C,D, or even the values of individual sequences, can help to
identify the causes of problematic placements: 1) Sequences that
are spread out across a clade with a flat placement distribution
might indicate that too many closely related sequences, such as

strains, are included in the RT; the EDPL can be used to quantify
this. The query sequence is then likely another variant belonging
to this subtree. 2) Placements towards inner branches of the RT
might hint a hard to place query sequence, or at a lack of reference
sequence diversity. This occurs if the (putative) ancestor
represented by an inner node of the tree is more closely
related to the QSs than the extant representatives included in
the RT. This can either be the result of missing taxa in the RT, or
even because the diversity of the clade is not fully known yet (also
known as incomplete taxon sampling), in which case the QS
might have originated from a previously undescribed species.
3) Sequences placed in two distinct clades might indicate
technical errors such as the presence of chimeric sequences
(Haas et al., 2011). 4) Sequences with elevated placement
probability in multiple clades (e. g., placements in more than
two subtrees) usually result from more severe issues, such as a
total lack of suitable reference sequences for the QS, or a severe
misalignment of the QS to the reference. This can for instance
occur if metagenomic shotgun data has not been properly filtered,
such that the genome region that the QS originated from is not
included in the underlying MSA. 5) Lastly, long pendant lengths
can also occur if a QS does not fit anywhere in the RT, in
particular when the RT contains outgroups, which can cause long
branch attraction for placed sequences (Bergsten, 2005).

Quantifying these uncertainties in a meaningful and
interpretable way, and distinguishing between their causes, are
open research questions. Approaches such as considering the
EDPL, flatness of the LWR distribution, pendant lengths relative
to the surrounding branch lengths of the RT, might help here, but
more work is needed in order to distinguish actual issues from the
identification of a new species based on their placement.

3.4 Taxonomic Classification and
Functional Analysis
By understanding the taxonomic composition of an environment,
questions about its species diversity and richness can be
answered. Typical metagenomic data analyses hence often
include a taxonomic classification of reads with respect to a
database of known sequences (Breitwieser et al., 2019), for
example by aggregating relative abundances per taxonomic
group. In addition, such a classification based on known data
enables to analyze which pathways and functions are present in a
sample, and hence to gain insight into the metabolic capabilities
of a microbial community.

3.4.1 Preexisting Tools
Many tools exist to these ends: BLAST (Altschul et al., 1990) and
other similarity-based methods were among the early methods,
but depend on the threshold settings for various parameters
(Shah et al., 2019), only provide meaningful results if the
reference database contains sequences closely related to the
queries (Mahé et al., 2017), and the closest hit does often not
represent the most closely related species (Koski and Golding,
2001; Clemente et al., 2011). Thus, the advantages of leveraging
the power of phylogenetics for taxonomic assignment have long
been recognized (Delsuc and Ranwez, 2020). The classification
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can be based on de novo construction of a phylogeny (Krause
et al., 2008; Schreiber et al., 2010), which as mentioned is
computationally expensive, and tree topologies might change
between samples, yielding downstream analyses and
independent comparisons between studies challenging (Boyd
et al., 2018). Other tools to investigate the community
composition of metagenome datasets via phylogenomic
assignment of markers genes are BUSCO (all kingdoms, Simão
et al., 2015) and AMPHORA2 (Bacteria and Archaea, Wu and Scott,

2012). These allow relatively fast de novo phylogenetic search
using several markers simultaneously. Alternatively, dedicated
pipelines for 16S metabarcoding data such as QIIME (Caporaso
et al., 2010; Bolyen et al., 2019) and MOTHUR (Schloss et al., 2009)
are routinely used to conduct taxonomic assignment based on
sequence databases and established phylogenies as well as
taxonomies; see Section “Sequence Selection” for a list of
common databases, and see (López-García et al., 2018; Prodan
et al., 2020) for comparisons of such pipelines. Other tools for

FIGURE 4 | Examination of phylogenetic placement data. Here, we show some techniques for visually inspecting placement data, using an exemplary dataset
consisting of 154 soil samples from neotropical rain forests placed on an eukaryotic reference tree (Mahé et al., 2017). (A)Heat tree showing the distribution of millions of
amplicon reads on the reference tree by summing over the per-branch LikelihoodWeight Ratios (LWRs) of all reads. The high abundance of placed reads in the Alveolata
clade (dark branches in the lower left) visualizes a main finding of the dataset in form of an over-abundance of reads from that clade, shown in the phylogenetic
context of the reference tree. Figure adapted from (Mahé et al., 2017). (B) Taxonomic assignment of all reads based on the PR2 (Benson et al., 2009; Guillou et al., 2012)
taxonomy. The taxonomy of the reference sequences was used to label each branch of the reference tree by its highest non-conflicting taxonomic path. Then, for each
read, the LWRs of its placement locations were accumulated for the branches, creating an overview of taxonomic abundances taking placement confidences into
account. The result across all reads is shown here as a Krona plot (Ondov et al., 2011). (C) Histogram of the LWRs of the first three most likely placement locations of
each read, showing howmany of the reads have their first, second, and third most likely placement at each (binned) LWR value. For example, the highest bin of LWR.1 on
the right hand side indicates that 20% of the reads have a first (most likely) placement position at or above an LWR of 0.95. That is, these placements have a high LWR
and are hence placed with high certainty onto their respective branches. Note that the second most likely placement (LWR.2) can never have an LWR exceeding 1/2
(otherwise, it would be the most likely), the third most likely (LWR.3) not more than 1/3 (otherwise, it would be the second most likely), and so forth. (D) Histogram of the
Expected Distance between Placement Locations (EDPL), which are computed as the distances (in terms of ML branch path length) between placement locations of a
query sequence, weighted by the respective LWR of each location. The EDPL measures how far the placements of a sequence are spread across the branches of the
reference tree, and hence how certain the placement in a “neighborhood” of the tree is. Here, most reads have an EDPL below 0.24 branch length units (mean expected
number of substitutions per site). This indicates that the reads have most of their likely placements close to one another, within two branches on average, given that the
used reference tree has an average branch length of about 0.12.
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taxonomic assignment and profiling are available, for example
based on k-mers, which often use a fixed taxonomy such as the
NCBI taxonomy (Benson et al., 2009; Sayers et al., 2009) to
propose an evolutionary context for query sequences. They hence
use a taxonomic tree without branch lengths, which can be an
advantage when a fully resolved phylogeny is not available. Tools
to this end are for exampleMEGAN (Huson et al., 2007), KRAKEN2

(Wood et al., 2014; Wood et al., 2019), and KAIJU (Menzel et al.,
2016), see (Sczyrba et al., 2017; Bremges and McHardy, 2018;
Meyer et al., 2019; Ye et al., 2019) for benchmarks and
comparisons. However, these approaches are based on
sequence similarity and related approaches, and can therefore
be incongruent with the true underlying phylogenetic
relationships of the sequences under comparison (Smith and
Pease, 2017).

3.4.2 Placement-Based Approaches
Phylogenetic placement can be employed to perform an accurate
assignment of QSs to taxonomic labels (Czech et al., 2018), with
potentially higher resolution than methods based on manually
curated taxonomies (Darling et al., 2014; Rajter et al., 2021). This
approach leverages models of sequence evolution (Darling et al.,
2014), and is hence more accurate than similarity-based methods
(von Mering et al., 2007). A further advantage over the above
pipelines is the ability to use custom reference trees, thus
providing a better context for interpreting the data under
study. Incongruencies between the taxonomy and the
phylogeny can however hinder the assignment, if they are not
resolved (Matsen and Gallagher, 2012). Furthermore, it is
important to note that placement-based methods only work
when the query sequences are homologous to the available
reference data, hence currently limiting the approach to, e. g.,
short genomes, metabarcoding or filtered metagenomic data.

A simple approach for taxonomic annotation based on
placements is to label each branch of the RT by the most
descriptive taxonomic path of its descendants, and to assign
each QS to these labels based on its placement locations,
potentially weighted by LWRs (Czech et al., 2018; Kozlov
et al., 2016). This is implemented in GAPPA (Czech et al.,
2020), see Figure 4B for an example; a similar visualization of
the taxonomic assignment of placements can be conducted with
BOSSA (Lefeuvre, 2018).

More involved and specialized approaches have also been
suggested. PHYLOSIFT (Darling et al., 2014) is a workflow that
employs placement for taxonomic classification, using a
database of gene families that are particularly well suited for
metagenomics. The workflow further includes Edge PCA
(introduced in Section “Similarity between Samples”) to
assess community structure across samples, and offers
Bayesian hypothesis testing for the presence of phylogenetic
lineages. The gene-centric taxonomic profiling tool
METANNOTATE (Petrenko et al., 2015) uses a similar
approach to identify organisms within a metagenomic
sample that perform a function of interest. To this end, it
searches shotgun sequences against the NCBI database
(Benson et al., 2009; Sayers et al., 2009) first, and then
employs placement to classify the reads with respect to

genes and pathways of interest. GRAFTM (Boyd et al., 2018)
is a tool for phylogenetic classification of genes of interest in
large metagenomic datasets. Its primary application is to
characterize sample composition using taxonomic marker
genes, which can also target specific populations or
functions. The abundance profiling methods TIPP (Nguyen
et al., 2014) and TIPP2 (Shah et al., 2021) also use marker
genes, and use the SEPP (Liu et al., 2012; Mirarab et al., 2012)
boosting technique for phylogenetic placement with highly
diverse reference trees, which increases classification accuracy
when under-represented (novel) genomes are present in the
dataset. The more recently introduced TREESAPP tool (Morgan-
Lang et al., 2020) uses a similar underlying framework, but
improves functional and taxonomic annotation by regressing
on the evolutionary distances (branch lengths) of the placed
sequences, thereby increasing accuracy and reducing false
discovery. Lastly, PHYLOMAGNET (Schön et al., 2019) is a
workflow for gene-centric metagenome assembly (MAGs)
that can determine the presence of taxa and pathways of
interest in large short-read datasets. It allows to explore and
pre-screen microbial datasets, in order to select good candidate
sets for metagenomic assembly.

3.5 Diversity Estimates
A goal that is intrinsically connected to taxonomic assignment
in studies that involve metagenomic and metabarcode
sequencing is to quantify the diversity within a sample
(called α-diversity) and the diversity between samples
(called β-diversity). A plethora of methods exists to
quantify the diversity of a set of sequences (for an excellent
review, see Tucker et al., 2017). Here, we focus on those
approaches that specifically work in conjunction with
phylogenetic placement.

Among the α-diversity metrics, Faith’s Phylogenetic Diversity
(PD) stands out, both for its widespread use in the literature and
its direct use of phylogenetic information (Faith, 1992). More
recently, a parameterized generalization of the PDwas introduced
that is able to interpolate between the classical PD and its
abundance weighted formulation (McCoy and Matsen, 2013).
Notably, this Balance Weighted Phylogenetic Diversity (BWPD)
has been implemented to work directly with the results of
phylogenetic placement, using the GUPPY fpd command
(Matsen et al., 2010; Darling et al., 2014).

To our knowledge, the only other method that computes a
measure of α-diversity directly from phylogenetic placement
results is SCRAPP (Barbera et al., 2020), which also deploys
species delimitation methods (Zhang et al., 2013; Kapli et al.,
2017). In this method, the connection of phylogenetics to
diversity is through the concept of a molecular species
(Agapow et al., 2004), and quantifying how many such species
are contained within a given sample. To facilitate this, SCRAPP

resolves the between-QS phylogenetic relationships, resulting in
per-reference-branch trees of those QSs that had their most likely
placement on that specific branch. Thus, a byproduct of applying
this method is a set of phylogenetic trees of the query sequences.

When the goal is to compute a β-diversity measure, a common
choice for non-placement based approaches is the so-called
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Unifrac distance (Lozupone and Knight, 2005; Lozupone et al.,
2007), which quantifies the relatedness of two communities that
are represented by leaves of a shared phylogenetic tree.
Interestingly, the weighted version of the Unifrac distance has
been shown to be equivalent to the KR-distance (Evans and
Matsen, 2012), see Section “Similarity between Samples”. As the
Unifrac distance is widely used and well understood, this makes
the KR-distance a safe choice for calculating between-sample
distances, and thus a measure of β-diversity based on
phylogenetic placement results.

3.6 Placement Distribution
Depending on the research question at hand, and for larger
numbers of QSs, it is often more convenient and easier to
interpret to look at the overall placement distribution instead
of individually placed sequences. This distribution, as shown in
Figures 2E, 4A, summarizes an entire sample (or even multiple
samples) by adding up the per-branch probabilities (i. e., LWRs)
of each placement location of all sequences in the sample(s),
ignoring all branch lengths (distal, proximal, and pendant) of the
placements. In this context, the accumulated per-branch
probabilities are also called the edge mass of a given branch.
This terminology is derived from viewing the reference tree as a
graph consisting of nodes and edges, and viewing the placements
as a mass distribution on that graph. This focuses more on the
mathematical aspects of the data, and provides a useful
framework for the analysis methods described below.

3.6.1 Normalization of Absolute Abundances
High-throughput metagenomic sequence data are inherently
compositional (Li, 2015; Gloor et al., 2017; Quinn et al., 2018),
meaning that the total number of reads from HTS (absolute
abundances) are mostly a function of available biological material
and the specifics of the sequencing process. In other words, the
total number of sequences per sample (often also called library
size) is insignificant when comparing samples, see (Weiss et al.,
2017; Du et al., 2018; Lin and Peddada, 2020) for reviews on this.
This implies that sequence abundances are not comparable across
samples, and that they can only be interpreted as proportions
relative to each another (Calle, 2013; Silverman et al., 2017).
However, the PCR amplification process is known to introduce
biases (Logares et al., 2014), potentially skewing these
proportions. For example, the relative abundances of the final
amplicons do not necessarily reflect the original ratio of the input
gene regions (Kanagawa, 2013; Li, 2015); this can be problematic
in comparative studies. If these characteristics are not considered
in analyses of the data (Weiss et al., 2017), spurious statistical
results can occur (Aitchison, 1986; Jackson, 1997; Gloor et al.,
2016; Tsilimigras and Fodor, 2016); see (Czech, 2020) for further
details. For this reason, the estimation of indices such as the
species richness is often implemented via so-called rarefaction
and rarefaction curves (Gotelli and Colwell, 2001), which might
however ignore a potentially large amount of the available valid
data (McMurdie and Homes, 2014).

Phylogenetic placement of such data hence also needs to take
this into account. The total edge masses (e. g., computed as the
sum over all LWRs of a sample) are not informative, and merely

reflect the total number of placed sequences. A simple strategy,
upon which several of the analysis methods introduced below are
based, is the normalization of the masses by dividing them by
their total sum, effectively turning absolute abundances into
relative abundances. This also eliminates the need for
rarefaction, as low-abundance sequences only contribute
marginally to the data. However, using this approach can still
induce compositional artifacts in the data, as the per-branch
probabilities (and hence the edge masses per sequence) have to
sum to one for all branches of the tree. In other words, it is
conceptually not possible to change the relative edge mass on a
branch without also affecting edges masses on other branches.

3.6.2 Transformations of Compositional Data
A statistically advantageous way to circumvent these effects, and
resulting misinterpretations of compositional placement data, is
to transform the data from per-branch values to per-clade values.
This way, individual placement masses in the nearby branches of
a clade are transformed into a single value for the entire clade,
which expresses a measure of difference (called contrast) of the
placement masses within the clade versus the masses in the
remainder of the tree. This makes such transformations robust
against placement uncertainty in a clade (e. g., due to similar
reference sequences), implicitly captures the tree topology, and
solves the issues of compositional data. From a technical point of
view, this transforms the data from a compositional space into an
Euclidean coordinate system (Juan and Pawlowsky-Glahn, 2005),
where the individual dimensions of a data point are unconstrained
and independent of each other. This can be achieved by utilizing
the reference tree, whose branches imply bi-partitions of the two
clades that are split by each branch (Pawlowsky-Glahn et al., 2015;
Silverman et al., 2017). Instead of working with the per-branch
placement masses, the accumulated masses on each side of a
branch are contrasted against each other. This yields a view of
the data that summarizes all placements in the clades implied by
each branch. These transformations are, for example, achieved via
two methods that in the existing literature have unfortunately
confusingly similar names: imbalances and balances (Czech, 2020).

The edge imbalance (Matsen and Evans, 2013) is computed on
the normalized edge masses of a sample: For each edge, the sum
over all masses in the two clades defined by that edge are
computed; their difference is then called the imbalance of the
edge. The edge balance (Silverman et al., 2017; Czech and
Stamatakis, 2019) is computationally similar, but instead of a
difference of sums, it is computed as the (isometric) log-ratio of
the geometric means of the masses in each clade; the resulting
coordinates are called balances (Egozcue et al., 2003; Juan and
Pawlowsky-Glahn, 2005; Quinn et al., 2018). Both
transformations yield a contrast value for each (inner) branch of
the tree, which can then, for example, be used to compare different
samples to each other, see Section “Analysis of Multiple Samples”.
They differ in the details of their statistical properties, but more
work is needed to examine the effects of this on placement analyses
(Czech, 2020); in practice, both can be (and are) used to avoid
compositional artifacts. Alternatively, approaches such as Gamma-
Poisson models and their zero-inflated versions (Peng et al., 2016;
Weiss et al., 2017), as well as other methods for abundance
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normalization (Weiss et al., 2017; Du et al., 2018; Lin and Peddada,
2020) can be applied, although future work is needed to establish
those in the context of phylogenetic placement.

3.7 Analysis of Multiple Samples
In typical metagenomic and metabarcoding studies, more than
one sample is sequenced, e. g., from different locations or
points in time of an environment. Furthermore, often per-
sample metadata is collected as well, such as the pH-value of
the soil or the temperature of the water where a sample was
collected. These data allow to infer connections between the
species community composition of the samples and
environmental features. Given a set of samples (and
potentially, metadata variables), an important goal is to
understand the community structure (Tyson et al., 2020).
To this end, fundamental tasks include measuring their
similarity (a distance between samples), clustering samples
that are similar to each other according to that distance
measure, and relating the samples to their environmental
variables. To this end, the methods introduced in this
section utilize phylogenetic placement, and assume that the
sequences from all samples have been placed onto the same
underlying reference tree; they are implemented in GAPPA

(Czech et al., 2020) and partially in GUPPY (Matsen et al., 2010).

3.7.1 Similarity Between Samples
A simple first data exploration method consists in computing the
Edge Dispersion (Czech and Stamatakis, 2019) of a set of samples,
which detects branches or clades of the tree that exhibit a high
heterogeneity across the samples by visualizing a measure of
dispersion (such as the variance) of the per-sample placement
mass. The method hence identifies branches and clades “of
interest”, where samples differ in the amount of sequences
being placed onto these parts of the tree.

The similarity between the placement distributions of two
samples can be measured with the phylogenetic Kantorovich-
Rubinstein (KR) distance (Evans and Matsen, 2012; Matsen
and Evans, 2013), which is an adaptation of the Earth Mover’s
distance to phylogenetic placement. The KR distance between
two samples is a metric that quantifies by at least how much
the normalized mass distribution of one sample has to be
moved across the reference tree to obtain the distribution of
the other sample. In other words, it is the minimum work
needed to solve the transportation problem between the two
distributions (transforming one into the other), and is related
to the UniFrac distance (Lozupone and Knight, 2005;
Lozupone et al., 2007). The distance is symmetrical, and
increases the more mass needs to be moved (that is, the
more the abundances per branch and clade differ between the
two samples), and the larger the respective moving distance is
(that is, the greater the phylogenetic distance along the
branches of the tree between the clades is). It is hence an
intuitive and phylogenetically informed distance metric for
placement data, for example to quantify differences in the
species composition of two environments.

Edge Principal Component Analysis (Edge PCA) is a method
to detect community structure, which can also be employed for

sample ordination and visualization (Darling et al., 2014;
Matsen and Evans, 2013). Edge PCA identifies lineages of
the RT that explain the greatest extent of variation between
the sample communities, and is computed via standard
Principal Component Analysis on the per-edge imbalances
across all samples. The resulting principal components
distinguish samples based on differences in abundances
within clades of the reference tree. See for example
Figure 5D, where each point corresponds to a sample and
is colorized according to a metadata variable of the sample,
showing that the ordination discriminates samples according
to that variable. Furthermore, as the eigenvectors of each
principal component correspond to edges of the tree, these
can be visualized on the tree (Matsen and Evans, 2013; Czech,
2020), so that those edges and clades of the tree that explain
differences between the samples can be identified, e. g., with
GUPPY (Matsen et al., 2010) and ARCHAEOPTERYX (Han and
Zmasek, 2009), or with GAPPA (Czech et al., 2020). Principal
components can also be computed from the balances instead of
the imbalances (Czech, 2020).

3.7.2 Clustering of Samples
Given a measure of pairwise distance between samples, a
fundamental task consists in clustering, that is, finding groups
of samples that are similar according to that measure. Squash
Clustering (Matsen and Evans, 2013) is a hierarchical
agglomerative clustering method for a set of placement
samples, and is based on the KR distance. Its results can be
visualized as a clustering tree, where terminal nodes represent
samples, each inner node represents the cumulative distribution
of all samples below that node (“squashed” samples), and
distances along the tree edges are KR distances. We show an
example in Figure 5E, where each sample (terminal node) is
colorized according to associated per-sample metadata
variables (features measured for each sample), indicating
that the clustering (based on the placement distribution)
recovers characteristics of the samples based on that
metadata variable.

The clustering hierarchy obtained from Squash Clustering
grows with the number of samples, which contains a lot of
detail, but can be cumbersome to visualize and interpret for
large datasets with many samples. Phylogenetic k-means
clustering and Imbalance k-means clustering (Czech and
Stamatakis, 2019) are further clustering approaches, which
instead yield an assignment of each sample to one of a
predefined number of k clusters. Phylogenetic k-means uses
the KR distance for determining the cluster assignment of the
samples, and hence yields results that are consistent with Squash
Clustering, while Imbalance k-means uses edge imbalances, and
hence is consistent with results obtained from Edge PCA.
Having the choice over the value k can be beneficial to
answer specific questions with a known set of categories of
samples (e. g., different body locations where samples were
obtained from), but is also considered a downside of k-means
clustering. Hence, various suggestions exist in the literature to
select an appropriate k that reflects the number of “natural”
clusters in the data (Thorndike, 1953; Rousseeuw, 1987;
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Bischof et al., 1999; Pelleg and Moore, 2000; Tibshirani et al.,
2001; Hamerly et al., 2004). Visualizing the cluster centroids
obtained from both methods can further help to interpret
results by showing the average distributions of all samples in
one of the k clusters; see again (Czech, 2020) for details.

3.7.3 Relationship With Environmental Metadata
Variables
The above methods only implicitly take metadata into account, e. g.,
by colorizing their resulting plots according to a variable.
Environmental variables can also be incorporated explicitly in

FIGURE 5 | Analyses of phylogenetic placement data. Here, we show several analysis techniques for placement data, which relate multiple samples to each other
(e. g., from different locations or points in time) that have been placed on the same underlying reference tree. The example dataset contains 220 vaginal samples of
human patients with and without Bacterial Vaginosis (BV), a condition caused by an abnormal vaginal microbiome (Srinivasan et al., 2012), placed on a bacterial tree. The
“Nugent” score is an external clinical indicator of the disease (Nugent et al., 1991), which is shown in (C–E) as blue (healthy, low score) vs. red colors (severe
disease, high score). In healthy patients, two types of Lactobacilli dominate the microbiome, while in diseased patients, a diverse mixture of other bacteria take over. All
figures are adapted from (Czech and Stamatakis, 2019), for details see (Srinivasan et al., 2012; Matsen and Evans, 2013; Czech and Stamatakis, 2019; Czech, 2020).
(A) Edge Correlation between read abundances in clades of the reference tree (measured via the imbalance transformation) and the per-sample Nugent score. This
visualization method identifies taxa whose abundances exhibit a relationship with environmental factors. Here, the red path towards the left identifies the Lactobacillus
clade, that exhibits a strong anti-correlation with the Nugent score (healthy patients with a low score have high abundances in this clade), while blue and green paths
show a multitude of clades that correlate with the score (diseased patients with a high score and high abundances in these diverse clades). (B) Placement-Factorization
discretely identifies these clades by splitting up the tree into a number of “factors”: Black edges (with colorized clades below them) indicate the first ten factors (groups of
taxa, some of them nested) whose differential placement abundances between samples exhibit a strong relationship with the Nugent score. That is, a factor is a clade in
which abundances co-vary with metadata (e. g., the Nugent score). Here, these factors are again the Lactobacillus clade and a multitude of other clades that are also
highlighted in (A) by colored paths. (C) Placement-Factorization can also ordinate samples, by plotting the balances (i. e., the abundance contrasts) across the edges
identified by factors. Here, the first two factors of (B) are shown (each dot represents one sample, colored by its Nugent score), which split healthy and diseased patients.
(D) Edge Principal Components Analysis (EdgePCA) is another ordination method, using PCA on the edge imbalances. Here, the first two PC axes are shown, which
separate healthy from diseased patients (Lactobacillus presence vs. absence) on the first axis, and further distinguish the healthy patients based on the two types of
Lactobacilli on the second axis. These interpretations of the axes are derived from visualizing the PCA directly on the reference tree, which is another way to show Edge
PCA results, see (Matsen and Evans, 2013; Czech, 2020). (E) Squash Clustering is a hierarchical clustering method, here showing the clustering tree of the samples (not
a phylogeny). Tip nodes (leaves) correspond to samples (individual patients), again colorized by their Nugent score, with samples clustered based on similarity of their
placement distribution, and vertical distances showing this similarity, measured as the phylogenetic Kantorovich-Rubinstein (KR) distance between samples. Patients
with a similar health status are close to each other, in particular the healthy (blue) ones.
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phylogenetic placement analysis, to more directly infer the
relationships between the species composition of the samples
(e. g., in form of abundances per clade) and the environments
these communities live in.

The Edge Correlation (Czech and Stamatakis, 2019) visualizes
parts of the tree where species abundances (as measured by the
accumulated probability mass of each sample) exhibit a strong
connection with a metadata variable, see Figure 5A. It is
computed as the per-edge correlation coefficient between the
per-sample metadata variable and either the edge masses
(highlighting individual edges), or imbalances or balances
(highlighting clades) of each sample.

Placement-Factorization (Czech and Stamatakis, 2019; Czech,
2020) is a more involved method. It is an adaption of
PhyloFactorization (Washburne et al., 2017; Washburne et al.,
2019) to phylogenetic placement data. Its goal is to identify
branches in the tree along which putative functional traits might
have arisen in adaptation to changes in environmental variables. In
other words, it can detect clades of the reference tree whose
abundances are linked to environmental factors. By “factoring out”
the clade with the strongest signal in each step of the algorithm (hence
the name of the method), nested dependencies with variables within
clades can also be discovered, see Figure 5B. This factorization of the
tree into nested clades can further be used as an ordination tool to
visualize how samples are separated by changes along the factors, and
as a dimensionality-reduction tool, seeFigure 5C. Themethod assesses
the relationship between per-sample metadata features and the
balances computed on the samples; by using Generalized Linear
Models, it allows to simultaneously incorporate multiple metadata
variables of different types, such as numerical values (pH-value,
temperature, latitude/longitude, etc), binary values (presence/
absence patterns, diseased or not), or categorical values (body site
that a sample was taken from).

4 CONCLUSION AND OUTLOOK

In this review we broadly surveyed the concepts, methods, and
software tools that constitute and relate to phylogenetic placement.
We have also presented guidelines and best practices formany typical
use cases, showcased some commonmisconceptions and pitfalls, and
introduced the most prominent downstream analysis methods.
Phylogenetic placement is a versatile approach that is particularly
applicable in metagenomics (e. g., for metabarcoding data) and
broader eDNA-based ecology studies. It allows for the annotation
of sequence data with phylogenetic information, and thereby to
investigate the taxonomic content, functional capacity, diversity, and
interactions of a community of organisms. Further, it allows for
comparing samples from multiple spatial and temporal locations,
enabling the analysis of community patterns across time and space,
as well as their association with environmental metadata variables.

Despite the growing popularity of phylogenetic placement,
there are several methodological and usage aspects that will
benefit from further developments.

Currently, significant effort is required to create high-quality
reference trees. We believe research effort should focus on
simplifying this process, potentially through the design of methods

that streamline and automate the commonly involved tasks. For
example, while there are some metrics that quantify the quality of an
inferred phylogenetic tree (Felsenstein, 1985; Dhar and Minin, 2016;
Lemoine et al., 2018), there is a lack of metrics to specifically evaluate
the suitability of a tree for phylogenetic placement, given some
expected input data. Note that the PEWO testing framework
(Linard et al., 2020) (see Section “Workflows based on
Phylogenetic Placement”) represents a first step in this direction.

Ideally, reference trees and alignments should be created by,
and shared in, research communities that investigate the same
group(s) of organisms. This would not only yield obtaining high-
quality reference trees trivial, but would also immensely increase
the comparability across studies, as well as their reproducibility.
Consequently, we would highly encourage such collaborations,
and the public sharing of (perhaps even versioned instances of)
gold-standard reference trees. Notably, for some environments,
first efforts into this direction have already been undertaken
(Berney et al., 2017; Del Campo et al., 2018; Rubinat-Ripoll,
2019; Rajter and Dunthorn, 2021; Rajter et al., 2021).

Furthermore, as mentioned, there is a lack of established
methods that evaluate placement quality in a standardized and
meaningful way. In particular, robust metrics are missing to
distinguish the case where reference sequences of known
species are missing from the tree from the case where the
placed data actually contains yet undescribed species. A
classification based on the LWR and pendant length of the
placement locations might offer a solution here.

Lastly, further work is required to connect environmental
metadata to the results of phylogenetic placement. Placement-
based spatio-temporal methods are of high interest for addressing
research questions in ecology and phylogeography. For example,
relating geo-locations of samples to their placement could
indicate how species communities differ across space, while
creating placement time series could show how community
compositions develop and change over time.
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