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1  |  INTRODUC TION: THE NEMATODE 
Caenorha bd it i s  e lega ns

Since its introduction into research by Sydney Brenner in the early 
60s, the nematode Caenorhabditis elegans has played a pivotal role in 

different areas of biomedical investigation.1– 9 Studies on C. elegans 
have contributed to fundamental breakthroughs in life science, such 
as the discovery of genetic regulators of programmed cell death, the 
use of the green fluorescent protein (GFP) as a protein marker, and 
the discovery of RNA interference (RNAi).10– 12
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Abstract
Therapeutic drug development is a long, expensive, and complex process that usu-
ally	 takes	12–	15	years.	 In	 the	early	phases	of	drug	discovery,	 in	particular,	 there	 is	
a growing need for animal models that ensure the reduction in both cost and time. 
Caenorhabditis elegans has been traditionally used to address fundamental aspects 
of key biological processes, such as apoptosis, aging, and gene expression regulation. 
During the last decade, with the advent of large- scale platforms for screenings, this 
invertebrate has also emerged as an essential tool in the pharmaceutical research in-
dustry to identify novel drugs and drug targets. In this review, we discuss the reasons 
why C. elegans has been positioned as an outstanding cost- effective option for drug 
discovery, highlighting both the advantages and drawbacks of this model. Particular at-
tention is paid to the suitability of this nematode in large- scale genetic and pharmaco-
logical screenings. High- throughput screenings in C. elegans have indeed contributed 
to the breakthrough of a wide variety of candidate compounds involved in extensive 
fields including neurodegeneration, pathogen infections and metabolic disorders. The 
versatility of this nematode, which enables its instrumentation as a model of human 
diseases, is another attribute also herein underscored. As illustrative examples, we 
discuss the utility of C. elegans models of both human neurodegenerative diseases and 
parasitic nematodes in the drug discovery industry. Summing up, this review aims to 
demonstrate the impact of C. elegans models on the drug discovery pipeline.
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C. elegans is a tiny (~1 mm in length), soil, free- living, and 
bacteria- eating nematode13,14 which can develop as either of two 
sexes, self- fertilizing hermaphrodites or males. Males represent a 
minor population (~0.2% of population).14,15 Healthy hermaphro-
dites produce up to 300 self- progeny although they are capable 
of giving approximately 1000 offspring if they are mated with 
males.

This nematode typically lives for about 3 weeks at 20°C in the 
laboratory. Unlike other members of the Nematoda phylum, C. el-
egans is a nonhazardous and nonpathogenic animal that can be 
manipulated with standard safety rules. A unique benefit of using 
C. elegans in the laboratory is that it can be frozen and stored in liquid 
nitrogen	or	−80°C	ultra-	freezers	until	needed.14 Moreover, its use 
does not raise the ethical issues associated with the use of verte-
brates (Figure 1).

C. elegans ´ life cycle, which is very short, takes approximately 
2.5–	3	 days	 and	 is	 divided	 into	 embryogenesis	 (~16	 h),	 four	 larval	
stages	 (L1–	L4,	~28	h)	and	the	adult	molt,	 from	L4	to	adult	 (~12	h).	
Adverse environmental conditions (starvation, high population den-
sity, high temperature) in the late L1 larval stage trigger entry into 
a developmental arrest phase called dauer.16,17 Dauer larvae can 
survive stressful conditions for months until encountering favor-
able conditions that permit resuming reproductive development. 
The presence of separate sexes and the short life cycle permit rapid 
genetic crosses in the laboratory. It has an invariant number of so-
matic	cells:	959	in	hermaphrodites	and	1031	in	males.	C. elegans cel-
lular genealogies have been traced from embryo to newly hatched 
larva. Unlike mammals, the pattern of cell lineages is invariant among 

individuals, which has been key to understand the roles of develop-
mental control genes.18–	20

Despite its apparent simplicity, C. elegans contains organs and 
tissues present in more complex organisms, such as muscles, hypo-
dermis, intestine, reproductive and excretory system, and a well- 
described nervous system (Figure 1). It is also the only organism 
where the complete neural wiring diagram has been established.21,22 
Its transparency allows the easy visualization of specific cells and 
subcellular structures through Nomarski (differential interference 
contrast, DIC) optics using whole- live animals. The visualization of 
protein expression patterns, protein subcellular localization, and 
activity of specific cells using transgenic reporters and genetically 
encoded calcium indicators is feasible in living animals at any point 
in their lives (Figure 1).23–	25

The fact that C. elegans was the first multicellular organism to have 
its complete genome sequenced (C. elegans Sequencing Consortium 
1998)	as	well	as	 its	amenable	genetic	manipulation	helped	 to	 turn	
this worm into a powerful organism for genetic screens.26,27	83%	of	
C. elegans proteome is predicted to have human homolog genes 28  
and	 it	 has	 been	 estimated	 that	 ~50%	of	C. elegans protein- coding 
genes have a functional ortholog in humans.29 Essential biological 
molecules and cell signaling pathways, such as the insulin- signaling 
pathway, innate immunity regulatory pathways, synaptic machinery, 
and systems involved in protein homeostasis are highly conserved 
between worms and mammals.30– 34

Taken together, all these features make C. elegans an excellent 
model organism that bridges the gap between the simplicity of cul-
tured cells and the complexity of multicellular organisms.

F I G U R E  1 Caenorhabditis elegans as a versatile platform for drug discovery. Its genetic amenability and ease of transgenesis allows 
elucidation of MOAs by forward and reverse genetic screens and generation of "humanized worms" to emulate conditions seen in humans. 
All this combined with the feasibility for HTS and automation of easily scored phenotypes converts C. elegans into a powerful model for 
pharmacological research. For more detailed anatomy and other C. elegans	resources	visit:	Wormatlas	(www.worma	tlas.org),	Wormbase	
(www.wormb	ase.org),	Wormbook	(www.wormb	ook.org)

http://www.wormatlas.org
http://www.wormbase.org
http://www.wormbook.org
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2  |  C .  e lega ns  IN DRUG DISCOVERY

The advances in molecular biology techniques and genome knowl-
edge allowed drug screening to be carried out directly on target 
proteins. Therefore, target- based drug screens (TBS) have become 
the most commonly used approach for drug discovery. In this type 
of approach, compounds are screened for their capacity to bind or 
alter the activity of specific target proteins using cell extracts or cell 
cultures. However, as targets are previously identified and validated, 
TBS does not permit the discovery of novel targets and the elucida-
tion of mechanisms of action (MOAs) is frequently limited to agonism 
or antagonism of known receptors/pathways. Moreover, once hits 
are detected they need to be tested in the context of a whole or-
ganism to further analyze its biological efficacy and toxicity. In con-
trast to TBS, phenotypic- based drug screens (PBS) use cells or animal 
disease models to identify compounds that rescue or ameliorate the 
disease phenotype. This animal- based approach includes the effects 
of cell communications and tissue interactions in the effect of a given 
compound. This unbiased strategy allows the identification of com-
pounds with novel MOAs. One of the main caveats of PBS is that the 
identification of targets and MOAs could be complicated, particu-
larly when mammalian animal models are used. This drawback can 
be significantly mitigated using invertebrates, such as the nematode 
C. elegans, which has lately gained consideration as an excellent plat-
form for the identification of new drug targets and drug discovery.

Automation of worm transfer, image acquisition, and data analy-
sis allows the use of C. elegans for high- throughput screening (HTS) 
assays.35–	39 Several companies (Celescreen, Sunnybiotech, Nagi 
Biosciences) offer these types of assays to the pharmaceutical indus-
try for the identification of new potential compounds and validation 
of pharmacological targets. In the last 10 years, HTS in C. elegans 
has become— in fact— a useful tool to identify candidate compounds 
as potential treatments for several pathological conditions (Table 1).

The fact that C. elegans shares the nematode phylum with sev-
eral parasitic roundworms makes it a straightforward model to be 
used for the development of anthelmintic drugs. Its use has allowed 
the MOA elucidation of several nematocidal drugs75–	78 (Table 2). 
However, its use goes far beyond than merely applying C. elegans 
to the discovery of drugs with anthelmintic potential. C. elegans is 
also exploited as an accessible platform to recapitulate distinctive 
phenotypes of human diseases, such as cancer, diabetes, neurode-
generative disorders, and pathogen infection.79–	89 The molecular 
pathways underlying a biological process that, when altered, could 
lead to physiological diseases are usually conserved throughout 
the animal kingdom. The alteration of these conserved pathways in 
C. elegans often leads to specific phenotypes and behaviors, such as 
modifications in lifespan, stress resistance, or locomotion. All these 
phenotypes are easily measurable using automated protocols and 
devices, making the screening of drugs that ameliorate or rescue 
these defects a relatively simple procedure.

Several genetic tools for the manipulation of single genes or 
groups of genes are readily available in C. elegans (chemical muta-
genesis, transgenesis, RNAi, and CRISPR/Cas9) (Figure 1). Animals 

carrying mutations of highly conserved biochemical pathways or 
expressing exogenous pathognomonic protein of a specific disease 
can be engineered in few weeks. Mutant strains and animals ex-
pressing human transgenes are available at a very low cost at the 
Caenorhabditis Genetics Center (CGC). Moreover, the rapid life- cycle 
and the high brood size of C. elegans permit the analysis of the ef-
fects of compounds not only in the exposed animal but also in the 
progeny in a very short time- frame.

Cell cultures or cell extracts are typically the initial step in drug 
development. Using invertebrate animal models in these early 
steps is ideal to reduce research costs and time as they help to 
identify compounds that, apart from being effective in interacting 
with the active target, maintain their efficacy even after absorp-
tion, distribution, metabolism, and excretion (ADME) processes. 
They also provide information about potential systemic toxicity 
and biocompatibility.96

Although ADME processes are important sources of information 
compared with cell cultures, in C. elegans they have certain limita-
tions that should be taken into account at the moment of processing 
results from drug- screening assays. In particular, the thick cuticle, 
which forms a strong barrier that limits drug absorption, can usually 
render false- negative results.97

C. eleganś  low- cost maintenance, small size, genetic amenability, 
and conservation of key molecular pathways with mammalian ani-
mals convert this worm into an excellent alternative to significantly 
reduce drug development costs. Although the use of C. elegans as a 
platform for drug screening is recent, there are compounds that have 
been identified in this nematode and which, once validated on verte-
brate models, are currently being evaluated in human patients. For 
example, hits obtained in a drug screening performed in a C. elegans 
model of amyotrophic lateral sclerosis were validated in zebrafish 
and mice. One of these hits, the neuroleptic Pimozide, a Ca2+ chan-
nel blocker that stabilizes neuromuscular transmission in C. elegans, 
has also shown efficiency in a short randomized controlled trial of 
sporadic ALS subjects.43 Another report evaluated the pearl powder 
(a Chinese medicine) by combining C. elegans studies with a clinical 
trial. The authors have correlated the lifespan extension found in 
C. elegans with the higher antioxidant capacity in blood samples of 
patients treated with pearl powder.98 These two examples serve as 
proofs of concept for the translational potential of drug screenings 
in the invertebrate C. elegans. Since the number of drug screenings 
in this nematode is increasing year after year (Table 1), more clinical 
trials for hits identified in C. elegans are expected in the near future.

2.1  |  Genetic screening assays

One of the greatest advantages of using C. elegans for biomedical 
research is undoubtedly its amenability for genetic manipulation. 
Genetic screens are widely used in C. elegans to either discover gene 
function or find genes involved in relevant biological pathways. 
Furthermore, the feasibility of rapid genetic crossing permits epi-
static analyses to find new players in known genetic pathways.99
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To date, two strategies to perform screenings in C. elegans have 
been	developed:	forward	genetics	and	reverse	genetics.	Whereas	the	
former uses mutagens to randomly generate mutations that induce or 
reverse a given phenotype, the latter analyzes the phenotype obtained 
after altering or knocking down a specific known gene. Forward genet-
ics therefore goes from phenotype to gene, whereas reverse genetics 
works the other way around, that is, from gene to phenotype.

2.1.1  |  Forward	genetics

Mutations are important tools for gene function discovery. 
Mutagenesis can be accomplished using a variety of chemical agents, 
such as ethyl methanesulfonate (EMS), N- ethyl- N- nitrosourea (ENU), 
trimethylpsoralen (TMP), among others. Hermaphrodites (P0) are 

TA B L E  1 Caenorhabditis elegans phenotypic- based drug screenings. The table shows relevant drug screenings assays performed during 
the last decade in C. elegans models for human and animal diseases

Biological activity Initial screening set Identified hits References

Anti- proteotoxicity
Neuroprotection

10 positive modulators of healthspan Metformin, lithium, and curcumin 40

18	compounds α- methyl- α- phenylsuccinimide 41

87	flavonoids	and	13	neurosteroids 12 flavonoids (e.g., isoquercitrin) and 2 steroids (3β- 
Methoxy- Pregnenolone and 17β- estradiol)

42

3	850	compounds 13 hits (e.g., pimozide) 43

983	FDA-	approved	drugs 4 hits (dronedarone, tofranil, bendrofluazide, buspar) 44

4 polyphenolic compounds Ferulic acid 45

30 FDA- approved drugs Tannic acid, bacitracin 46

115	000	compounds Four tetrahydroquinolinones 47

Anti- aging 1386	FDA-	approved	drugs Verapamil 48

32 compounds 1 hit (chalcone like- compound) 49

~100 serine hydrolase inhibitors JZL184 50

107 FDA- approved drugs Tiagabine 51

15	FDA-	approved	drugs Captopril 52

33 000 compounds 57	hits	(e.g.,	nitrophenyl	piperazine-	containing	
compounds)

53

1280	compounds 57	hits	(e.g.,	minocycline) 54

normal and disease- associated 
endogenous metabolites

α- ketoglutarate 55

Anti- microbial 69 compounds 5	hits	(phenyl	triazine	compounds) 56

82	000	compounds 185	hits	(e.g.,	synthetic	retinoid	CD437) 57

86	000	compounds 195	hits	(e.g.,	5-	fluorouracil) 58

21	500	compounds 318	hits	(e.g.,	phenylsulfonyl	pyrazinecarbonitrile) 59

640 FDA- approved drugs 42 hits (e.g., closantel) 60

1600 compounds 18	hits	(e.g.,	iron-	chelator	ciclopirox	olamine) 61

1300 extracts (from endophytic fungi) 4 hits 62

2560 12 hits (e.g., natural saponins) 63

Anthelmintic 12 benzopyrano pyrazol compounds 4 hits 64

575	compounds 29 hits (e.g., arylidene ketones) 65

11 imidazole- derivatives 2 hits (e.g., diisopropylphenyl- imidazole) 66

400 compounds (Pathogen Box library) 18	hits	(e.g.,	isoxazole	compounds) 39

480	compounds 20 hits (e.g., dihydrobenzoxazepinones) 67

67 012 compounds 30 hits (e.g., ethyl benzamide moiety compounds 68

Anti- tumoral 4 in vitro anticancer compounds 4 hits 69

30 plant extracts Harmine (from the plant Peganum harmala) 70

~9000 compounds 2 hits (an EGFR inhibitor and a MEK inhibitor) 71

Anti- metabolic disorders
(obesity, insulin resistance, 
type II diabetes)

24 plants and fungal extracts 2 hits (extracts of Inonotus obliquus and Gardenia 
jasminoides)

72

350	natural	products 1 hit (swertiamarin) 73

8	natural	plant	compounds 2 hits (isoquinoline alkaloids) 74
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randomly mutagenized at the late L4/early adult stages and then 
distributed in Petri dishes. F1 hermaphrodite progeny that are het-
erozygous for these mutations can be allowed to self- fertilize. The F2 
animals, which bring mutations to homozygosis, are isolated based on 
the phenotype of interest.27 Several mutations generate clearly altered 
phenotypes, such as changes in development, lifespan, stress resist-
ance, uncoordinated movement (unc), or dumpy- shaped animals (dpy). 
Today, mutated genes underlying a given phenotype can be identified 
by whole- genome sequencing.100,101

Another approach, which has proven to be very useful for iden-
tifying novel gene interactions, consists in performing mutagenesis 
directly in strains already carrying mutations that induce a strong 
phenotype.102– 104 Mutant animals are then mutagenized allowing 
enhancer or suppressor genes to be detected. For example, a sup-
pressor screening recently performed on a hyperactive mutant in 
UNC- 2, the worm ortholog for calcium voltage- gated channel sub-
unit alpha 1A (CACNA1A) channel, has led to the identification of 
key modulators of channel function.104

Chemical genetic screening is another strategy which involves 
the use of drugs that induce a strong phenotype. After mutagenesis, 
which may affect the drug target gene or other genes involved in 
the same pathway, either resistant or hypersensitive mutants can be 
identified.75,105–	107

In C. elegans, forward genetic screens have been tradition-
ally used to identify molecular targets and MOAs for anthelmintic 
agents.75–	77,108 However, more recently, this approach has also 
proved to be useful for discovering targets and MOAs for drugs 
with potential relevance in metabolic, neurological, and oncological 
disorders.68,94,109–	112

2.1.2  |  Reverse	genetics

In	1998,	Fire	 and	Mello	 found	 that	 injection	of	double-	stranded	
RNA (dsRNA) into worm gonads allows gene knocking down in 
the progeny.12 Since then, RNAi knockdown has become a pow-
erful tool in other animals and cultured cells.113–	115 However, in 

C. elegans it can be easily achieved by feeding worms with bac-
teria expressing dsRNA or just soaking worms in dsRNA solution. 
Therefore, this technique has served for functional analyses of a 
plethora of genes in worms.

Genomic RNAi bacterial feeding libraries that cover most 
of the C. elegans genome have been generated,116,117 avoiding 
the requirement of in vitro synthesis of dsRNA. C. elegans, one 
of the few organisms for which genome- wide RNAi screens are 
feasible, has been found to be a useful tool to identify genes in-
volved in essential biological processes2,118–	120 and pathological 
conditions.107,121,122

A historical limitation of RNAi knock- down in C. elegans has been 
the poor penetrance of RNAi in neurons. However, several strategies 
have been developed to solve this caveat, namely strains expressing 
the transmembrane proteins required for RNAi transportation SID- 1 
pan- neuronally,123 strains deficient in genes coding for ribonuclease 
enzymes,124 neurons transformed to an immature and more perme-
able stage125 or even a combination of them.126

In the last decade, several customized endonucleases, such as 
zinc-	finger	nucleases	(ZFNs)	and	transcription	activator-	like	effector	
nucleases (TALENs),127,128 have been used in genome editing. Other 
techniques, such as CRISPR/Cas9 and Mos- 1 single copy insertion 
that allow the introduction of almost any change in any gene, have 
also been developed, further widening the tool repertoire to per-
form reverse genetics in the nematode.129– 131

2.2  |  Drug screening assays

Drug ingestion is probably the main way through which xenobi-
otic molecules can gain access to target tissues in wild- type C. ele-
gans.132,133 However, the amphids, a pair of anterior sensory structures 
opened to the outside environment, and the vulva are also involved in 
drug and nanoparticles intake, respectively.134,135 Moreover, the use 
of animals that have a compromised cuticle can significantly increase 
drug absorption.97 C. elegans is typically grown in the laboratory on 
petri- dishes containing NGM agar and E. coli as a food source. In the 

TA B L E  2 Recent	contributions	in	deciphering	drug-	targets	and	mechanism	of	action.	Representative	compounds	for	which	the	use	of	
C. elegans has been useful in elucidating their mechanisms of action

Compound Field Identified target/Mechanism of action References

Resveratrol Neurodegeneration Reduces β-	amyloid	by	targeting	UBL-	5	and	XBP-	1,	proteins	implicated	in	UPRmt and 
UPRER

90

Minocycline Aging Increases lifespan by decreasing mARN translation 91

RPW-	24 Microbial infection Stimulates	innate	immune	response	through	pmk-	1/p38	MAPK	pathway,	and	the	
transcription factor, atf- 7

92

Monepantel Helminth infection Targets ACR- 20 and ACR- 23 from the DEG- 3 subgroup of nAChR subunits 93

Metformin Cancer Induces tumor growth inhibition and lifespan extension by targeting nuclear pore 
complex (NPC) and acyl- CoA dehydrogenase family member- 10 (ACAD10)

94

Hesperidin Metabolic disorders Inhibits lipid accumulation by downregulating lipid metabolism genes (fat- 6 and fat- 7) 95

Abbreviations: ACR, acetylcholine receptor subunit; atf- 7, Cyclic AMP- dependent transcription factor 7; MAPK, mitogen- activated protein kinase; 
pmk-	1,	p38	MAPK;	UBL-	5,	Ubiquitin-	like	protein	5;	UPRER, unfolded protein response of the endoplasmic reticulum; UPRmt, mitochondrial unfolded 
protein	response;	XBP-	1,	X-	Box	Binding	Protein	1.
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past, during the first drug screens, compounds were generally dis-
solved in the agar.14,136 Although this method has contributed to the 
elucidation of MOAs for several compounds previously proven to be 
biologically active,137,138 the agar- based technique does not permit 
large scale screenings because it is labor-  and time- consuming and 
needs large quantities of drugs.14 Even with limitations, these assays 
are still very valuable for assessing small compound libraries.66

The introduction of C. elegans liquid cultures in multi- well for-
mat together with workflow automation from worm transfer to data 
analysis enabled the development of HTS assays.139,140 Moreover, 
the breakthrough of microfluidic devices for C. elegans have im-
proved the strength of HTS mainly thanks to the small amounts of 
compound (microscale) that are required and to the possibility of ob-
serving worms in parallel or in a serial manner.141

2.3  |  Challenges of using C. elegans model in 
drug discovery

In spite of the obvious advantages of using C. elegans for drug 
screening, some caveats need to be considered. First, C. elegans cul-
tures require bacterial co- culture as a food source. Many drugs and 
compounds are metabolized by bacteria and could alter drug effi-
cacy. These limitations can be circumvented using killed bacteria as 
a food source.142,143 However, feeding worms with dead bacteria can 
also affect some phenotypes (e.g., it slows worm development).144 
Therefore, the chosen food source will depend on the phenotype to 
be assessed, the compounds to be tested, and the bacteria species 
to be used for worm feeding.142,145

A second disadvantage is related to the thick C. elegans cuticle 
that usually affects drug uptake. Some studies revealed that inter-
nal tested- drug concentration could be less than half of that applied 
externally.146 This implies that some drugs are discarded as hits 
due to their inefficacy to pass through the cuticle barrier and that 
some compounds need very high drug concentrations to produce 
a biological effect. To reduce these limitations, mutant strains with 
compromised cuticles have been used to enhance drug uptake.97 
The selection of these mutants depends on the trade- off between 
enhanced cuticle permeability and animal fitness.97 Although C. ele-
gans cuticle impermeability is indeed a limitation, it increases the po-
tential significance of a positive hit in specific drug screening assays. 
In line with this, hits in anthelmintic search assays that induce death 
in C. elegans are extremely likely to kill parasitic nematodes (which in 
general have thinner cuticles) at lower concentrations.68

Finally, C. elegans lacks a circulatory system and many vital organs 
present in mammals. It has an innate immune system but lacks an adap-
tive immune system or a myelination system. This is the reason why it is 
difficult to model diseases affecting these organs/systems in C. elegans. 
In some cases, it is nonetheless possible to study a disease affecting a 
particular mammal organ nonexistent in the worm using phenologues. 
The latter are described as a group of overlapping genes defining a 
pathway that, when disrupted, cause different phenotypes in differ-
ent species. For example, osteogenesis imperfecta (known as brittle 

bone disease) is caused by mutations in the human collagen COL1A1 
and COL1A2 genes.147 Although C. elegans lacks bones, it expresses 
collagen	genes.	When	worm	collagen	genes	are	mutated,	they	lead	to	
cuticle defects, easily showing recognized dumpy phenotypes.148 Thus, 
the dumpy phenotype can be used to perform screenings to study 
collagen- associated diseases even in the absence of the affected tissue.

Additionally, even if a disease gene ortholog is not present in the 
worm, a disease model can be artificially generated by expressing 
human transgenes.149,150 Transgenic animals are then used as tools 
to screen drugs or new genes involved in the disease phenotype with 
the goal of finding new therapeutic options. For example, mutations 
in α1- antitrypsin (AT) lead to lung and liver diseases.151,152 Although 
C. elegans has no orthologs for AT, transgenic expression of human 
AT gene in worms can replicate in the animal intestine the abnormal 
misfolded protein accumulation observed in patients´ livers. A drug 
screen performed using this model allowed to detect drugs capable 
of decreasing misfolded protein accumulation.35

3  |  RELE VANT C .  e lega ns  APPLIC ATIONS 
FOR DRUG TARGET DISCOVERIES

As illustrative examples of the use of C. elegans model in pharmacol-
ogy research, we will discuss findings that show the advantages of 
using this nematode in the drug discovery field.

3.1  |  Neurodegenerative diseases

As a result of the continuous increase in the proportion of the el-
derly population, age- related disorders have become a major health 
concern. Neurodegenerative diseases (NDs), in particular, such as 
Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's 
disease (HD), are considered as top ten lethal illnesses (G7 
Academies J́oint	Statements	2017).	Despite	their	growing	incidence	
worldwide and decades of intense research, there is still neither 
a cure nor a set of effect- mitigation strategies for these diseases. 
Research efforts are currently aimed at precluding or— at least— 
delaying their progression. The discovery of curative treatments for 
the majority of these NDs remains elusive due to several factors. 
NDs are heterogeneous in etiology (while some of them have a ge-
netic or hereditary origin, others have no related cause). They are 
also heterogeneous in the collection of neurons affected, leading 
to an assortment of clinical manifestations ranging from cognitive 
to progressive motor dysfunction.153 They nonetheless share some 
pathological hallmarks. For example, aging is a strong risk factor re-
lated to their development.154 Moreover, the abnormal formation 
and deposition of misfolded protein aggregates in specific neurons 
is a trademark of most NDs. Because of this attribute, these disor-
ders are generally referred to as “proteinopathies.” Therefore, cur-
rent research is focused on the above- mentioned common features 
by targeting pathological aggregation or by delaying physiological 
aging.155
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In this respect, C. elegans is a powerful in vivo model for the 
development of targeted therapeutics. Most of the advantages 
that convert this animal into a superb candidate for drug discov-
ery have already been mentioned in this review and are also ap-
plicable to the neurodegeneration research field. Still, there are 
some topics that deserve special attention. Features that confer 
C. elegans an extra value as a model for age- related proteinopa-
thies research include, among others: (i) the remarkable similar-
ities at the molecular and cellular levels between nematode and 
vertebrate neurons, (ii) the continuous design of mutant and 
transgenic C. elegans models of human NDs,82,156–	161 (iii) the thor-
oughly studied whole- animal neuronal connectome which can be 
individually visualized using fluorescent reporters in the living 
transparent worm,11,21,22,162 (iv) its short and genetically tractable 
lifespan,7,163– 166 and (v) the recently developed high- throughput 
(even automatized) drug screening platforms.35,54,167–	173 However, 
the limitations on using a “humanized” worm model for neu-
rodegenerative proteinopathies should be taken into account, 
particularly its simple nervous system, glia and lack of myelin. 
Furthermore, genes encoding for voltage- gated sodium channels 
are absent in the C. elegans genome.174 Unlike vertebrates, the 
action potentials detected in muscles and neurons of C. elegans 
depend on voltage- gated calcium channels.175–	177 Despite these 
caveats, C. elegans is an excellent whole- animal platform to iden-
tify genes, drug targets, and compounds with neuroprotective 
roles in human NDs.

3.1.1  |  C. elegans models for ND

The first C. elegans	model	of	a	human	ND	was	built	25	years	ago,178 
and, since then, an extensive list of animal models for most of the 
NDs have been generated (Table 3). The methods that are regularly 
used include knocking- down or - out the homologous gene involved 
in the human disease if it is present in the worm genome or, if there 
is no orthologous, the method of choice involves the transgenic 
expression of the human gene to mimic a disease- related pheno-
type. Most of the C. elegans models of human NDs are transgenic 
strains developed by overexpression of human wild- type or disease- 
associated mutant genes. However, overexpressing genes, even as 
wild- type, sometimes results in an artificial condition that can be 
pathogenic. CRISP/Cas9 technology has been fortunately estab-
lished in C. elegans 179 and recent single- copy knock- in models of 
some NDs have been developed (Table 3).180–	182

Since C. elegans has no orthologous gene for β- amyloid (Aβ), α- 
synuclein, or huntingtin, models of NDs have been essentially pro-
duced by transgenic overexpression of the disease causing- protein 
in either body- wall muscle cells, in all neurons or in a specific sub-
set of neurons.82,83,150,158,178,195,197,201 In most cases, the protein 
is tagged with GFP, which permits monitoring protein aggregation 
in whole live animals. Furthermore, according to the promoter 
used, that is, either muscle or neuronal promoters, toxic protein 
aggregation is reflected by specific pronounced phenotypes which 

are indispensable for high- throughput screenings. For instance, 
muscle- expressing strains usually manifest proteotoxicity as age- 
dependent locomotion defects. In addition, muscle cells are large, 
allowing the visualization of protein aggregation more easily than 
in neurons. Moreover, RNAi is more efficient in muscles than in 
neurons, making these models more amenable for RNAi screens. 
On the other hand, transgenic strains with neuronal expression of 
protein aggregates are more accurate models of NDs. In the latter, 
proteotoxicity can be assessed by means of indirect phenotypes, 
such as neurodegeneration or specific morphological and/or be-
havioral neuronal defects. Thus, according to the selected strain, 
different read- outs have been described, which can be used in 
HTS with the aim to evaluate genes and drug modifiers as poten-
tial therapeutic interventions.

Genetic and pharmacological screenings have been performed 
in these models by tracking protein aggregation and assessing a 
simple phenotype (such as locomotion or neuronal behavior de-
fects) in whole- live animals. In fact, large RNAi- mediated reverse 
screens, performed in C. elegans models of NDs, have identified 
gene modifiers of protein homeostasis, including genes with roles 
in protein synthesis, folding, degradation, and vesicle traffick-
ing.3,5,159,202–	205 Forward mutagenesis genetic screens have also 
been developed in these models. For example, a study using a 
C. elegans model of HD identified a novel gene, called modifier of 
aggregation 4 (moag- 4) as an enhancer of protein aggregation.206 
Pharmacological screenings have also contributed with hundreds 
of neuroprotective compounds, classified in a wide range of cate-
gories, including natural and synthetic products, herbal medicines, 
and also FDA- approved drugs (Table 1). These findings highlight 
the strength of C. elegans in finding novel genetic and drug mod-
ifiers for human NDs, reinforcing its potential in preclinical drug 
discovery.

Despite the complexity of the pathology underlying NDs, most 
of the pathways involved are conserved or they can be mimicked in 
the worm. The aim of using C. elegans as a platform of NDs is to dig 
inside molecular mechanisms to unravel pathological features and to 
develop effective strategies to treat these diseases.

3.2  |  C. elegans as model of parasite nematodes

Parasitic nematodes infect a wide range of species, including hu-
mans, companion animals, livestock, and crops producing a devas-
tating	impact	on	human	life	quality	and	economy.	The	World	Health	
Organization	 (WHO)	 claims	 that	 helminth	 infections	 are	 the	most	
common neglected tropical diseases and estimates that 30% of 
the human world population is infected with at least one parasite 
(https://www.who.int/negle cted_disea ses/en/). This prevalence 
could be even higher in rural areas and in low- income countries. 
Although helminth infections are, in general, not lethal, human hel-
minthiases are associated with morbidity. The consequences are 
particularly serious in children, impairing growth, nutrition, cogni-
tion, and school performance.

https://www.who.int/neglected_diseases/en/
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Several issues are of concern in relation to helminthiasis man-
agement and treatment, namely (i) the loss of effectiveness caused 
by parasite resistance, (ii) the environmental impact of drugs used 
for crop protection, and (iii) the lack of interest in this field by the 
pharmaceutical industry.

The development of novel pharmacological agents for helminthi-
asis treatment has been delayed for decades and the repertoire of 
available anthelmintics is limited.77,207,208 Since drug- resistant para-
sitic nematodes have been reported for all classes of currently used 
anthelmintics,209– 213 there is an urgent need to advance in pharma-
cological research to develop new antiparasitic drugs.

Due to their complex life cycles, growing and maintaining par-
asitic nematodes under standard laboratory conditions are both 
challenging. The limited molecular genetic tools available for these 
nematodes hampers the study of molecular mechanisms.214 It has 
been shown that compounds that induce C. elegans death likely also 
kill parasitic nematodes,68 highlighting the potential of this worm as 
an anthelmintic screening platform (Table 1).39,215,216

3.2.1  |  Current	use	of	C. elegans in anthelmintic 
drug discovery

In the past, C. elegans was used to dissect the target pathways and 
molecular mechanisms of known anthelmintics, such as levamisole, 
ivermectin, benzimidazoles, nitazoxanide, and amino- acetonitrile 
derivatives.75,77,78,108,217–	219 Nowadays, it is a recognized platform to 
screen new compounds and drug repurposing220 that must be subse-
quently tested in parasites. Many of the currently used anthelmintics 
are imidazole derivatives.221 In general, the mechanisms underlying 
the anthelmintic effect can induce worm death or generate paraly-
sis to facilitate parasite expulsion. The anthelmintic mechanisms of 
imidazole- derivatives are diverse. For example, levamisole causes 
nematode spastic paralysis through the potent activation of a mus-
cle nicotinic receptor (AChR)218,222–	225 whereas the anthelmintic ac-
tion of benzimidazoles (e.g., albendazole and mebendazole) arises 
from their capacity to block tubulin polymerization in nematode 
cells.78 Thus, while the presence of the imidazole ring appears to 
be important for bioactivity, it does not restrict the molecular tar-
gets where imidazole- containing anthelmintics can act. Recently, 
taking advantage of C. elegans as an established model for parasitic 
nematodes, we screened the nematicidal potential of novel imida-
zolium and imidazole derivatives.66	We	identified	a	new	compound,	
diisopropylphenyl- imidazole (DII), that is lethal to C. elegans through a 
novel mode of action that includes differential targeting in larvae and 
adult nematodes. This lethal effect appears to be specific for nema-
todes because at DII concentrations, proven to be toxic to C. elegans, 
no significant lethality on bacteria, Drosophila melanogaster and HEK- 
293 cells has been detected. Using C. elegans mutant and transgenic 
strains, we found that DII effects on adult nematodes rely on a previ-
ously unidentified UNC- 29- containing muscle AChR, different from 
the classical Levamisole- sensitive AChR. Interestingly, DII targets ap-
pear to be different between larvae and adults as unc- 29 null mutant 

larvae are sensitive to the drug.66 Summing up, using the model C. el-
egans we demonstrated that DII fulfills the major criteria necessary 
for the development of a novel anthelmintic, namely phylogenetic 
specificity and a novel biochemical mode of action. The next step 
will be to expose parasite worms to this already characterized drug.

Other researchers performed a screen of a small- molecule library 
using C. elegans to test the anthelmintic activity of FDA- approved 
drugs with the aim of repurposing their clinical activity.226 The avail-
ability of data on their toxicity and pharmacokinetic characteristics 
will expedite its potential use for new therapeutic indications. From 
this screen, they found that the neuromodulatory drugs sertraline, 
paroxetine, and chlorpromazine kill C. elegans at multiple life stages 
and inhibit worm feeding. C. elegans mutants with resistance to known 
anthelmintic drugs are as sensitive as wild- type worms to these three 
drugs, suggesting that they may act through novel targets. They also 
demonstrated that these drugs affect divergent parasitic helminth 
species, such as Trichuris muris and Ancylostoma caninum and the 
trematode Schistosoma mansoni. These researchers therefore con-
clude that these drugs may represent a new class of anthelmintic 
drugs that could be used in combination with classic anthelmintics to 
boost effectiveness as well as to avoid parasite drug resistance.

As a result of the limited repertoire of available anthelmintics 
and the alarming emergence of anthelmintic resistance, there is an 
urgent need to develop novel anthelmintics. C. elegans becomes a 
useful platform to accelerate the screening process for anthelmintic 
drug discovery. The use of C. elegans can permit the development of 
new parasite control strategies by identifying new drugs with better 
and broad- spectrum, repurpose already approved drugs, and com-
bine different therapeutic options.

4  |  CONCLUSIONS

Traditional preclinical drug discovery is a complex process that takes 
more than 10 years. Today, innovative strategies are required to 
satisfy both the increasing demand for better and more efficient 
therapies and the need to save resources and time for drug devel-
opment. Under this scenario, the use of invertebrate animals, such 
as the nematode C. elegans, during the early phases of drug devel-
opment becomes a very convenient strategy to achieve these two 
aims. Since the introduction of C. elegans into research studies, this 
nematode has been extensively used to understand fundamental bi-
ological processes. During the last years, C. elegans has also become 
an invaluable tool for the screening of compounds with potential 
therapeutic uses. This nematode is probably the best cost- effective 
choice for early target validation scheme among animal models. 
Primary hits could be identified in C elegans as an initial filter. The 
efficacy and safety information gathered by the use of this nema-
tode, significantly reduce costs, time, and the number of vertebrate 
animals required.

In this review, we have outlined several attributes that high-
light the strength of C. elegans as a model for drug screening, 
drug repurposing, drug target identification, drug combination, 
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and molecular drug mechanism unraveling. The advances in mas-
sive and automated high- throughput drug discovery assays for 
C. elegans, the amenability of genetic manipulation, and the ex-
tended information available on gene structures, mutant and RNAi 
phenotypes, microarray data and protein– protein interactions 
(Wormbase)	should	be	further	exploited	to	facilitate	the	develop-
ment of new drugs. The variety of C. elegans disease models now 
available in the drug discovery pipeline does secure a significant 
boost to our understanding of human diseases and accelerates the 
reach of effective disease treatments.
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