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A B S T R A C T   

Background: Immune cells, vital components of tumor microenvironment, regulate tumor survival and progres-
sion. Lung adenocarcinoma (LUAD), the tumor with the highest mortality rate worldwide, reconstitutes tumor 
immune microenvironment (TIME) to avoid immune destruction. Data have shown that TIME influences LUAD 
prognosis and predicts immunotherapeutic efficacy. The related information about the role of TIME’s charac-
teristics in LUAD is limited. 
Methods: We performed unsupervised consensus clustering via machine-learning techniques to identify TIME 
clusters among 1906 patients and gathered survival data. The characteristics of TIME clusters of LUAD were 
visualized by multi-omics analysis, pseudo-time dynamic analysis, and enrichment analysis. TIME score model 
was constructed by principal component analysis. Comprehensive analysis and validation were conducted to test 
the prognostic efficacy and immunotherapeutic response of TIME score. 
Results: TIME clusters (A, B and C) were constructed and exhibited different immune infiltration states. Multi- 
omics analyses included significant mutated genes (SMG), copy number variation (CNV) and cancer stemness 
that were significantly different among the three clusters. TIME cluster A had a lower SMG, lower CNV, and 
lower stemness but a higher immune infiltration level compared to TIME clusters B and C. TIME score showed 
that patients in low TIME score group had higher overall survival rates, higher immune infiltration level and high 
expression of immune checkpoints. In validation cohorts, low TIME score subgroup had better drug sensitivity 
and favorable immunotherapeutic response. 
Conclusion: We constructed a stable model of LUAD immune microenvironment characteristics that may improve 
the prognostic accuracy of patients, provide improved explanations of LUAD responses to immunotherapy, and 
provide new strategies for LUAD treatment.   

Introduction 

Lung adenocarcinoma (LUAD), a common lung cancer, has the 
highest cancer mortality rate worldwide [1]. immunotherapy (IT) as a 
notable therapy has achieved clinical success over a short period of time 
in NSCLC [2]. Clinical trials have confirmed improvements in clinical 
outcomes and the safety of IT [3–5]. IT acts at key points in immune 
responses to accurately target tumor cells. Compared to classic chemo-
therapy, IT has a higher overall survival rate (OS), particularly for 

patients expressing high levels of PD-L1 [6,7]. Though IT has improved 
the health of many patients, it lacks a sensitive predictive indicator and 
is limited to certain qualified patients. PD-L1 expression is regarded as a 
biomarker for assessing the success of IT, but only half of the high 
PD-L1-expressing patients benefit from related IT drugs [8]. The dif-
ferences among the diagnostic assays for IT limit their applications in 
LUAD [9]. The predictive value of immune checkpoint in immuno-
therapy is not as good as molecular target in targeted therapy [10–12]. 
The higher somatic tumor mutational burden (TMB) is believed to be 
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associated with increased OS in IT, but there is no accepted definition of 
high TMB [13]. 

The tumor immune microenvironment (TIME) influences cancer 
progression and metastases and affects patient prognoses and IT out-
comes [14,15]. Immune cell infiltration therapy in IT activates 
tumor-infiltrating lymphocytes (TLCs). Natural killer (NK) cells, den-
dritic cells (DCs), neutrophils, and tumor-associated macrophages 
(TAMs) are correlated with patient OS and relapse [16–20]. Most studies 
have focused on only one aspect of TIME because of limited experi-
mental options for investigating the effect of tumor immunity in the 
incidence and progression of cancer. Investigating key nodes in TIME, 
rather than focusing on a certain aspect, is necessary. 

Next-generation sequencing and machine learning are possible op-
tions for the analysis of large amounts of data from multi-center studies. 
We constructed a TIME score method to identify a prognostic TIME score 
biomarker for LUAD. Verification of the method indicated that the 
model could accurately predict patient responses to IT and patient 
outcomes. Our model provides novel insights into the TIME of LUAD 
patients, improves patient prognoses, and provides guidance for 
selecting clinical LUAD treatments. 

Materials and methods 

Adenocarcinoma of lung datasets collection and preprocessing 

The Gene-Expression Omnibus (GEO) and the Cancer Genome Atlas 
(TCGA) databases were searched for LUAD gene-expression datasets 
reporting complete clinical annotations. 11 treatment-naive LUAD co-
horts (GSE3141, GSE10245, GSE19188, GSE30219, GSE31210, 
GSE37745, GSE41271, GSE42127, GSE50081, GSE72094, and TCGA- 
LUAD) were selected. After removing cases lacking survival informa-
tion, samples from 1906 patients were investigated. The backgrounds of 
raw data from Affymetrix and Illumina analyses of the GEO datasets 
were adjusted using affy and lumi software packages. For the TCGA- 
LUAD cohort, transcripts per kilobase million (TPM) of gene expres-
sion from mRNA sequencing data, somatic mutation profiling data, and 
copy number variation (CNV) data from the Genomic Data Commons 
(GDC) datasets were obtained using TCGAbiolinks [21]. Non-biological 
technical biases causing batch effects were corrected using ComBat [22]. 
Platforms, number of samples, baseline information, and clinical end-
points of each eligible LUAD dataset were summarized (Table S1). 

Consensus clustering of TIME-infiltrating cells 

Infiltration levels of distinct immune cells [23], including innate and 
adaptive immunity cells in each LUAD sample were quantified using 
single-sample gene-set enrichment analysis (ssGSEA). We used ESTI-
MATE [24] to calculate immune scores, stromal scores, and tumor pu-
rities that determined levels of TIME immune or matrix components. 
Unsupervised clustering PAM algorithms identified TIME patterns and 
classified patients using ConsensuClusterPlus [25]. The stability of the 
classification of patients was ensured by repeating ConsusClusterPlus 
1000 times. 

Identification of DEGs among TIME clusters 

Analyses of differentially expressed genes (DEGs) in TIME clusters 
were performed using DESeq2 [26] and limma [27] with standard 
comparison parameters. Invalid genes were removed. A threshold of 
absolute log2 fold change > 1 and a significance threshold of adjusted P 
< 0.05 were chosen as criteria for valid DEGs. A total of 1412 quali-
fying DEGs were identified. 

Dynamic analysis of immune landscape and multi-omics analysis of 
clusters 

Pseudo-time dynamic analyses using the Monocle2 package [28] 
were performed to show the intrinsic changes and the distribution of 
individual patients. Immune processes were simulated in tree structures, 
and developmental trajectories were defined [29]. MutSigCV (v1.4) 
[30] was used to identify SMGs using default parameters, and Com-
plexHeatmap [31] was used to draw oncoprint mutation landscapes. 
GISTIC 2.0 [32] was used to identify significant regions that were 
amplified or deleted chromosomes. Gene copy number loss or gain 
burden was calculated as the total number of genes with copy number 
changes at the focal and arm levels. We used OCLR (a machine learning 
algorithm) [33] to calculate cancer stemness data. The mRNAsi and 
mDNAsi were all inferred. 

Generation of and dimension reduction in TIME Score 

Positively- and negatively-correlated DEG signatures in TIME gene 
clusters were classified as TIME gene signature A or B. The Boruta al-
gorithm [34,35] was applied to TIME gene signatures to reduce noise, 
eliminate redundant genes, and connect TIME scores to the largest 
groups of well-and anti-correlated genes in the set. Principal component 
analysis (PCA) extracted principal component 1 as the signature score. 
The TIME score of each patient was defined using the following equation 
[36,37]: 

TIME score =
∑

PC1A +
∑

PC1B  

where A is the expression of TIME gene signatures A, and B is the 
expression of TIME gene signatures B. 

Functional and pathway enrichment analyses 

The GSVA R package [38] was used for GSEA of biological processes. 
The clusterProfiler R package [39] was used to collect information for 
the analyzed gene sets from GO and KEGG in the Molecular Signatures 
Database (MSigDB). The ssGSEA algorithm and TIP tool [40] were used 
to quantify the scores of immune-related pathways and cancer immunity 
cycle and explore correlations between the TIME scores and 
immune-relevant biological processes [41]. 

Evaluation of immune infiltration in TCGA-LUAD and tissue microarray 
specimens 

Approximately 200 samples from different TIME score subgroups 
were randomly selected for immune infiltration evaluation. Two expe-
rienced pathologists examined formalin-fixed paraffin-embedded slides 
of the tissues provided by the TCGA data portal. Hematoxylin eosin- 
stained slides were evaluated and scored according to the amount of 
immune infiltration: 0 = absence of immune cell infiltration, 1 =

minimal, 2 = mild infiltration, 3 = moderate, and 4 = severe 
infiltration. Samples with infiltration scores from 0 to 2 were classified 
as low immune infiltration, and samples with infiltration scores from 3 
to 4 were classified as high immune infiltration. Poor-quality samples 
from tissue microarrays (TMA) (HLugA180Su04) (Outdo Biotech, 
Shanghai, China) were eliminated. TMAs were identified and grouped 
by the same pathologists. 

Sample collection 

From March 2014 to December 2016, 66 specimens from pre- 
operative LUAD patients at the Second Hospital of Dalian Medical 
University (SHDMU), Dalian, China, were collected and provided to us 
with complete clinical and prognostic information. LUAD histopathol-
ogy was confirmed by two experienced pathologists. Follow-up survival 
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information was obtained through electronic medical record and tele-
phone. Twenty samples were randomly selected for extracting total RNA 
according to the manufacturers’ instructions. TransStart Tip Green qPCR 
SuperMix (Transgen Biotech) was utilized for real-time qRT-PCR with 
specific primers against CD44, CD133, ALDH1A1, PD-L1, and GAPDH, 
using the ABI-7900HT FAST Real-Time PCR System (Applied Bio-
systems, USA). GAPDH was selected for normalization. All primer se-
quences were shown in Table S1. This study was approved by the 
Institutional Ethics Committee at SHMDU and all patients signed 
informed consent. All the studies were designed and all test procedures 
were performed according to the Helsinki Declaration. 

Comprehensive prediction of the TIME score 

LUAD samples were categorized into high and low TIME score sub-
groups. The predictive accuracy of TIME scores was validated in 9 
validation cohorts, including IT-related cohorts (IMvigor210, n = 298 
[42]; TCGA-SKCM, n = 70 [43]; GSE135222, n = 27 [44]; 
PMID29301960, n = 33 [45]; and GSE91061, n = 49 [46], large LUAD 
validation cohorts (GSE72094, n = 439 and GSE68465, n = 440), TMA 
cohort, and SHDMU cohort. We curated gene expression profiles from 
pre-therapy biopsy samples and transformed them into a TPM format for 
analysis. The Subclass Mapping (SubMap) algorithm [47] was used to 
predict the possibility of anti-PD1 and anti-CTLA4 IT responses in the 
high and low TIME score subgroups. We obtained related annotation 
data from the supplementary materials reported by Lu et al. [48]. The 
pRRophetic R package [49] was used to estimate the therapeutic 
response of dimethyloxallyl glycine (DMOG) and erlotinib. The 
half-maximal inhibitory concentrations (IC50s) of samples were esti-
mated using ridge regression, and the accuracy of the IC50 predictions 
was evaluated by 10-fold cross-validation based on the Genomics of 
Drug Sensitivity in Cancer (GDSC) training set [50]. 

Statistical analyses 

All statistical analyses were conducted using R software (version 
4.0.5). We used the Wilcoxon test to compare two groups and the 
Kruskal-Wallis test to compare more than two groups. Spearman and 
distance correlation analyses were used to calculate correlation co-
efficients. Contingency tables were analyzed using two-sided Fisher 
exact tests. Optimal cut-off values determined by the survminer R 
package were used to dichotomize continuous variables for patient 
survival. Survival curves for subgroups in each data set were generated 
using the Kaplan–Meier survival curves and significant differences were 
identified using log-rank tests. Hazard ratios (HRs) of the TIME scores 
were calculated using a univariate Cox regression model and indepen-
dent prognosis factors were determined using a multivariate Cox 
regression model. In the validation cohort, the pROC package [51] was 
used on the training set to generate receiver operating characteristic 
(ROC) curves, calculate the area under the curve (AUC), and calculate 
confidence intervals to determine the diagnostic accuracy of the com-
bination of TIME score and clinical features. The statistical significance 
threshold was set to 0.05 (two-tailed). 

Results 

Immune cell infiltration landscape in the TIME of LUAD 

The flowchart of TIME cluster division and immune score construc-
tion is shown in Fig. S1A. 11 lung cancer cohorts (GEO databases: 
GSE3141, GSE10245, GSE19188, GSE30219, GSE31210, GSE37745, 
GSE50081, GSE72094, GSE41271 and GSE42127; [TCGA]-LUAD) was 
selected and strictly removed non-lung adenocarcinoma patients. 
Combined with survival information, a total of 1906 samples were 
analyzed by ssGSEA to identify and quantify the infiltrating level of 
immune cells after removing batch effects (Fig. S1B, Table S2, S3). 

Unsupervised clustering was performed to divide LUAD patients with 
matched immune cells expression into three TIME cell clusters 
(Fig. S1C). We termed these clusters TIME cell cluster A, TIME cell 
cluster B and TIME cell cluster C. The three TIME cell clusters show 
distinct immune infiltration statuses, which are accompanied by dif-
ferences in survival (log-rank test, P< 0.001, Fig. 1A-C). Immune cell 
compositions were compared to assess the different prognoses among 
the three TIME cell clusters (Fig. 1E, Table S5). Patients in TIME cell 
cluster A were characterized by high expression of innate immune cells 
(DCs, immature DCs, activated DCs, TAMs, neutrophils, and NK 
CD56dim cells) and adaptive immune cells (Th1 cells, B cells, CD8+T 
cells, T gamma delta cells, T effector memory cells, and T central 
memory cells). The median survival times of immune and adaptive 
immune cells for cell clusters A, B, and C were 3204 days, 2462 days, 
and 1380 days, respectively. The correlation coefficient heatmap illus-
trates the interaction among the immune cells in TIME (Fig. 1D, 
Table S4). Two central immune checkpoint proteins, PD-1 and PD-L1, 
were analyzed in each TIME cell cluster (Fig. 1F). The expression 
levels of these two immune checkpoint proteins were high in TIME 
cluster A and low in TIME cluster C, indicating that TIME cluster A may 
benefit the most from anti-PD-1 and anti-PD-L1 IT treatments. To 
deepen the biological and clinical differences among the three intrinsic 
cell clusters, we performed identical analyses in the TCGA-LUAD cohort 
for its large sample size, detailed multi-omics data and exhaustive 
clinical information. Survival analyses, immune cell composition ana-
lyses, and expression levels of PD-1 and PD-L1 among the three cell 
clusters were consistent with the overall trend presented above 
(Fig. S1D-F, Table S5). 

Construction of TIME gene cluster and enrichment analysis 

To clarify the underlying biological characteristics of TIME cell 
clusters, difference analysis identified 1412 DEGs in the TCGA-LUAD 
cohort for further analysis (Fig. S2A and Table S6). Unsupervised clus-
tering identified three distinct TIME genomic clusters: TIME gene cluster 
A, TIME gene cluster B, and TIME gene cluster C (Fig. 2A, S2B). 

The TIME gene clusters and TIME cell clusters can match well 
(Fig. S2C). Analysis of Kaplan-Meier curves revealed that survival times 
of patients in TIME gene cluster A were longer than those of patients in 
gene clusters B and C (Fig. 2B). A pseudo-time analysis demonstrated 
that the classification of gene clusters was stable (Fig. 2C). Further 
analysis found that clusters A, B, and C may show progressive trends in 
cell differentiation, which is also consistent with tumor progression [52] 
(Fig. S2D). Immune cell compositions showed the same trend in gene 
clusters and cell clusters, but the differences among gene clusters were 
more evident than that of cell clusters (Fig. 2D, Table S5). Estimate 
analysis supported the results that immune, stromal and estimate scores 
decreased with the classification, tumor purity increased with the clas-
sification, consistent with the deterioration of the corresponding pa-
tient’s prognosis (Fig. 2E, Table S7). 

Using GSEA (which included GO process and KEGG pathway iden-
tification), we investigated the biological behaviors behind differences 
among the three gene clusters (Fig. 2F, G, Table S8). In GO process 
analysis, TIME gene cluster A was mainly enriched in immune-activated 
processes, while TIME gene cluster C was enriched primarily on 
malignancy-associated biological processes. In KEGG pathway identifi-
cation, TIME gene cluster A was enriched in immune activation related 
pathways such as B and T cell receptor signaling, and Fc gamma R- 
mediated phagocytosis pathways. TIME gene cluster C was enriched in 
base excision repair, DNA packaging complex, chromosomal region, 
kinetochore processes, cell cycle, oocyte meiosis, oxidative phosphory-
lation, pyrimidine metabolism and nucleotide excision repair pathways. 
GSEA results in gene cluster B revealed fewer biological processes and 
pathways associated with immune activation and malignancy than those 
for gene cluster A and gene cluster C. (Fig. S2E, Table S8). The GSEA 
results showed significant differences between cluster A and cluster C, 
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and cluster B was between the two. The significance of the differences 
indicates that the classification is distinct and accurate. 

Characteristics of TIME gene clusters from multi-omics analysis 

Numerous biological processes are involved in the complex process 
of tumor progression. To better understand the classification, we com-
bined transcriptome, genome and epigenome data including gene 
expression, SMG, CNV and cancer stemness analysis. SMG landscapes 
showed that gene cluster C had a greater tumor mutation burden than 
clusters A and B (Fig. 3A, S3A, Table S9). TP53, KRAS, KEAP1, 
SMARCA4, EGFR, and BRAF expression levels were high in gene cluster 
C. Significant statistical differences in expression levels of TP53, KEAP1, 
SMARCA4, and EGFR among the gene clusters combined with known 
drug targets in LUAD [53] were observed, indicating that additional 

analyses of TP53, EGFR, KEAP1, and BRAF were needed (Fig. 3B). Our 
results are consistent with the previous study [13]. 

The mutation rate among the three gene clusters showed an overall 
upward trend. High significant mutation rate was correlated with un-
favorable LUAD prognoses. EGFR decreased in the three clusters, indi-
cating that patients with high mutation rate in EGFR may be more 
sensitive to IT. Analysis of EGFR mutation sites in different gene clusters 
showed that targeted agent action sites were concentrated in gene 
clusters A and B [54,55] (Fig. 3C). These results indicated that it might 
be appropriate to administer IT combined with EGFR target drugs for 
LUAD patients in TIME gene cluster A. GISTIC 2.0 was used to explore 
CNV among the three clusters. Comparing G-scores across all chromo-
somes in the three clusters, we found that both frequency and amplitude 
gradually increased (Fig. 3D, Table S10). Amplifications (14q13.3, 
12q14.1, and 12q15) and deletions (9p21.3, 9p21.3, and 9p23) within 

Fig. 1. Landscape of TIME in 1906 LUAD patients. (A) Heatmap of 1906 LUAD samples categorized into three TIME cell clusters via unsupervised clustering. (B) 
Distinguishing TIME cell clusters using three-dimensional principal component analysis. The dots of different colors correspond to patients in the three TIME cell 
clusters. (C) Survival curves exhibiting distinct OS of patients in the three TIME cell clusters. (D) Correlation coefficient heatmap of immune cells interaction in TIME 
cell clusters. (E) Boxplot showing the fraction of immune cells in three TIME cell clusters. * P < 0.05; **P < 0.01; *** P < 0.001; **** P < 0.0001. (F) Violin plots 
showing PD-1/ PD-L1 expression in TIME cell clusters. 
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chromosomal regions were detected in cluster A, amplifications (1q22, 
8q24.21, and 1q21.3) and deletions (9p21.3, 9p23, and 13q12.11) 
within chromosomal regions were detected in cluster B, and amplifica-
tions (11q13.3, 14q13.1, and 8q24.21) and deletions (9p21.3, 4q34.3 
and 22q13.31) within chromosomal regions were detected in cluster C 
(Fig. S3B). The copy number gain and loss burdens among the three gene 
clusters were investigated (Fig. 3E). Whether at the focal or arm level, 
the burden of CNV increased in clusters A-C and correlated with de-
creases in LUAD immune infiltration levels. Ranking mRNAsi and 
mDNAsi from low to high, we explored the correlation between stem-
ness, classification, and corresponding clinical features (Fig. 3F, S3C, 

Table S11). Gene cluster A was primarily distributed in the low mRNAsi 
area, and gene cluster C was primarily distributed in the high mRNAsi 
area. There were significant differences of mRNAsi among gene clusters 
(P< 0.001, Fig. 3H). However, clinical features had low correlations 
with mRNAsi. The trends of the correlation between immune cells and 
mRNAsi were consistent with the trends of immune cells in TIME clus-
ters (Fig. 3G). mRNAsi was positively correlated with typing and nega-
tively correlated with the levels of most immune cell infiltrations. The 
overall trend of cancer stem cell markers in LUAD was consistent with 
the upward trend of mRNAsi (Fig. 3I, Table S5) [33,56,57]. We per-
formed mDNAsi analysis in parallel with mRNAsi, and the results were 

Fig. 2. Construction of the TIME gene cluster and enrichment analysis. (A) Heatmap of TCGA-LUAD samples categorized into three TIME gene clusters via unsu-
pervised clustering. (B) Survival curves exhibiting distinct OS of patients in the three TIME gene clusters. (C) The immune landscape of LUAD in TCGA based on TIME 
gene clusters. Each point represents a patient. (D) Boxplot showing the fraction of immune cells in three TIME gene clusters. (E) Violin plots showing the differential 
expression of immune, stromal, estimate scores and tumor purity in three TIME cell clusters (TCGA-LUAD cohort). (F) Heatmap visualizing the distinct GO terms 
among the TIME gene clusters. Red represents activation states and blue represents inhibition states. (G) GSEA reveals the enrichment results of KEGG pathways in 
TIME gene cluster A and C. 
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similar to those of mRNAsi (Fig. S3D, E). The data indicated that our 
classification is stable and reliable. SMG, CNV, and stemness gradually 
increased in TIME gene clusters A, B, and C. The combination of im-
munity, SMG, CNV, and cancer stemness can increase the understanding 
of cancer development and expand cancer treatment strategies. 

Construction of the prognostic biomarker TIME score 

The prior analyses were based on patient populations rather than 
individuals. To predict patient prognoses and assess immune infiltration 
states of individual tumors accurately, we constructed a TIME score 
model based on individual gene expression heterogeneity and 

complexity. A total of 1412 DEGs were identified, of which 981 genes 
were positively associated with the classification of gene clusters, known 
as gene signature A and the remaining DEGs were known as gene 
signature B. The Boruta algorithm was used to reduce the noise or 
redundant genes in gene signatures A and B. The transcriptomic profiles 
of the 193 most abundant DEGs among the genomic clusters were 
delineated using heatmap (Fig. 4A, S4A, Table S12). 

In this investigation, from TIME gene signatures A and B, we calcu-
lated TIME score A (TSA) and TIME score B (TSB) using the PCA algo-
rithm, respectively. The sum of the TSA and TSB was used to quantify 
the TIME of individual LUAD. Thus, we acquired a prognostic model, 
which was termed as TIME score. TIME scores were determined and 

Fig. 3. Multi-omics analyses of TIME gene clusters. (A) Ternary plot showing the mutation frequency of SMGs, comparing TIME gene cluster A (top, blue), TIME gene 
cluster B (left, yellow), and TIME gene cluster C (right, red). The color of each node indicates relative frequency of mutations in TIME gene cluster A, B and C, 
whereas the node size represents their overall frequency in LUAD. (B) Rate of mutate and wildtype significant mutated genes (TP53, EGFR, KEAP1, BRAF) among 
TIME gene clusters. (C) Lollipop plot of different mutation spots in EGFR among TIME gene clusters. (D) Copy numbers profiles showing the amplification (crimson) 
and deletion (dark blue) of chromosomes from 1 to 22 in TIME gene clusters. (E) Copy numbers gain and loss burden in focal and arm-level in TIME gene clusters. (F) 
Association between mRNAsi and pathology features of patients. (G) Correlation analysesof immune cells and mRNAsi. The node size represents the strength of the 
correlation. (H) Boxplot showing the distribution of mRNAsi in different gene clusters. (I) Boxplot showing the expression of markers of cancer stemness among TIME 
gene clusters. 
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stratified into high or low TIME scores using optimal cutoff values 
calculated by the survminer package for samples in the TCGA-LUAD 
cohort (Table S13). Analyzing TIME scores integrated with survival in-
formation revealed that patients with low TIME scores had improved 
survival times (median survival time = 3117 days) compared to patients 
with high TIME scores (median survival time = 1195 days; log-rank test, 
P< 0.001, Fig. 4B). An alluvial diagram illustrated the construction of 
TIME score model (Fig. 4C). The results showed that gene cluster A was 

linked primarily to low TIME scores. OS states were primarily concen-
trated in alive states in gene cluster A compared to gene cluster C. K-W 
analysis showed that the TIME scores increased in gene clusters A-C 
(Fig. S4B). 

TIME scores reflected the immune infiltration states of the sub-
groups. Estimate analysis revealed that immune and stromal scores were 
positively correlated with TIME scores, and tumor purities were nega-
tively correlated with TIME scores (Fig. 4D). TIME score was closely 

Fig. 4. Construction and characterization of TIME score model. (A) Heatmaps of the positive correlation between gene signatures A and B and immune infiltration 
level. (B) Survival curve for OS of TIME score subgroups. (C) Alluvial diagram of low and high TIME score subgroups with TIME gene clusters and OS event. (D) 
Scatterplots of the correlation between TIME scores and estimate analysis results evaluated by ESTIMATE algorithm. (E) Representative TCGA-LUAD H&E histo-
logical images in high and low TIME scores. Scale bar denotes 50 μm. (F) Correlations between TIME scores and immune enrichment pathways (left), cancer immune 
process (right). (G) Forest plot exhibiting multivariable independent prognostic analyses of TIME score and clinical features (age, sex, stage, TNM). (H) Boxplots 
showing the expression of IT targets in low- and high-TIME- score subgroups, * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 
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correlated with cancer immunity, which was confirmed through pa-
thology examination (Fig. 4E, Table S17). Levels of immune cell- 
infiltration in low-scoring subgroup were significantly higher than 
those in the high-scoring subgroup. An increased number of tertiary 
lymphoid structures were observed in the low-scoring subgroup 
compared to the high-scoring subgroup. The rate of high immune 
infiltration in low-scoring subgroup was higher than the rate of high 
immune infiltration in high-scoring subgroup (89/100 vs. 7/100). TIME 
scores were negatively correlated with the 7 steps of the Cancer Im-
munity Cycle [41] and could predict the entire process of cancer im-
munity (Fig. 4F). However, due to the complexity of the cancer 
microenvironment and the existence of cancer immune escape, elements 
of the 7 steps in the Cancer Immunity Cycle may not accurately describe 
cancer progression in patients. This may lead to TIME score model 
insignificant evaluations of low effects in the corresponding steps. 
Analysis of the relationship between TIME score and clinical features 
revealed that they were significantly correlated. (Fig. S4C). The rela-
tionship between scores and histological classifications requires further 
verification because of the limited sample size available in our study 
(Fig. S4D). We found that TIME scores could be used as effective 

prognostic indicators and were supported by forest plots (Fig. 4G, S4E). 
TIME score was an independent prognostic indicator when combined 
with other indicators (HR = 2.11; concordance = 0.7). ROC analyses 
demonstrated that TIME score had predictive advantage of LUAD 
(AUC60 = 0.74; AUC96 = 0.82, Fig. S4F). We found that T-cell-targeted 
immunomodulators (PD-1, CTLA4, IDO1, LAG3, and PDL-1), cancer 
vaccine (MUC1), cell therapies (CD19 and BCMA), and other immuno-
modulators (TLR7, CD47, and CSF1R) were negatively correlated with 
TIME score (Fig. 4H, Table S5), indicating that low-score groups may 
benefit more from IT. We found correlations among TIME cell clusters, 
TIME gene clusters, and TIME scores. Scoring simplified LUAD classifi-
cation criteria, which could be used for determining patient prognoses. 
In addition, scores could be used in combination with other indicators to 
guide treatment. 

TIME score in the prediction of immunotherapeutic benefits 

TIME score has been shown to be an independent prognostic risk 
factor. It is unclear if TIME score can guide IT given the relationship 
between TIME score and tumor immunity. ITs, including cytokines, 

Fig. 5. Prediction of IT response in TIME score model. (A) Heatmap of immune infiltration levels in two TIME score subgroups (TCGA-SKCM, n=70, a mixed 
immunotherapy cohort). (B) Survival curves exhibiting distinct OS in two different TIME score subgroups (TCGA-SKCM cohort). (C) Fractions of responders (CR and 
PR) and non-responders (PD and SD) in TCGA-SKCM patients treated with mixed IT across two TIME score subgroups. (D) Heatmap of immune infiltration levels in 
two TIME score subgroups (IMvigor210, n=298, an PD-L1 inhibitor treatment cohort). (E) Survival curves exhibiting distinct OS in two TIME score subgroups 
(IMvigor210 cohort). (F) Fractions of responders (CR and PR) and non-responders (PD and SD) in IMvigor210 patients treated with PD-L1 blockade across two TIME 
score subgroups. (G) Survival curves exhibiting distinct OS in patients with high or low TMB treated with PD-L1 blockade. (H) Survival curves showing distinct OS in 
IMvigor210 cohort layered by TMB and TIME score. (I) Survival curves exhibiting distinct OS in patients treated with PD-L1 blockade with high or low TNB. (J) 
Survival curves showing distinct OS in IMvigor210 cohort layered by TNB and TIME score. 
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vaccines, and checkpoint blockers, are commonly used in patients and 
show unprecedented survival benefits. To investigate the prognostic 
value of the TIME score model in response to IT, we assessed data from 
two representative IT cohorts (TCGA-SKCM and IMvigor210) for further 
analyses (Table S15). We separated cohort patients into high- or low- 
TIME-score subgroups. The immune infiltration levels between the 
two subgroups were different. The low-score subgroup showed a higher 
infiltration status compared to the high-score subgroup (Fig. 5A, 5D). 
Patients with low TIME scores had better prognoses than those with high 
TIME scores in both TCGA-SKCM and IMvigor210 cohorts (Fig. 5B, 5E). 
Patients in the low-TIME-score subgroup may have improved benefits 
from IT. (response rate of mixed IT cohort: 59% vs. 20%, Fig. 5C; 
response rate of anti-PD-1 cohort: 29% vs.11%, Fig. 5F, Fig. S5A, S5B). 
The same results were found in the anti-PD-1/ PD-L1 cohort GSE135222, 
anti-PD-1/ PD-L1 cohort PMID29301960, and anti-PD-1 cohort 
GSE91061 (Fig. S5C-I), which confirmed the reliability and stability of 
our results. 

TMB is significantly correlated to the efficacy of IT, and tumor 
neoantigen burden (TNB) may influence immune surveillance and pro-
vide targets for IT [58]. In IMvigor210 cohort, we analyzed TMB, TNB 
and their synergies with TIME score. The results indicated that 
high-TMB subgroup had a longer progression-free survival compared to 
the low-TMB subgroup (Fig. 5G). Low TIME score combined with high 
TMB had synergistic effects and provided the most favorable prognosis 
(Fig. 5H). The effects of TNB were similar to those of TMB. High TNB had 
a more favorable prognosis compared to low TNB. Low TIME score and 
high TNB had the best-combined effect on patient prognosis (Fig. 5I, J). 
Whether combined with high or low TMB, TIME scores were stable and 
were correlated with favorable prognoses, as was TNB. Our results 
indicated that TIME scores were correlated with Immunotherapeutic 
response. Whether in PD-1 and PD-L1 datasets or in mixed IT datasets, 
TIME scores served as reliable predictive indicators. When TIME scores 
were combined with TMB or TNB, prognoses were more favorable. Our 
results provide a unique opportunity to explore TMB and TNB functions 
in predicting IT efficacy. 

Validation the performance of TIME score in LUAD cohorts 

We constructed a TIME score model of LUAD. All the results above 
proved that patients with low TIME scores showed high immune infil-
tration levels, prolonged survival time, favorable responses to IT. 
However further validation is needed. The largest internal cohort 
(GSE72094, n= 439) and the largest external validation dataset 
(GSE68465, n= 440) were selected for the validation of TIME score 
model. Differences between the high-score groups and the low-score 
groups were found in both cohorts. Kaplan–Meier survival analyses 
showed that patients in low-score groups had favorable 5-year progno-
ses and increased overall survival (P < 0.001, Fig. 6A, 6C). Our TIME 
score model had an improved prognostic effect in the different datasets 
(Fig. S6A, S6B). Boxplots showed that their immune cell composition 
differed between high- and low-score subgroups (Fig. S6F, S6G). In 
addition to public data cohorts, our cohorts showed the same trend. The 
same pathologists determined the degree of cancer immune infiltration 
status in LUAD sections from the SHDMU cohort and TMA and classified 
them into high- or low-immune-infiltration subgroups. Samples in the 
high-immune-infiltration group had more tertiary lymphoid structures 
than those in the low-immune-infiltration group (Fig. 6E, S6D). Survival 
analysis showed differences between the two subgroups (Fig. S6C, S6E). 
Twenty lung adenocarcinoma samples of different subgroups were 
randomly selected from the SHDMU cohort. The expression of tumor 
stem cell markers and immune checkpoint molecules were verified ac-
cording to the results of qRT-PCR (Fig. S6H). The results showed that the 
mRNA expressions of CD44, CD133, and ALDH1A1 ascended in LUAD 
samples in comparison to the high-immune-infiltration subgroup, while 
that of PD-L1 descend in LUAD samples compared to the high-immune- 
infiltration subgroup. The experimental results are consistent with the 
above analysis results. These results supported the credibility of our 
classification. 

IT response of TIME score model illustrated that patients in the low- 
score groups were more likely to benefit from anti-PD-1 therapy (Fig. 6B, 
6D). We investigated whether IT can work synergistically with other 
drugs. Estimation of therapeutic responses to the DMOG and erlotinib 

Fig. 6. Prognostic value of TIME score model and drug sensitivities in LUAD cohorts. (A) Survival curve of patients in two TIME score subgroups (internal validation 
dataset, GSE72094, n= 439). (B) Submap analysis for calculating the possibility of IT response (anti-PD1 and anti- CTLA4) in distinct TIME score subgroups 
(GSE72094 cohort). (C) Survival curve of patients in two TIME score subgroups (external validation dataset, GSE68465, n= 443). (D) Submap analysis for calculating 
the possibility of IT response (anti-PD1 and anti- CTLA4) in distinct TIME score subgroups (GSE72094 cohort). (E) Representative SHDMU H&E histological images in 
high and low TIME scores. Scale bar denotes 50 μm. (F-G) Boxplots of estimated IC50s for DMOG and Erlotinib in GSE72094 (F) and GSE68465 (G). 
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showed lower IC50s in patients with low TIME scores (Fig. 6F, 6G), 
indicating increased sensitivity to DMOG and erlotinib in low TIME 
score subgroup. Thus, TIME score can be used to predict the efficacy of 
IT. Patients with LUAD may experience increased benefits from a com-
bination of IT with DMOG or erlotinib therapy. TIME score can simply 
and efficiently evaluate the immune infiltration status of LAUD patients 
and classify them into high- or low-TIME-score subgroup so that they 
can be treated separately. In addition, TIME score can effectively predict 
the overall survival and the response to IT of LUAD patients. The TIME 
score model may provide new approaches for combining IT and other 
treatments. 

Discussion 

LUAD is the most common histopathological type of lung cancer 
[59]. TIME is a complex ecosystem and an essential part of the tumor 
microenvironment that affects tumor evolution [60]. Despite much 
research, the understanding of prognostic factors and therapeutic targets 
of LUAD is limited. The development of IT has focused cancer research 
on TIME. 

We developed a methodology to investigate the interaction between 
TIME and LUAD. TIME clusters were constructed based on immune cell 
characteristics from LUAD samples. In our study, we identified three 
TIME clusters A, B, and C that showed characteristic immune cell pop-
ulation levels. Samples in TIME cluster A, a high immune infiltration 
group, contained the highest numbers of immune cells, including DCs, B 
cells, some subtypes of T cells, and other innate immune cells. Eosino-
phils, mast cells, Th2 cells, and Th17 cells demonstrated different trends. 
DCs are responsible for the initiation of immune responses. B cells and 
other innate immune cells are responsible for killing tumor cells. CD8+ T 
cells are believed to have anti-tumor properties [61]. CD4+ T cells are 
complicated and highly heterogeneous in phenotype. Subtypes of CD4+

T cells are classified into Th1, Th2, Th17, and Tregs [62,63]. Th1 and 
Tregs are involved in cancer progression. Th2, eosinophils, and mast 
cells are involved in combating extracellular pathogens and parasites. 
Th17 cells release IL-17 that modulates TIME, and promotes cancer cell 
growth and metastasis [64]. 

We used machine learning algorithms to identify DEGs in TIME 
clusters and used consensus clustering to classify patients into three gene 
clusters. A stable TIME gene cluster is the basis for TIME score con-
struction. We verified the SMG, CNV, and cancer stemness of the three 
TIME gene clusters. They showed observable differences that may affect 
immune infiltration status and promote immune evasion. SMG mutation 
rates in TIME gene cluster A were lower than those in TIME gene cluster 
C. Mutations in lung cancer accumulate over the course of tumor evo-
lution [65]. Our clustering results are consistent with this observation. 
Mutations in TP53, KEAP1, and SMARCA4 increase from TIME gene 
clusters A to C and are similar to previous studies [66,67]. We demon-
strated that these mutations were correlated with poor prognoses and 
may act a pivotal part in tumor immunity. In CNV analysis, TIME with 
high CNV levels have more tumor-promoting and immunosuppressive 
properties among various cancers [68,69]. Studies have indicated that, 
in lung adenocarcinoma cells with high levels of CNV, tumor prolifer-
ation increased and immune infiltration decreased. Increased tumor 
proliferation was primarily predicted by focal CNV. Low levels of im-
mune infiltration were primarily predicted by high levels of arm and 
whole-chromosome CNV [69]. Cells that escape anti-tumor surveillance 
may have high levels of CNV, which resulted from chromosomal insta-
bility. Our results are consistent with the observation that elevated CNV 
is associated with an increased hazard of mortality [70]. Stemness index, 
mRNAsi, and mDNAsi were used to evaluate the stemness of LUAD based 
on the existence of cancer stem cells (CSCs). Our high stemness index in 
the poor-prognosis group is consistent with the observation that CSCs 
can lead to tumor progression and poor prognosis [71,72]. CSCs are 
negatively correlated with PD-L1 expression and leukocyte fraction in 
cancer immunity [33]. CSCs secrete interleukin 10 and tumor necrosis 

factor β that may induce more immunosuppressive phenotypes of 
tumor-associated macrophages [73]. In short, cancer stemness is closely 
related to cancer immunity. Our results showed the stability and prac-
ticality of gene clusters. These differences may be related to different 
immune statuses that may affect the prognoses of patients. Immune cell 
composition and survival analysis showed the same trend among TIME 
cell clusters and TIME gene clusters. These results showed that our gene 
clusters correlated well with TIME cell clusters, indicating that gene 
clusters can represent cell clusters. Because our sample size was larger 
than that used in previous studies, and we investigated TIME in a 
comprehensive manner, our classification is more accurate. 

Cancer development is a dynamic process. Cancer immunity 
weakens as cancer progresses. Pseudo-time analysis demonstrated that 
our classification is consistent with the process of cell differentiation. 
The cancer immunity cycle contains 7 steps. Cancer immunity-related 
immune cells in TIME gene cluster A are highly infiltrated, consistent 
with the 7 steps. DCs can capture cancer antigens and present them to T 
cells, and T effector cells are activated. In this process, the balance be-
tween T effector cells and T regulatory cells determines the development 
of cancer. Activated effector T cells infiltrate the cancer microenviron-
ment. T cell receptors bind to cancer cells and kill them specifically. 
Cancer cell death releases more cancer antigens that trigger the next 
cycle [41]. As cancer progresses, the immune response gradually 
weakens as the cancer microenvironment suppresses immune cell levels, 
which results in immune evasion [60]. Our classification result is 
consistent with this process. 

IT has changed the treatment of multiple types of advanced cancers, 
especially LAUD [74–77]. However, current biomarkers, such as PD-1 
and PD-L1 expression and mutation load, are not effective for predict-
ing the efficacy of IT. There is a high level of clinical interest in bio-
markers that provide accurate predictions on IT efficacy. We developed 
a scoring model to evaluate IT response, assess immune infiltration 
status, and predict patient prognosis. Five separate IT cohorts, including 
anti-PD-L1-treated metastatic urothelial cancer [42], IT-treated skin 
cutaneous melanoma [43], anti-PD-1/PD-L1-treated advanced 
non-small-cell lung carcinoma [44], anti-PD-1/PD-L1-treated clear cell 
renal cell carcinoma [45], and anti-PD-L1-treated advanced melanoma 
[46], were used to verify our scoring model. Patients in high-TIME-score 
subgroups were correlated with lower IT efficacies compared to patients 
in low-TIME-score subgroups. These results indicate that patients with 
low TIME scores might experience more benefits with early adminis-
tration of single-agent IT. 

We analyzed the TIME of LUAD using a comprehensive set of 
analytical tools and data. This resulted in the construction of a reliable 
model that can accurately distinguish different TIME subtypes, deter-
mine the prognoses of patients, and guide treatment. Additional 
research on the correlation between tumor evolution and immune 
evolution is needed. The bulk RNA-seq and microarray datasets we 
investigated lacked data on cellular proportions and heterogeneity. In-
vestigations into deep spatial distribution [78], higher flux, and higher 
dimensionality are needed. Higher-resolution ratio techniques like 
single-cell RNA sequencing and multidimensional immunohistochem-
istry [60] are needed. It might be that individual differences and disease 
complexity do not result in greater IT benefits to all patients with low 
TIME scores. Large randomized controlled trials could provide results 
that improve the accuracy of prediction models. Our research may 
provide information and insights for understanding the correlation be-
tween multi-omics results and cancer immunity. 

Conclusions 

In conclusion, we quantified the infiltration status of tumor immune 
via machine-learning techniques among 1906 LUAD patients. Combined 
with multi-omics data analysis, pseudo-time dynamic analysis, and 
enrichment analysis, we developed a TIME scoring signature to evaluate 
immunotherapy response and predict patient prognosis. Our model of 
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LUAD immune microenvironment characteristics may improve the 
prognostic accuracy of patients, provide improved explanations of LUAD 
responses to immunotherapy, and provide new strategies for LUAD 
treatment. 
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