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Abstract

With the development of cloud computing, interest in database outsourcing has recently
increased. In cloud computing, it is necessary to protect the sensitive information of data
owners and authorized users. For this, data mining techniques over encrypted data have
been studied to protect the original database, user queries and data access patterns. The
typical data mining technique is kNN classification which is widely used for data analysis
and artificial intelligence. However, existing works do not provide a sufficient level of effi-
ciency for a large amount of encrypted data. To solve this problem, in this paper, we propose
a privacy-preserving parallel kNN classification algorithm. To reduce the computation cost
for encryption, we propose an improved secure protocol by using an encrypted random
value pool. To reduce the query processing time, we not only design a parallel algorithm, but
also adopt a garbled circuit. In addition, the security analysis of the proposed algorithm is
performed to prove its data protection, query protection, and access pattern protection.
Through our performance evaluation, the proposed algorithm shows about 2 ~ 25 times bet-
ter performance compared with existing algorithms.

1 Introduction

With the growing popularity of cloud computing, there has been growing interest in outsourc-
ing databases. Cloud computing provides a service that allows internet-connected users to use
virtual computing resources such as storage, computation, and network. Thus, a cloud service
provider can maintain computing resources rapidly and flexibly. A data owner can reduce
efforts to purchase, install, and expand computing systems, and mitigate the constraints of
physical space. Cloud computing is attracting a lot of attention from individuals and compa-
nies because it can reduce the cost of system maintenance and data management, and can uti-
lize computing resources needed without expertise. Meanwhile, we should consider three
requirements in an outsourced database. First, it is necessary to protect the database because
the database contains sensitive information of the data owner [1, 2]. Second, the query and the
query result should not be exposed because personal information related to user preference
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may be uncovered. Third, data access patterns should be protected because the cloud provider
is able to infer private information from the data access pattern.

Therefore, Data Mining over Encrypted Data (DMED) has been studied to protect the orig-
inal database, user queries and data access patterns. Early studies modify plaintexts to substi-
tuted data and outsources them to a cloud [3-7]. However, these early studies have a
disadvantage in that they cannot completely protect data and queries because they are vulnera-
ble to various attacks such as chosen-plaintext attacks. To solve this problem, recent studies
encrypt the database and outsource the encrypted database to the cloud [8-15]. Before a data
owner outsources his/her database to a cloud service provider (cloud provider), he/she
encrypts the database. The cloud provider processes the query received from an authorized
user. The cloud provider can perform data management and system maintenance instead of
the data owner. The authorized user can directly request the desired results from the cloud
provider. The process of query processing over the outsourced database is shown in Fig 1.

Among DMED, the kNN classification algorithm is widely used for three reasons. First, the
kNN classification algorithm has a relatively higher accuracy than other classification algo-
rithms. Second, with the addition of more data, the KNN classification algorithm constantly
evolves and is capable of quickly adapting to the changes in input dataset. Finally, the KNN
classification algorithm gives a user a flexibility to choose a distance measure metric. There-
fore, the kNN classification algorithm is used for various applications such as pattern analysis,
image analysis, and user analysis [16].

Samanthula et al.’s work [16] and Kim et al.’s work [17] proposed kNN classification algo-
rithms based on homomorphic encryption which can support various operations without
decryption. Recent studies can also support data privacy, query privacy and hiding data access
patterns. However, while processing the kNN classification algorithm, the recent works require
high computation cost because they need to add random noise data to prevent exposure of the
original data. Moreover, they require a large amount of processing time for kNN classification
over the encrypted database. To the best of our knowledge, there is no existing parallel KNN
classification algorithm which is suitable for processing a large amount of encrypted data.
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Fig 1. Database outsourcing model.

https://doi.org/10.1371/journal.pone.0267908.9001
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The motivation of this paper is as follows. First, the existing algorithms suffer from high
computational cost by using encrypted binary array to perform comparison operations. There-
fore, we aim at reducing computational cost by proposing secure comparison protocol based
on Yao’s garbled circuit. Second, the existing algorithms require high data encryption cost. To
deal with this problem, we propose an improved secure protocol by using an encrypted ran-
dom value pool. Finally, to the best of our knowledge, there is no existing parallel KNN classifi-
cation algorithm. We aim at designing a parallel KNN classification algorithm for processing a
large amount of encrypted data.

The contributions of this paper are as follows.

« Supporting privacy preservation: By processing queries using homomorphic encryption
without data decryption, we can protect the confidentiality of both data and user’s queries
while hiding data access patterns from an attacker.

» Reducing computation cost: By using the improved secure protocol based on an encrypted
random value pool, we can reduce the high computation cost of the random value genera-
tion for the data encryption.

« Improving the performance of kNN classification: By proposing a new parallel KNN classifi-
cation algorithm, we can reduce the amount of processing time for KNN classification.

The rest of this paper is as follows. In Section 2, we introduce the existing works on kNN
classification algorithms over the encrypted database. In Section 3, we describe the overall sys-
tem architecture and propose secure protocols for the proposed parallel KNN classification
algorithm. In Section 4, we propose a parallel KNN classification algorithm that preserves both
data and query privacy on the cloud. In Section 5, we provide the security proof of our kNN
classification algorithm. In Section 6, we perform a performance analysis of the proposed algo-
rithm. In Section 7, we describe the impact of the proposed parallel classification algorithm as
a discussion. Finally, in Section 8, we conclude our paper with the future work.

2 Background and related work
2.1) Background

2.1.1 Paillier cryptosystem. The Paillier cryptosystem is a probabilistic asymmetric algo-
rithm for public key cryptography [18]. In the Paillier cryptosystem, the encryption key pk is
given as (N, g), where N is the multiplication value between two large prime numbers p and q
in Zxp. Here, g is a random integer value at Zx» where Zy» denotes an integer domain ranged
from 0 to Zye. Meanwhile, the decryption key sk is given as (p, q). The Paillier cryptosystem
has the following characteristics. First the Paillier cryptosystem can support homomorphic
addition and multiplication. Assume that the encryption function of the Paillier cryptosystem
is E(.) and its decryption function is D(.), For two encrypted data E(a) and E(b), the product E
(a) x E(b) is equal to E(a+b), which is the encrypted value of the plaintext a+b, as shown in Eq
(1).

E(a+ b) = E(a) x E(b) mod n* (1)

For two plaintexts a and b, the b'h power of the encrypted data E(a), i.e, E(a)?, is equal to E
(a x b), which is the encrypted value of the plaintext a x b, as shown in Eq (2).

E(a x b) = E(a)" mod n (2)

Second, the Paillier cryptosystem supports semantic security where only negligible informa-
tion about the plaintext can be feasibly extracted from the ciphertext. Specifically, any
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probabilistic, polynomial-time algorithm (PPTA), which is given the ciphertext of a certain
message m and its length, cannot determine any partial information on the message with a
probability higher than all other PPTA’s that only have access to the message length [19]. This
concept is the computational complexity similar to Shannon’s concept of perfect secrecy. Per-
fect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas
semantic security implies that any information revealed cannot be feasibly extracted.

2.1.2 Attack model. In the outsourcing database environment, two attack models can be
considered: a semi-honest attack model and a malicious attack model [20]. In the semi-honest
(or honest-but-curious) attack model, the cloud performs its own protocol honestly, but
attempts to obtain sensitive data about the data owner and the authorized user during the pro-
tocol execution. To prevent a semi-honest attack, sensitive data must always be protected. A
malicious attack model attempts to acquire sensitive data by deviating from a given secure pro-
tocol. Because a secure protocol can be contaminated by a malicious attack, it is difficult to
recover the secure protocol. To protect sensitive data against the malicious attack model, a
defender focuses on detecting attacks and recovering the damaged secure protocol. Since we
aim at protecting sensitive data in cloud computing, we design our algorithm based on the
semi-honest attack model. A secure protocol for the semi-honest attack model is defined as fol-
lows [17].

Definition 1. Assuming that a; is the input data of cloud C;, [1() is the execution image of
C, for the protocol 7 and b; is the result data of C; executing the 7 protocol. If the execution
image IIs;(7r) simulating 7 is computationally indistinguishable from II;(7), the protocol 7 is
said to be a secure protocol for the semi-honest attack model.

In Definition 1, the execution image generally includes the input data and output data of
the protocol. The security of the protocol under the semi-honest attack model can be verified
by showing that the protocol’s execution image does not expose the cloud’s data.

2.2) Related work

2.2.1 B. Yao et al’s work. B. Yao et al. proposed a secure kNN classification algorithm
[21] based on a partition-based secure Voronoi diagram (SVD) [22]. The SVD relies on any
standard encryption scheme E such as public-key encryption RSA and symmetric-key encryp-
tion AES, rather than using any new encryption schemes. Because the SVD is as secure as E for
any standard security model in which E is proven secure, the SVD is indistinguishable in either
chosen plaintext or chosen ciphertext attacks. To process the secure KNN classification queries,
the algorithm retrieves the relevant encrypted partition instead of finding the encrypted exact
k-nearest neighbors. However, most of the computations are performed locally by the end-
user while processing the kNN classification query. As a result, the algorithm conflicts the pur-
pose of outsourcing the DBMS functionalities to the cloud. Furthermore, the algorithm leaks
data access patterns to the cloud, such as the partition ID corresponding to a user query.

2.2.2 B. K. Samanthual et al.’s work. B. K. Samanthula et. al. proposed a secure k-NN
classification algorithm, denoted by PPkNN, over encrypted data in the cloud [16]. PPKNN
can protect the confidentiality of the data, user’s input query, and data access patterns. PPkKNN
mainly consists of two stages: the secure retrieval of k-nearest neighbors and the secure com-
putation of majority class. In the secure retrieval of k-nearest neighbors, a query user initially
sends his query q (in encrypted form) to C;. Then, C; and C, involve in a set of sub-protocols
to securely retrieve the class labels corresponding to the k-nearest neighbors of the input query
q. At the end of this step, the encrypted class labels of the k-nearest neighbors are known only
to C;. In the secure computation of the majority class, C; and C, jointly compute the class label
with majority voting among the k-nearest neighbors of q. At the end of this step, only the
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query user knows the class label corresponding to input query record q. However, PPKNN
requires a very high computation cost for hiding data access patterns.

2.2.3 H. Kim et al.’s work. H. Kim et. al. proposed a secure kNN classification algo-
rithm which uses both the Paillier cryptosystem and an encrypted kd-tree index [17]. The
Paillier cryptosystem is a homomorphic encryption scheme which is indistinguishable in
either chosen-plaintext or chosen-ciphertext attacks, so that the cloud can process the kNN
classification queries without decrypting any data or a user’s query. Before outsourcing
data to the cloud, a data owner builds a kd-tree index and encrypts both the original data-
base and the leaf nodes of the kd-tree index. Therefore, the algorithm can protect the data,
the query and the data access pattern. By using the encrypted kd-tree index, the algorithm
can reduce the amount of query processing time. However, because the algorithm must
generate encrypted random values for privacy-preserving, it requires a high computation
cost.

2.2.4W.Wuetal’s work. W.Wu etal. proposed a privacy preserving kNN classification
algorithm over encrypted database in outsourced cloud environments [23]. The algorithm
newly generates unique classification label keys for each user through a secure three-party pro-
tocol. The keys are used to re-encrypt the labels into new ciphertexts that can only be
decrypted by the corresponding user. The algorithm hides the data access patterns from a fed-
erated cloud server which performs the process of kNN classification by using two non-collud-
ing clouds. However, the algorithm conflicts the purpose of outsourcing the DBMS
functionalities to the cloud because both the data owner and authorized users must participate
in the process of label re-encryption.

2.2.5Y.Tanetal’s work. Y. Tan et al. proposed a lightweight edge-based privacy-pre-
serving kNN classification algorithm over a hybrid encrypted cloud database [24]. A data
owner can upload his/her database to the cloud server, and an authorized user can send a
query to the cloud server to execute KNN queries. The algorithm is performed against the
semi-honest attack model. After the query is sent, the authorized user does not need to partici-
pate in the kNN classification. They also proposed a secure distance protocol in which the
cloud servers cannot derive any private information from the authorized user. Compared with
the SIP protocol in the state-of-the-art PPKC algorithm [16], the proposed secure distance
protocol has less corrupted computation.

2.2.6J. Duand F. Bian’s work. J. Du and F. Bian proposed a non-interactive and efficient
privacy-preserving kNN classification algorithm [25]. The algorithm is performed against the
semi-honest attack model. To achieve privacy preservation, the algorithm encrypts all out-
sourced data and users’ query records by using two encryption schemes: order preserving
encryption [26] and the Paillier cryptosystem [16]. To hide the data access pattern, the infor-
mation in the cloud server is always maintained in ciphertext format. In terms of classification
accuracy, the algorithm is proven to be very close to one using both plaintext data and the
non-interactive encrypted data query scheme.

Table 1 shows the comparison of the existing studies. We explain their comparison with
respect to three major factors. First, B. K. Samanthula et al.’s work [16], H. Kim et al.’s work
[17], W. Wu et al.’s work [23] and Y. Tan et al.’s work [24] support hiding access pattern,
while B. Yao et al.’s work [21] and J. Du and F. Bian’s work [25] do not support it. Second, W.
Wu etal.’s work and Y. Tan et al.’s work require low computation overhead while B. K.
Samanthula et al.’s work and H. Kim et al.’s work need high computation overhead. Finally, B.
Yao et al.’s work, B. K. Samanthula et al.’s work, H. Kim et al.’s work and W. Wu et al.’s work
have low risk in terms of security, while Y. Tan et al.’s work and J. Du and F. Bian’s work have
high risk in terms of security.
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Table 1. Comparison of existing studies.

Hiding access |Index Computation Encryption User Exact match / Security
patterns overhead involvement | Approximate match risk
B. Yao et al.’s work Not support Secure Voronoi | Moderate Any Standard Encryption Involved Approximate match Low
(21] diagram
B.K. Samanthula Support None Very high Paillier Not involved | Exact match Low
etal.’s work [16]
H. Kim et al.’s work | Support Encrypted kd- | High Paillier Not involved | Exact match Low
[17] tree
W. Wuetal’swork | Support None Low self-production Involved Exact match Low
(23]
Y. Tan etal’s work | Support None Low Paillier (data), ElGamal Not involved | Exact match High
[24] (Classification label)
J. Duand F. Bian’s Not support Encrypted kd- | Moderate Paillier (label), Order Involved Approximate match High
work [25] tree preserving encryption(OPE)

https://doi.org/10.1371/journal.pone.0267908.t001

3 Overall system architecture and secure protocols

3.1) System architecture

In the outsourcing database environment, two attack models can be considered: a malicious

attack model and a semi- honest attack model [20]. In a malicious attack model, the cloud can
deviate from the protocol procedure. A protocol against malicious attack model is inefficient
because it requires exceedingly high cost. In the semi-honest attack model, the cloud correctly
follows the given protocol, but tries to acquire the sensitive information of both the data owner
and the query issuer. However, a protocol against a semi-honest attack model is practical
because the cloud has a higher level of authority than outsider attackers. Therefore, according
to earlier work [16, 17], we also adopt the semi-honest attack model. Table 2 shows a list of

Table 2. Definitions of common notations.

Notations Description

E(-), D(-) Encryption function and decryption function

ty ti i record and j™ attribute value of i record

t,t; i"" extracted record during the index search and its j attribute value
g, g; A query of a user and j attribute value of a query q

n, m The total number of data and attributes in T

cnt The number of data extracted during the index search step
h Level of the kd-tree

node 2" node of the kd-tree

node_.t,; j”’ attribute of s record stored in z” node of the kd-tree
b ub,; ™ attribute value of lower/upper bound of 2 kd-tree node
F Fan-out(maximum # of data in each leaf node)

a, Output of SCMP or SPE protocol for node

a A set of values consisting of

1 Domain size (in bits)

r Random integers

L Array for entire label

w The number of labels

L k-array of labels for k-nearest neighbors

https://doi.org/10.1371/journal.pone.0267908.t002
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Fig 2. Overall system architecture.

https://doi.org/10.1371/journal.pone.0267908.9002

notations used in this paper. Our system architecture supports secure protocols between
clouds by performing Secure Multiparty Computation (SMC). SMC is based on multi-party
data processing in which several entities cooperate to perform calculations for deriving specific
results. For this, the following factors must be satisfied to achieve the result of secure protocols
while avoiding data leakage.

3.1.1 Input privacy. No information about private data held by multiple parties can be
inferred from the messages sent during the protocol execution. The only information that can
be inferred about private data is whatever could be inferred from seeing the output of the func-
tion alone.

3.1.2 Correctness. Any proper subset of adversarial colluding parties that is willing to
share information or deviate from the instructions during the protocol execution should not
be able to force honest parties to output an incorrect result. This correctness goal comes in two
categories: either the honest parties are guaranteed to compute the correct output (a robust
SMC protocol), or the honest parties abort if they find an error (an SMC protocol with abort).

Fig 2 shows the overall system architecture. The data owner holds the original database T
consisting of n records t; (1 < i < n). Each record t; includes m attributes (or columns) and
one label. Here, we call the jth attribute of the i*” record as tij(1 <i<n,1<j<m+1). First,
the data owner partitions the original data by using the kd-tree index. Assuming that the level
of the constructed kd-tree is h, the total number of leaf nodes is 2"~". In the leaf node, an attri-
bute stores its region information, i.e., a lower bound /b, ; and an upper bound ub_, where 1 <
z<2"'and 1 <j < m. Second, the data owner generates an encryption public key (pk) and a
decryption secret key (sk) based on the Paillier cryptosystem [18]. Third, the data owner
encrypts the database with the Paillier cryptosystem to protect the original data. Because the
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unit of the encryption is the attribute of each record, E(¢; ,j) (1<i<n1<j<m+1)isgener-
ated. Finally, the leaf node of the constructed kd-tree is encrypted because the data owner
needs to protect the data access pattern. Because the unit of the encryption is the attributes of
each leaf node, E(Ib,j) and E(ub.) are generated(1 <z < i1 <j<m).

3.2) Secure protocols

3.2.1 Encrypted random value pool. To support data privacy in a cloud computing envi-
ronment, the existing works [16, 17] prevent Cg from extracting meaningful information (Fig
2) while executing a secure protocol by using the Paillier cryptosystem. However, they require
high computation cost because the secure protocol generates an encrypted random value for
protecting the original data. Therefore, we propose an encrypted random value pool to reduce
the computation cost for encryption. Before C4 processes a query (Fig 2), we generate the ran-
dom plaintext from Zy and store the encrypted random plaintext into an encrypted random
value pool. While processing a query in C,, a random ciphertext is selected from the encrypted
random value pool whenever a secure protocol is called. Therefore, while processing a secure
protocol, C4 not only prevents Cp from extracting meaningful information, but also reduces
the cost of generating encrypted random values. Table 3 shows a comparison of the number of
data encryptions for each secure protocol in our work and existing works [16, 17]. The Secure
Multiplication protocol of the existing works requires three times as the number of encryp-
tions as our work. The Secure Compare protocol used in B. K. Samanthula et al.’s work
requires log, D times as the number of encryptions as our work while the one used in H. Kim
et al.’s work requires three times as the number of encryptions as our work.

3.2.2 Secure multiplication protocol using an encrypted random value pool. We pro-
pose a Secure Multiplication protocol using an Encrypted random value pool (SME protocol)
which multiplies two encrypted values E(c) and E(f). Algorithm 1 shows the SME protocol.
First, when two encrypted values E(cr) and E(f) are given as inputs, C, selects two random val-
ues E(r,) and E(r;,) from the encrypted random value pool (line 1). Second, C, calculates E(a +
r,) and E(B + 1) by using Eq (1), then sends them to Cp (line 2 ~ 3). Third, Cp decrypts E(a +
r,) and E(B + r;,) by using the secret key and calculates the multiplication of the two plaintext o
+r,and B + r, (line 4). Fourth, Cg encrypts (o + ,) x (8 + ) and send it to C, (line 5). Finally,
C, obtains E(a x ) by removing a X 13, 8 x r, and r, X 1, from the received value, where ‘N
in the Zy domain is the same as -x’ (line 6).

Algorithm 1 SME Protocol
Input: E(a), E(fB)
Output: E(a x B)
Ca:
1: Pick random value E(r,;) and E(r,) in the encrypted random value pool
2: E(d)«E(a) x E(r.) ;E(B)«E(B) x E(rp)
3: Send E(d), E(B) to Cy
Cg:
4: h «+— D(E(d) x D(E(B) mod N // h=ax B+ ax rp+ B X ry+ ry x rp
5: Send E(h) to Ca

Table 3. A comparison of amount in secure protocols.

algorithms Secure Multiplication Protocol Secure Compare Protocol
B. K. Samanthula et al.’s work 3xE log Dx E

H. Kim et al’s work 3xE 3xE

Proposed algorithm 1xE 1xE

https://doi.org/10.1371/journal.pone.0267908.t003
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Ca:
6: E(ax f) < E(h) x E()"" x E(B)" ™ x E(r, x r,)"""

3.2.3 Garbled secure compare protocol using encrypted random value pool. We pro-
pose the Garbled Secure Compare protocol using an Encrypted random value pool (GSCE
protocol) which is performed by using a garbled circuit consisting of two ADD gates and one
CMP gate [27]. Assume that E(u) and E(v) are ciphertext for two plaintext # and v. When E(u)
and E(v) are given to C,, the GSCE protocol returns E(1) if u < v is satisfied, otherwise it
returns E(0). Algorithm 2 shows the GSCE protocol. First, C4 selects two random value E(r,,)
and E(r,) from the encrypted random value pool (line 1). Second, C, calculates E(m;) = E(u)?
x E(r,) and E(m,) = E(v)* x E(1) x E(r,) (line 1 ~2). Third, C4 randomly selects one of two
random functions, i.e., Fy and F;. The selected random function is not disclosed to Cg. If C4
selects Fy, C,4 sends an encrypted ordered pair <E(m,), E(m;)> to Cg. If C4 selects F;, Cy4
sends an encrypted ordered pair <E(m,), E(1m,)> to Cg (line 3 ~ 7). Fourth, Cg decrypts the
data received from C, (line 8 ~11). When C, selects F,, Cp acquires an ordered pair <m1,,
m;>, otherwise Cp acquires an ordered pair <m;, m,>. Fifth, C4 creates a garbled circuit con-
sisting of two ADD gates and one CMP gate. If Fj, is selected, —r, and —r,, are transferred to the
first ADD gate and the second ADD gate, respectively. Otherwise, —r, and —r, are transferred
to the first and the second ADD gates, respectively (lines 12 ~ 16). Sixth, Cp transfers the first
data to the first ADD gate, and the second data to the second ADD gate. Therefore, when Fj, is
selected, Cp transfers m, and m; to the first and the second ADD gates, respectively. Otherwise,
my and my, are transferred to the first and the second ADD gates, respectively (line 17 ~ 20).
Seventh, the first ADD gate adds two input values: —r, and m, for F, and —r,, and m1 for F;.
The result of the first ADD gate (result;) is transferred to the CMP gate (line 21 ~ 24). Eighth,
the second ADD gate adds two input values: —r,, and m, for Fy and —r, and m, for F;. The
result of the second ADD gate (result,) is transferred to the CMP gate (line 25 ~28). Due to
the characteristics of the garbled circuit, the exposure of any information does not occur in the
ADD gate. Ninth, the CMP gate returns o = 1 if result; < result,, and a = 0 otherwise (line 29
30). Finally, the result o can be checked on Cp side, and Cp transmits E(a) to C4 (line 31).
Because Cp does not know whether F, or F; is selected by C,, Cp cannot determine the result
of comparison of E(u) and E(v). When F, is selected, C4 changes E(cx) through the SBN proto-
col [11] and returns E(a) (line 32 ~34). Here, C4 cannot obtain the actual value of & due to the
characteristics of the Pallier cryptosystem.

Algorithm 2 GSCE Protocol
Input: E(u), E(v)
Output: E(1) when u < v, E(0) otherwise
Ca:
0l: Pick random value E(r,) and E(r,) in the encrypted random value
pool
02: E(m)«—E(u)? x E(r,)
03: E(my)«—E(v)? x E(1) x E(ry)
04: h «— D(E(d) x D(E(B') mod N // h=ax B+ ax ryp+ B X ry+ r, x rp
05: Randomly choose Fy, or F;
06: If Fy u>v is chosen, then

07: Send <E(my), E(my)> to Cg

08: else

09: Send <E(my), E(my,)> to Cg

Cg:

10: If Fy u>v is chosen, then

11: Obtain <m,, m;> by decrypting <E(my), E(mp)>
12: else

13: Obtain <m;, my> by decrypting <E(my), E(m,)>
Ca:
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14:
15:
16:
17:
18:
Cg:
19:
20:
21:
22:

Generate garbled circuit

If F,
Put
else
Put

If F,
Put
else
Put

u>v is chosen, then
-r, and -r, into 1°% and 2”? ADD gates

-r, and -r, into 1°% and 2”% ADD gates

u>v is chosen, then
m, and m; into 1°% and 2”9 ADD gates

m; and m, into 1°F and 279 ADD gates

1°% ADD Gate:

24
25
26
27

30
31
32

34:
35:
36:
37:
Cg:
38:
Cap:
39:
40:
41 :

If F,

u>v is chosen, then

result; = calculate — r, + (v + ry)

else

result; = calculate — r, + (u + ry,)
279 ADD Gate:

29: If F, u>v is chosen, then

result, = calculate — r, + (u + r,)

else

result, = calculate - r, + (v + r,)

CMP Gate

If result; > result, is chosen, then
output o =1 to Cp

else

output o

0 to Cg

E (o)« encrypt o

If F,

u>v is chosen, then

E(a)«—SBN(E (o))
Return E ()

4 Privacy-preserving parallel kNN classification algorithm using
index filtering

The proposed parallel kNN classification algorithm can support the protection of data, query,
and data access pattern in a cloud computing environment. For this, the proposed privacy-pre-
serving parallel KNN classification algorithm is composed of four phases: secure index search,
k-nearest neighbors search, kNN verification, and kNN classification, as shown in Fig 3.

Node 2 MIN dist

|

Final kNN label

E(INN Label)

Node 3 MIN dist

ANy |

Node 4 MIN dis

Perform y
ESSED protoco! 4
E) E(dist,) Query

Perform SMIN, protocol

E(KNN Label)

Caleulate thelabel frequencies

Label dictionary

E(Labely) | | Eabel)

E(fiea) | | Eea

Update distance

Final XN seslt

: e | sowien
et

T !
e )

Phase 1
Secure index search

£

Phase 2 Phase 3
kenearest neighbors search k-nearest neighbors verification

Fig 3. Proposed parallel kNN classification algorithm.
https://doi.org/10.1371/journal.pone.0267908.9003

Perform SMAX; protocl

The most frequent label

)

SendE(Lex) to Authorized User
whete Loz, is the most frequent label

Phase 4
KNN classification
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4.1) Secure index search phase

In the secure index search phase, the proposed algorithm determines the leaf node which
includes the given query in the encrypted kd-tree. The procedure of the secure index search
is shown in Algorithm 3. First, C, makes ¢ number of partitions and allocates them to the
given threads (line 1). Here, t is calculated by dividing the number of leaf nodes by the num-
ber of threads. Second, by using the GSRO protocol, the algorithm finds which leaf node
includes the query in each thread. If a node includes the query, the GSRO protocol returns E
(1), otherwise the protocol returns E(0). The result of the GSRO protocol is stored in an
array E(o). The algorithm randomly reorders the members of the array E(a) and transfers
the reordered array E(o’) to Cp(line 2~ 7). Third, Cp decrypts the array E(a) and makes
groups by allocating the decrypted members uniformly based on the number of 1s. If a node
has the decrypted value of 1, it becomes a seed of a group. Cp sends groups to C4 (line 8-15).
Finally, C4 extracts all the encrypted data in the node corresponding to E(1). If a node has E
(1), the algorithm can safely extract the data of the node because the node includes the
query. Otherwise, the algorithm can remove the data of the node because it does not include
the query (line 16 ~ 30).
Algorithm 3 Secure Index Search

Input: kd — tree = E(node,), ..., E(nodey,, ), query = E(q)

Output: E(x,), ...,E(aNumNm) a€(0,1)

Ca:

0l1: t = NumNode/NumThread

02: Run thread

03: for 1 < i < NumThread

04: for t x (i - 1)<j < ¢t x 1
05: E(ozj) = GSRO(E(q), E(q), E(rangej.lb), E(rangej.ub))
06: Terminate thread

07: E(d/) =TJl(E(a)); Send E(d) to Cg
Cg:

08: o = D(E(d))

09: ¢ = the number of’1’ in

10: Create c number of node groups
11: for each node group

12: assign a node with o =1

13: assign (numpoge/c) — 1 nodes with o =0
14: shuffle the sequence of nodes

15: Send node group to C,

Ca:

16: cnt =0

17: for each node group

18: permute node IDs using Tt

19: t = F/NumThread
20: Run thread
21: for 1 < i < NumThread

22: for each node group

23: for t x (1 - 1)<s < t x 1

24: for 1 < z < num //num is # of nodes in the selected group
25: E(t);) < SM(node, .t E(x,)) for 1 < j < m+ 1

26: forl < j<m+1

27: E(Ca”dmr.j) — H::ln E(t;.j)

28: cnt «— cnt + 1

29: Terminate thread
30: return E (cand)
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4.2) k-Nearest neighbors search phase

In the k-nearest neighbors search phase, our algorithm finds k-nearest points among the
encrypted candidates which are extracted from the index search phase. The procedure of the
k-nearest neighbors search is shown in Algorithm 4. First, C4 calculates the squared Euclidean
distance set E(d;) (1 < i < cnt, where cnt is the number of candidates) between the query and
the encrypted candidates through the ESSED protocol [17] in a parallel way (line 1 ~ 6). Sec-
ond, C,4 finds the minimum value E(d,,;,) among E(d;)(1 < i < cnt) through the SMS,, protocol
[16] (line 8-10). Additionally, C4 calculates the difference between E(d,,,;,) and E(d;) (1 <i <
cnt) by using E(d,y,in) % E(d;)N!, and stores the results into an array E(1;) (1 <i<cnt). Cy
makes E(7}) (1 < i < ¢nt) by raising E(t;) to the power of a random integer. C4 makes EB) (1
< i < ¢nt) by applying a shuffling function 7 to E(7}) (1 < i < ¢nt) and sends it to Cg (line

11~ 18). Therefore, the original distance and data access patterns are protected from Cs.
Third, if the i*" decrypted value of E(f;) (1 < i < cnt) is 0, Cp sets to E(1) the i" value of a tem-
porary array E(U;) (1 < i < cnt). Otherwise, Cy sets to E(0) the i value of a temporary array E
(U)(A <i<cnt). Cgsends E(U;)(1 < i < cnt) to Cy (line 19 ~22). Fourth, C4, makes E(V;)(1 <
i < cnt) by applying a deshuftling function 7 — 1 to E(U;)(1 < i < cnt). C4 performs the SM
protocol between E(V;)(1 < i < cnt) and E(cand; )(1 <i<cntand 1 <j<m+ 1, where m is
the data dimension). C, stores the result of the SM protocol in a temporary array E(V; )(1 < i
<cntand 1 <j<m+1). Next, C4 calculates Eq 3 by using Eq 1 (line 23 ~ 31). Fifth, if the
algorithm does not find k-nearest neighbors, C, updates E(d;) (1 < i < cnt) by calculating Eq 4
in a parallel way, where E(max) is the maximum value of the data domain (line 32 ~38). If E
(V;) equals to E(1), E(d;) corresponding to E(V;) is updated to E(max) through Eq 4. Other-
wise, E(d;) corresponding to E(V;) is maintained. Finally, C, terminates the k-nearest neigh-
bors search phase if k-nearest neighbors are found (line 39).

cnt

Et,) =][E(v,)a<j<m+1) (3)

E(d;) = SM(E(V;), E(max) x SM(SBN(E(V))), E(d;)) (4)

Algorithm 4 k-nearest neighbor search phase
Input: E(g), E(cand), k
Output: t'//candidatekNNresult
Ca:
0l: Run thread
02: t = NumNode/NumThread

03: for 1 < i < NumThread
04: for t x (1 - 1)<F <t x 1
05: E(dj) = ESSED(E(q), E(cand;))

06: Terminate thread
07: for 1 < s < k
08: Run thread

09: E(dpin) = SMS,(E(dy), ..., E(dcne))
10: Terminate thread

11: Run thread

12: t = cnt/NumThread

13: for 1 < i < NumThread

14: for t x (i - 1)<F <t x 1

15: E(14) = E(dpin) x E(dy) ™!

16: E(1) = E(t))"

17: Terminate thread
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18:  E(B)«[[(t3); Send E(B) to Cs

Cg:

19: for 1 < i < cnt

20: If D(E(B;)) = 0, then E(U;)«E(1)
21: Else E(U;)«<E(0)

22: Send E(U) to Cjx

Ca:

23:  E(V) <[] ' (U)
24: Run thread

25: t = cnt/NumThread

26: for 1 < u < NumThread

27 for t x (u- 1)<i < t xu

28: forl < j<m+1

29: E(V{_j) — SM(E(Vi,E(cundiJ)))
/ cnt /

30: E(tsJ) — I E(VU)

31: Terminate thread

32: Run thread

33: t = cnt/NumThread

34: for 1 < i < NumThread

35: for t x (i - 1)<7 < t x 1

36: If s < k then,

37: E(d;) = SM(E(V;), E(max)) x SM(SBN(E(V;)), E(d;))

38: Terminate thread

39: return E(t))

4.3) k-Nearest neighbors verification phase

In the k-nearest neighbors verification phase, the algorithm verifies whether the distance
between the a node and the query(E(q) = <E(q1), E(q2), - - ., E(q,n)>, where m is the data
dimension) is shorter than the distance, E(dist;), between the query and k" nearest neighbor
(E(t') =< E(t,), E(t;,), - - -, E(t;,,) >). The procedure of the k-nearest neighbors verification
phase is shown in Algorithm 5. First, C4 calculates E(dist;) between E(q) and E(t,) using the
ESSED protocol (line 1). Second, the algorithm performs the GSCE protocol between E(g;)
and the lower bound of node_(E(node..lbj) (1 < z < numy,,,q) for each dimension j(1 < j < m),
and stores the result of the GSCE protocol into E(y, ). If E(g;) (1 < j < m) is less than or equal
to E(node_.lb;), E(y, ) is E(1). Then, the algorithm performs the GSCE protocol between E(q;)
(1 <j < m) and the upper bound of node, (E(node,.ub;)(1 < z < num,,qq.) for each dimension
j»> and stores the result of the GSCE protocol into E(y5 ) (line 2~ 5). If E(g;) is less than or
equal to E(node..ub;), E(y,) is E(1). Third, the algorithm performs the SBXOR protocol [16]
between E(y, ;) and E(y5 ), and stores the result of the SBXOR protocol into E(ys3 ) (line 6).
Fourth, the algorithm calculates the shortest point of node, (1 < z < num,,4.), E(sp,) = < E
(spz1)> E(sp22)s - - ., E(sp.,m) > where m is the data dimension, by using Eqs 5 and 6 (line

7 ~10).

f(E(lbj)7E(ubj)) = SM(E(lpu)»E(lbj)) X SM(SBN(l/JU)7E(ubj)) (5)

E(sp.;) = SM(E(hy;), E(q;)) < SM(SBN(E(¥y,)), f(E(lb)), E(ub)))) (6)

Fifth, C, calculates the squared Euclidean distance between E(q) and E(sp,)(1 < z < num-
node) through the ESSED protocol and stores the result into the shortest distance of the node,,
E(spdist,)(1 < z < numy,,og.) (line 11). In addition, C, updates E(spdist,)(1 < z < num,,,q.) by
using Eq 7 (line 12 13). E(er,) in Eq 7 is the result of the GSRO protocol in algorithm 1. This
update avoids an unnecessary index search phase by updating the shortest distance of the node
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already searched in the previous phase.

E(spdist,) < SM(E(a,), E(max)) x SM(SBN(E(a,)), E(spdist,)) (7)

Sixth, C, performs the GSCE protocol between E(spdist,) and E(dist;), and stores the result
into E(e,) (line 14). If E(spdist,) is less than E(dist;), the node, needs additional searching.
Finally, by performing lines 9 ~ 33 of the secure index search phase, C, extracts the encrypted
data belonging to the node, and adds them to E(#). In addition, C, obtains the kNN result
array, E(result;)(1 < i < k), by performing the k-nearest neighbors search phase (line 15~17).
Cg stores the label of the k-nearest neighbors into E(L))(1 < i < k) (line 18 ~ 19).

Algorithm 5 k-nearest neighbors verification phase

Input: E(q), E(node), E(t'), k
Output: result

Cap:

01: E(dist,) = ESSED(E(q), E(t.))

02: for 1 < z < numppge

03: for 1 < 7 <m

04: E(y,) = GSCMP(E(qy), E(node,.l1by))

05: E(Yy,) = GSCMP(E(g5), E(node,.ub;))

06: E(yr) = SBXOR(E (Y1), E(Y2))

07: E(temp) = SM(E(y,), E(node..lbs))

08: E(temp)«E(temp) x SM(SBN(E(¥1)), E(node..ub;))
09: E(temp) = SM(E(temp), SBN(E(y3)))

10: E(sp,, ;) = E(temp) x SM(E(y1), E(g;))

11: E(spdist,) = ESSED(E(q), E(sp;))

12: E(temp) = SM(E(a,), E(max))

13: E(spdist,) = E(temp) x SM(SBN(E(o,)), E(spdist,))
14: E(a,)«—GSCMP(E (spdist,), E(disty))

15: E(t’)« perform 7 ~ 36 lines of Algorithm 1

16: E(t')« append E(t") to E(t')

17: result « performAlgorithm?2

18: for 1 < i < k
19:  E(L) = E(result,

x,m+l)

4.4) k-Nearest neighbors classification phase

In the kNN classification phase, the algorithm extracts the most frequent label from the label
of the k-nearest neighbors, E(L})(1 < i < k). The procedure of the KNN classification phase is
shown in Algorithm 6. C4 and Cj calculate the frequency of E(L})( 1 < i < k) by using the
secure frequency protocol [17] (line 1). The label with the highest frequency is selected (line 2).
C,4 adds a random integer r, to the selected label and stores the result into a temporary variable
E(ry) (line 3). C4 sends E(ry) to Cgand r, to AU (line 4). Cp decrypts E(r,) and sends it to AU
(line 5-6). AU obtains the final result by combining the results of C4 and Cp (line 7 ~ 8).
Algorithm 6 Knn classification

Input: <E(L,),....E(L,) >, <E(L)),...,E(L,) >

Output: E(Lg)

Ca and Cg:

0l: <E(f(Ly), ..., E(f(L,)))> = SF(A, A'), where

A =<E(L,),..,EL,) > A =<E(L)),...,EL,) >

02: (f(max), E(Lg)) = SXS, (<E(f(Li)), ..., E(f(L,)) >, < E(L1), ..., E(L,)

>)

Ca:

03: E(Ag) = E(cq) x E(rg), where rq € Zy

04: Send E(Ag) to Cg and rg to AU

Cg:
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05: Receive E(Ay) from Ca
r_ . ’
06: L, =D(%,); Send X, to AU
AU:
07: Receive rg from C; and A4 from Cp
08: ¢, :X;frq

4.5) Example of kNN classification

Here, an example of the proposed secure kNN classification algorithm is described. Assume
that the original data is indexed and encrypted by using the kd-tree, as shown in Fig 4. The
encrypted kd-tree contains 4-fold attributes for each leaf node, i.e., a node identifier (ID), an
encrypted lower bound of the node, an encrypted upper bound of the node, and the encrypted
data. Fig 5 shows how to extract data in a selected node through the secure index search phase.
First, C4 sends a node identifier (ID), an encrypted lower bound, an encrypted upper bound,
an encrypted query to all the threads. In each thread, the algorithm performs the GSRO proto-
col to determine whether a node includes the query or not. If a node includes the query, the
GSRO protocol returns E(1). Otherwise it returns E(0). Second, the algorithm performs the
RSM protocol by multiplying the encrypted data in each node(E(node,.data)) and the results
of the GSRO protocol. As a result, E(node,.data) is returned only if the result of the GSRO is E
(1). Finally, the algorithm can safely obtain the encrypted data by merging the results of the
RSM protocol. Fig 6 shows how to obtain kNN candidates through the k-nearest neighbors
search phase. First, the algorithm selects the encrypted data which has the minimum distance

Original Data
(5.10) (10.10)
NOdf:;, Node4
(5.5)
(0.5) @5) (10.5)
query Encrypted Query
E(query) E(3), E(3)
Node, Node,
(0.0) (4.0) ‘
Encrypted kd-tree
Node ID Lower Bound Upper Bound Data ID
Node, E(0), E(0) E(4), E(5) E(d)), E(dy) E(ds), E(dy)
Node, E(4), E(0) E(10), E(5) E(ds), E(ds) E(d7), E(ds)
Node; E(0), E(S) E(5), E(10) E(dy), E(dyo) E(d}1), E(dy,)
Node, E(5), E(S) E(10), E(10) E(d,;), E(dy,) E(d;s), E(d}6)

Fig 4. Data and query used in example.
https://doi.org/10.1371/journal.pone.0267908.9004
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GSRO protocol
- N
Thread, | E(Node,.Boundary) E(query) E(1)
Thread, | E(Node,.Boundary) E(query) E(0)
Thread, | E(Node; . Boundary) E(query) = E(0)
Thread, | E(Node,.Boundary) E(query) E(0)
y
RSM protocol
g ~
E(1) E(Node,.Data) E(Node,.Data) Result of the step 1
E(0) E(Node,.Data) o E(0) E(Node, Data)
E(0) E(Node;.Data) | E(0) E(d,), E(d,) E(d;), E(d,)
E(0) E(Node,.Data) E(0)
\ J

Fig 5. Example of secure index search phase.

https://doi.org/10.1371/journal.pone.0267908.g005

from the query by using the GSMIN,, protocol. In Fig 6, E(d3) is selected as INN because the
distance of d; is the minimum. Second, the algorithm sets the distance of the selected data to
the maximum value for excluding the selected data. Therefore, the distance of E(d;) is set to E
(MAX). Finally, the algorithm is repeated until the k™ nearest data is selected. In the same way,
E(d,) and E(d,) are selected as 2NN and 3NN, respectively. As a result, the algorithm can safely
select the k number of nearest neighbors. Figs 7 and 8 show the examples of index search and
k-nearest neighbor search in the kNN verification phase, respectively. In each thread, the algo-
rithm calculates the shortest distance E(spdist,) between the query and a leaf node(node,), and
compares E(spdist,) with E(disty). If E(spdist,) is smaller than E(disty), the data in the node, is
extracted. In Fig 7, because E(spdist,), i.e., (E(1)), is smaller than E(disty), i.e., (E(5)), node, is
selected. Fig 8 shows how to obtain the final KNN. The algorithm merges the kNN candidates
and obtains the final k-nearest neighbors. In the KNN classification phase, the algorithm calcu-
lates the frequency of labels in E(L’). Because the frequency of E(L,;) is the highest in kNN, E
(L,) is selected as the final result, as shown in Fig 9.

Candidate Distance Candidate Distance Candidate Distance
Thread, E(d) E(9)
Thread, | E@) | EG®) | P By | ES | | E(d) | ] EGS)
Thread; | By | B | | | Bdy | BvA® | | | E(d) | EMAX)
Thread, | Ed) | E@ | | | By | B8 | || () | EMAX)
3NN

E(d3)

E(dy)

E(dy)

Fig 6. Example of kNN search phase.
https://doi.org/10.1371/journal.pone.0267908.9006
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Encrypted Data
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Fig 7. Example of index search in kNN verification phase.

https://doi.org/10.1371/journal.pone.0267908.g007

5 Random value pool’s security proof
5.1) Security proof of the secure protocols

In this section, we describe the security proof of the SME and the GSCE protocols proposed in
Section 3. To prove that the proposed protocols are secure under the semi-honest model, we
show that the simulated images of the proposed protocols are computationally indistinguish-
able from their actual execution images. Security proof of the SME protocol: We describe the
security proof of the SME protocol by analyzing the security of the execution images of C4 and
Cs. First, the execution image on Cy side, i.e., [ [ (SME), is shown in Eq 8. Here, E(v}) and
E(v,) are the encrypted data received from C, (line 1 ~2 of Algorithm 1), v, and v}, and are
obtained through the decryption of E(v}) and E(v,), respectively. Also, ¢ is a result which is
calculated by the SME protocol using v, and v/, on Cg side.

H(SME) ={< E(Vll)aE(V,?)a Vllvvlz >, o} (8)

Cp

For example, assume that [[ C,.(SME) = {< E(s}), E(s}), s}, s, >, s,} is the simulated exe-
cution image using the SME protocol on Cg side. Here, E(s)) and E(s,) are the non-determin-
istic numbers selected in Zyz, and s| and s, are the indistinguishable numbers which are added
by each value in the random value pool. s, is the result of the SME protocol using s| and s, on
Cg side. Because the SME protocol is implemented based on the Paillier cryptosystem, it can
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Fig 8. Example of k-nearest neighbor search in kNN verification phase.

https://doi.org/10.1371/journal.pone.0267908.9008

support semantic security. Therefore, E(s,) and E(s),) are computationally indistinguishable
from s} and s, respectively. s; is indistinguishable from | and s, because s, is calculated by
multiplying two indistinguishable numbers in Cy, s} and s,. Therefore, it can be said that

[ I, (SME) is computationally indistinguishable from HCBS (SME). Because Cp can check only

the result (e.g., @) of the multiplication between the non-deterministic numbers (e.g., v and
v,), Cp cannot obtain the original data while performing the SME protocol. Meanwhile, the
execution image of C, is [ [ (SME) = {E(x)} such that E(a) from Cg can be regarded as the
result of the SME protocol. Suppose that the simulated image of Cy is HCAs (SME) = {E(s,)},

where E(s,) is randomly generated from Zy.. Therefore, E(ax) is computationally indistinguish-
able from E(s,). According to the above analyses, there is no information leakage both at Cy4
and Cj side. Therefore, we can conclude that the proposed SME protocol is secure under the
semi-honest adversarial model. Security proof of the GSCE protocol: We describe the security
proof of the GSCE protocol by analyzing the security of the execution images of C4 side and
Cg side. First, the execution image on Cp side, i.e., [ [ (GSCE), is shown in Eq 9. Here, E(c")
and E(d)) refer to the encrypted data received from C, (line 1 ~2 of Algorithm 2), and both ¢/
and ¢/, are obtained through decryption of ¢ and o, respectively. Also, 3 is the result which is
calculated by the GSCE protocol using o', and a’, on Cg side.

[1(GSCE) = {< E(s}), E(a}), 0}, 0, >, B} (9)

Cp

E(dy) | E(L,) E(L,) | E(Ly) E(L,)

—» —»

E(d,)

B(L,)

E(d,)

B(L,)

kNN results

Fig 9. Example of kNN classification phase.

https://doi.org/10.1371/journal.pone.0267908.9g009
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For example, assume that Cs(GSCE) = {< E(s}), E(s}), s, s, >, s,} for the simulated exe-
cution image using the GSCE protocol on Cg side. Here, E(s|) and E(s}) are the non-determin-
istic numbers selected in Zyz, and both s, and s,, are the indistinguishable numbers selected in
the random value pool. s, is the result of the GSCE protocol using s, and s, on Cg side. Because
the GSCE protocol is implemented based on the Paillier cryptosystem, it can support semantic
security. Therefore, E(s}) and E(s,) are computationally indistinguishable from s, and s},
respectively. s, is indistinguishable from s, and s, because s, is calculated by comparing two
indistinguishable numbers in Cy, 5| and s,,. Therefore, it can be said that [ [, (GSCE) is com-
putationally indistinguishable from HCBS (GSCE). Because Cy can check only the result (e.g., 8)

of the comparison between the non-deterministic numbers (e.g., ¢} and ¢’,), Cy cannot obtain
the original data while performing the GSCE protocol. Meanwhile, the execution image of C,
is [ [, (GSCE) = E() such that E(B) from Cg can be regarded as the result of the GSCE proto-

col. Suppose that the simulated image of Cy is Hci (GSCE) = E(s,), where E(sy) is randomly

generated from Zy:. Therefore, E(f) is computationally indistinguishable from E(s4). Accord-
ing to the above analyses, there is no information leakage both at C4 and Cp side. Therefore,
we can conclude that the proposed GSCE protocol is secure under the semi-honest adversarial
model

5.2) Security proof of the proposed kNN classification algorithm

We prove that the proposed kNN classification algorithm on the encrypted database is safe
under the semi-honest attack model. The proposed kNN classification algorithm in the crypto-
graphic database consists of a secure index search phase (Algorithm 3), a KNN search phase
(Algorithm 4), a KNN verification phase (Algorithm 5), and a kNN classification phase (Algo-
rithm 6). To show that the proposed secure kNN classification algorithm is safe under the
semi-honest attack model, security analysis is performed at each execution phase. First,
because the secure index search phase is composed of the GSRO protocol [17] which has been
proven to be safe, the Algorithm 3 is safe under the semi-honest attack model by composition
theory [17]. Second, the KNN search phase is safe in C, side, because C4 performs the ESSED,
SMIN,, and SM protocols which have been proven to be safe in the previous studies [16, 17].
Even though the kNN search phase decrypts the received data from C,, Cg cannot extract the
original data. This is because the data received from C, is modified by raising the original data
to the power of a random integer and applying a shuffling function. Therefore, according to
the composition theory, Algorithm 4 is safe under the semi-honest attack model. Third, the
images which are generated by the kNN verification phase are the same as those generated by
Algorithms 3 and 4. Therefore the kNN verification phase (Algorithm 5) is safe under the
semi-honest attack model. Lastly, the kNN classification phase (Algorithm 6) is safe under the
semi-honest attack model because Algorithm 6 has been proven safe in the previous work [16,
17]. As a result, all the phases of the proposed secure KNN classification algorithm is safe
under the semi-honest attack model.

6 Performance analysis

Because there is no privacy-preserving parallel KNN Classification algorithm, we compare our
privacy-preserving parallel kNN classification algorithm with the extension of existing works.
That is, we make parallel SKNNC-M by extending B. K. Samanthula et. al.’s work [16] in a
naive way so that it may operate in a multi-core environment. We make parallel SKNNC-G by
extending H. J. KIM et. al.’s work [17] in the same way. For performance evaluation, three
algorithms were implemented by using C++ under an Intel(R) Xeon(R) CPU E5-2630 v4 @
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Table 4. Parameters used in performance evaluation for synthetic data.

Parameter Values default
the number of data(n) 5k,10k,20k,30k 10k

k 5,10, 15, 20 10
level of kd-tree(h) 5,6,7,8,9 7

the number of threads 1,2,5,10 10

the number of data dimension(m) 3,6,9,12 6

Size of encryption key(K) 512 -

bit size for data domain 12 -

https://doi.org/10.1371/journal.pone.0267908.t004

2.20GHz and 64GB (16GB x 4AE) DDR3 UDIMM 1600MHz in a Linux Ubuntu 18.04.2 envi-
ronment. We compare three parallel algorithms in terms of the query processing time by vary-
ing the number of data, the number of k, the level of the kd-tree, the number of the data
dimension, and the number of threads. We use both a synthetic dataset and real dataset [28]
for our experiments.

6.1) Performance analysis of kNN classification algorithm for synthetic
dataset

Table 4 shows the parameters used in the performance evaluation for the synthetic dataset. For
the synthetic dataset, we randomly generate 30,000 integer data with 12 dimensions. The
domain of data is ranged from 0 to 212. We do an experiment to find the optimal value of the
level of kd-tree(h). It is shown that the performances of both SKNNC-G and the proposed algo-
rithm are best when h is 7. So, we set h to 7 in our experiment.

The performance of the kNN classification algorithms is evaluated for synthetic data. Fig 10
shows the performance of the proposed algorithm, parallel SKNNC-M, and parallel SKNNC-G
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Fig 10. Processing time with varying the number of data.
https://doi.org/10.1371/journal.pone.0267908.g010
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according to the number of data. When n = 30k, the proposed algorithm, parallel SKNNC-G,
and parallel SKNNC-M require 215, 497, and 7,089 seconds, respectively. That is, the proposed
algorithm shows 2.3 times better performance than parallel SKNNC-G and 32 times better per-
formance than parallel SKNNC-M. This is because our secure protocols (SME and GSCE pro-
tocols) can reduce the number of data encryptions by selecting an encrypted value from the
random value pool instead of generating it, as mentioned in Table 3. Fig 11 shows the perfor-
mance of the proposed algorithm, parallel SkKNNC-M, and parallel SKNNC-G according to k.
When k = 20, the proposed parallel algorithm, parallel SKNNC-G, and parallel SKNNC-M
require 202, 487, and 4,658 seconds, respectively. That is, the proposed algorithm shows 2.4
times better performance than parallel SKNNC-G and 23 times better performance than paral-
lel SKNNC-M. The reason is the same as mentioned in Fig 10.

Fig 12 shows the performance of the proposed algorithm, parallel SKNNC-M, and parallel
SKNNC-G according to the number of data dimension(m). When m = 6, the proposed parallel
algorithm, parallel SKNNC-G, and parallel SkNNC-M require 57, 112, and 2,353 seconds,
respectively. That is, the proposed algorithm shows 2 times better performance than parallel
SKNNC-G and 15 times better performance than parallel SKNNC-M. The reason is the same as
mentioned in Fig 10. Fig 13 shows the performance of the proposed algorithm, parallel
SKNNC-M, and parallel SKNNC-G according to the number of threads. When the number of
threads = 1(single-core), the proposed algorithm, parallel SKNNC-G, and parallel SkKNNC-M
require 443, 894, and 15,572 seconds, respectively. That is, the proposed algorithm shows 2
times better performance than parallel SKNNC-G and 35 times better performance than paral-
lel SKNNC-M. This is because our secure protocols (SME and GSCE protocols) can reduce the
number of data encryptions by selecting an encrypted value from the random value pool
instead of generating it. When the number of threads = 10, the proposed algorithm, parallel
SKNNC-G, and paralle]l SKNNC-M require 93, 203, and 2350 seconds, respectively. That is, the
proposed algorithm shows 2.1 times better performance than parallel SKNNC-G and 25 times
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Fig 12. Processing time with varying the number of dimensions.

https://doi.org/10.1371/journal.pone.0267908.9012

better performance than parallel SKNNC-M. Because a thread performs secure protocols con-
currently without interfering with each other, query processing time linearly decreases as the
number of threads increases. As a result, our parallel algorithm shows better performance than
the existing algorithms in a multi-core environment.
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Fig 13. Processing time with varying the number of threads.
https://doi.org/10.1371/journal.pone.0267908.g013
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Table 5. Parameters used in performance evaluation for real data.

Parameter Values default
the number of data(n) 28056 -

k 5,10, 15, 20 10
level of kd-tree(h) 7 -

the number of threads 1,2,5,10 10

the number of data dimension(m) 6 -

Size of encryption key(K) 512 -

bit size for data domain 12 -

https://doi.org/10.1371/journal.pone.0267908.t005

6.2) Performance analysis of kNN classification algorithm for real dataset

Table 5 shows the parameters used in the performance evaluation for real data. For this, we
used a chess dataset [28] generated by a chess endgame database for white king and rook
against black king. The chess dataset aims to classify the optimal depth of win for white. With
the real dataset, we do an experiment to find the optimal value of the level of kd-tree(h). It is
shown that the performances of both SKNNC-G and the proposed algorithm are best when h
is 7. So, we set h to 7 in our experiment.

Fig 14 shows the performance of the proposed algorithm, parallel SKNNC-M, and parallel
SKNNC-G according to k. When k = 20, the proposed algorithm, parallel SkNNC-G, and par-
allel SKNNC-M require 425, 894, and 13,175 seconds, respectively. That is, the proposed algo-
rithm shows 2 times better performance than parallel SKNNC-G and 27 times better
performance than parallel SkKNNC-M. This is because our algorithm uses both SME and GSCE
protocols which can reduce the number of data encryptions by selecting an encrypted value
from the random value pool. Fig 15 shows the performance of the proposed algorithm, parallel
SKNNC-M, and parallel SKNNC-G according to the number of threads. When the number of
threads = 1 (single-core), the proposed algorithm, parallel SKNNC-G, and parallel SkKNNC-M
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Fig 14. Processing time with varying k.
https://doi.org/10.1371/journal.pone.0267908.g014
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require 1106, 2306, and 44,570 seconds, respectively. That is, the proposed algorithm shows 2
times better performance than parallel SKNNC-G and 40 times better performance than parallel
SKNNC-M. The reason is the same as mentioned in Fig 14. When the number of threads = 10,
the proposed algorithm, parallel SKNNC-G, and parallel SkKNNC-M require 227, 487, and 6,639
seconds, respectively. That is, the proposed algorithm shows 2 times better performance than
parallel SKNNC-G and 29 times better performance than parallel SKNNC-M. Because a thread
performs secure protocols concurrently without any interference of each other, it can be seen
that query processing time linearly decreases as the number of threads increases.

6.3) Theoretical analysis of the proposed algorithm in terms of privacy

Assuming that an attacker does not have any information of original data items, an adversary
needs tremendous time to obtain the original plaintext from paillier cryptosystem while using a
brute force attack. It means that it is impossible to do an experiment to prove data protection,
query protection and access pattern protection. Therefore, instead of experimental analysis, we
conduct the theoretical analysis of data privacy, query privacy and access pattern privacy to sup-
port the security analysis of the proposed algorithm. For this, we estimate the time complexity it
takes for the original data to be exposed and calculate the probability of access pattern leakage.

6.3.1 Theoretical analysis of data privacy. In C,, an attacker only obtains the ciphertext
of data. Because the data is protected by the paillier cryptosystem, the security performance is
measured through the time complexity of the brute force attack to break down the paillier
cryptosystem. Our paillier cryptosystem uses 512-bit encryption key size. Assuming that CPU
cycle is 4GHz, the time required to decrypt the ciphertext by changing the key is as shown in
Eq (10).

=

2°12 1.3 x 10"
BFAtime(sec) = il

- ~ (10)
4GHz =~ 4GHz
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It is impossible to break down a paillier cryptosystem because it takes about 4.2 x 10"*°

years with 512-bit key size. It means that the proposed privacy preserving kNN classification
algorithm is secure in terms of data privacy even if the ciphertext is exposed. Fig 16 shows the
time taken for a brute force attack in C, as the key size is changed. In Cp, an attacker only
obtains a plaintext data which adds a random number to the original data. In the paillier cryp-
tosystem, because the range of the plaintext data is 0 < m < 2°'% brute force attack time in Cy
has the same as that in C,.

6.3.2 Theoretical analysis of query privacy. In C,, an attacker only obtains the ciphertext
of query. Because the query is protected by the paillier cryptosystem, the security performance
is measured through the time complexity of the brute force attack to break down the paillier
cryptosystem. Since our paillier cryptosystem uses 512-bit encryption key size, the time
required to decrypt the ciphertext by changing the key is as shown in 10, where CPU cycle is
4GHz. It is impossible to break down a paillier cryptosystem because it takes about 4.2 x 10'*°
years with 512-bit key size. It means that the proposed privacy preserving kNN classification
algorithm is secure in terms of query privacy even if the ciphertext is exposed. The times taken
for a brute force attack in C, is the same as that of data privacy in C, (Fig 16). In Cg, query pri-
vacy is preserved because Cy does not receive the query.

6.3.3 Theoretical analysis of access pattern privacy. The access pattern means the
sequence of accessing a data item. In the proposed algorithm, the sequence of accessing a data
item consists of the leaf node access of kd-tree and data access in the leaf node. In Cy4, an
attacker only obtains the ciphertext of leaf node. Because all the leaf nodes have the same num-
ber of data items, an attacker cannot distinguish the leaf node by using density of data items. If
the kd-tree level is i, the number of leaf node is 2"~'. The probability that an attacker can dis-
tinguish a node(node;) from the others, i.e., P(node;), is 2,%1 Because node; includes the same
number of data items as fanout, the probability that an attacker can distinguish a data item

from the others in node;, i.e., P(node;.data;), is —— = s = 2‘% Therefore, the

fanout the number of data
o1
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probability of data access pattern leakage (P4py) is shown in Eq (11).

A |

P, = P(node,) x P(nodei.dataj> = .

-1

P, pr is equal to the probability that an attacker distinguishes a specific data item from the
others in the entire data items. Therefore, the proposed algorithm can preserve the access pat-
tern privacy in Cy4. In Cp, access pattern privacy is preserved because Cy does not have any
data item.

7 Discussion
7.1 Impact of hiding data access patterns

The data access pattern is one of the most important factors for privacy preservation. If an
attacker possesses the order or the frequency of data, he/she can infer the original data by
using data access patterns. Therefore, hiding data access patterns is as important as encrypting
data. First, B. Yao et al.’s work [21] proposed a secure kNN classification algorithm using the
Voronoi diagram [22]. However, the order of accessing the Voronoi diagram is distinguishable
and an attacker can partially infer the original data from the query. Second, J. Du and F. Bian’s
work [25] proposed a kNN classification algorithm using an order-preserving index. However,
the index access patterns are exposed because the order of accessing the index can be easily
obtained from the query. This allows an attacker to easily infer the original data if he/she has
an index access pattern. Meanwhile, our algorithm uses the Paillier cryptosystem which sup-
ports semantic security for data protection. As a result, all of the ciphertext is indistinguishable
and secure from frequency-based attacks. In addition, the kd-tree filtering technique used in
our algorithm is secure from the exposure of data access patterns because our algorithm
accesses only the encrypted leaf nodes of the kd-tree without accessing the index by using a
top-down approach. Therefore, our algorithm can hide the data access patterns.

7.2 Impact of parallel algorithm with garbled circuit

First, a garbled circuit is used for efficient processing of secure protocols. B. K. Samanthual

et al.’s work [16] has high overhead by using a secure protocol based on the comparison of
binary array. To overcome this problem, our secure protocols use a garbled circuit that per-
forms a fast and secure comparison operation in the state of the ciphertext. Second, the exist-
ing algorithms do not use parallelism for the privacy-preserving classification algorithm [16,
17, 25]. On the contrary, our algorithm proposes a parallel classification algorithm adopting
the garbled circuit. Our algorithm performs three phases in parallel: index searching, KNN
searching and kNN verification. As shown in our performance evaluation, our parallel classifi-
cation algorithm shows performance improvement in proportion to the number of threads.

7.3 Impact of encrypted random value pool

In our secure system, we use two-party computation for the parallel kNN classification algo-
rithm. Thus, we need to prevent Cy from extracting meaningful information while executing
secure protocols. For this, C, generates a random value r from Zy and encrypts r by using the
Paillier cryptosystem. Then, C4 adds the encrypted random value E(r) to the encrypted plain-
text E(m) by computing E(m + r) = E(m) x E(r). Because m=r is independent from m, Cg can-
not obtain meaningful information with decryption. However, adding a random value to the
ciphertext in the Paillier cryptosystem leads to performance degradation because both encryp-
tion and decryption operations require higher computation cost than other encrypted

PLOS ONE | https://doi.org/10.1371/journal.pone.0267908 May 5, 2022 26/29


https://doi.org/10.1371/journal.pone.0267908

PLOS ONE

Privacy-preserving parallel kNN classification algorithm using index-based filtering in cloud computing

operations. In the Secure Multiplication protocol, both B. K. Samanthula et al.’s work and H.
Kim et al’s work require three times of the encryption: 2 encryptions for random values at C,
and 1 encryption for the result of multiplication at Cp. Meanwhile, our algorithm requires only
one encryption for the result of multiplication at Cy because it selects the encrypted random
values from the random value pool without encrypting the random values at Cy4. In the Secure
Compare protocol, B. K. Samanthula et al.’s work requires log, D times of encryption where D
is a data domain. H. Kim et al.’s work requires three times of the encryption: 2 encryptions for
random values at C,4 and 1 encryption for the result of the comparison between two values at
Cp. Meanwhile, our algorithm requires only one encryption for the result of comparison at Cp
by using the random value pool. Therefore, our algorithm can reduce the amount of computa-
tion cost for encryption by using the encrypted random value pool.

7.4 Practical example of proposed kNN classification

The proposed secure kNN classification algorithm can be used in various fields. For example,
first, it can be used to diagnose a disease by classifying the patterns of the patient’s symptoms
[29]. Because the existing disease diagnosis system depends on only the doctor’s knowledge
and experience, it may cause damage to patients due to misdiagnosis. Therefore, KNN classifi-
cation algorithms can help doctors classify the pattern of the patient’s symptoms so as to diag-
nose what kind of disease it is. However, because patients’ information contains sensitive data,
such as past medical history, family history and allergies, the proposed privacy-preserving
kNN classification algorithm can be used to protect the sensitive data of patients. Second, the
proposed privacy-preserving kNN classification algorithm can be used to solve the problem of
insurance coverage recommendation where insurance companies provide the most suitable
coverage for customers [30]. The insurance coverage recommendation classifies customers’
grades based on various customers’ information, such as movement patterns and lifestyles. To
perform the classification of customers’ grades, the proposed privacy-preserving kNN classifi-
cation algorithm can be used to protect the personal information of customers.

8 Conclusion

In this paper, we proposed a parallel KNN classification algorithm over encrypted data to pre-
serve data privacy, query privacy, and access pattern privacy in cloud computing. To reduce
the computation cost for encryption, we proposed two secure protocols, SME and GSCE,
which support secure multi-party computation by using an encrypted random value pool. To
reduce the query processing time, we not only designed a parallel algorithm, but also adopted
a garbled circuit. In addition, we proved that our algorithm over the encrypted database is safe
under the semi-honest attack model. Through our performance evaluation, our algorithm
showed about 2 ~ 25 times better performance compared with the existing algorithms. For
future work, we plan to apply our parallel query processing algorithm to secure k-Means
clustering.
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