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Abstract

With the development of cloud computing, interest in database outsourcing has recently

increased. In cloud computing, it is necessary to protect the sensitive information of data

owners and authorized users. For this, data mining techniques over encrypted data have

been studied to protect the original database, user queries and data access patterns. The

typical data mining technique is kNN classification which is widely used for data analysis

and artificial intelligence. However, existing works do not provide a sufficient level of effi-

ciency for a large amount of encrypted data. To solve this problem, in this paper, we propose

a privacy-preserving parallel kNN classification algorithm. To reduce the computation cost

for encryption, we propose an improved secure protocol by using an encrypted random

value pool. To reduce the query processing time, we not only design a parallel algorithm, but

also adopt a garbled circuit. In addition, the security analysis of the proposed algorithm is

performed to prove its data protection, query protection, and access pattern protection.

Through our performance evaluation, the proposed algorithm shows about 2*25 times bet-

ter performance compared with existing algorithms.

1 Introduction

With the growing popularity of cloud computing, there has been growing interest in outsourc-

ing databases. Cloud computing provides a service that allows internet-connected users to use

virtual computing resources such as storage, computation, and network. Thus, a cloud service

provider can maintain computing resources rapidly and flexibly. A data owner can reduce

efforts to purchase, install, and expand computing systems, and mitigate the constraints of

physical space. Cloud computing is attracting a lot of attention from individuals and compa-

nies because it can reduce the cost of system maintenance and data management, and can uti-

lize computing resources needed without expertise. Meanwhile, we should consider three

requirements in an outsourced database. First, it is necessary to protect the database because

the database contains sensitive information of the data owner [1, 2]. Second, the query and the

query result should not be exposed because personal information related to user preference
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may be uncovered. Third, data access patterns should be protected because the cloud provider

is able to infer private information from the data access pattern.

Therefore, Data Mining over Encrypted Data (DMED) has been studied to protect the orig-

inal database, user queries and data access patterns. Early studies modify plaintexts to substi-

tuted data and outsources them to a cloud [3–7]. However, these early studies have a

disadvantage in that they cannot completely protect data and queries because they are vulnera-

ble to various attacks such as chosen-plaintext attacks. To solve this problem, recent studies

encrypt the database and outsource the encrypted database to the cloud [8–15]. Before a data

owner outsources his/her database to a cloud service provider (cloud provider), he/she

encrypts the database. The cloud provider processes the query received from an authorized

user. The cloud provider can perform data management and system maintenance instead of

the data owner. The authorized user can directly request the desired results from the cloud

provider. The process of query processing over the outsourced database is shown in Fig 1.

Among DMED, the kNN classification algorithm is widely used for three reasons. First, the

kNN classification algorithm has a relatively higher accuracy than other classification algo-

rithms. Second, with the addition of more data, the kNN classification algorithm constantly

evolves and is capable of quickly adapting to the changes in input dataset. Finally, the kNN

classification algorithm gives a user a flexibility to choose a distance measure metric. There-

fore, the kNN classification algorithm is used for various applications such as pattern analysis,

image analysis, and user analysis [16].

Samanthula et al.’s work [16] and Kim et al.’s work [17] proposed kNN classification algo-

rithms based on homomorphic encryption which can support various operations without

decryption. Recent studies can also support data privacy, query privacy and hiding data access

patterns. However, while processing the kNN classification algorithm, the recent works require

high computation cost because they need to add random noise data to prevent exposure of the

original data. Moreover, they require a large amount of processing time for kNN classification

over the encrypted database. To the best of our knowledge, there is no existing parallel kNN

classification algorithm which is suitable for processing a large amount of encrypted data.

Fig 1. Database outsourcing model.

https://doi.org/10.1371/journal.pone.0267908.g001
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The motivation of this paper is as follows. First, the existing algorithms suffer from high

computational cost by using encrypted binary array to perform comparison operations. There-

fore, we aim at reducing computational cost by proposing secure comparison protocol based

on Yao’s garbled circuit. Second, the existing algorithms require high data encryption cost. To

deal with this problem, we propose an improved secure protocol by using an encrypted ran-

dom value pool. Finally, to the best of our knowledge, there is no existing parallel kNN classifi-

cation algorithm. We aim at designing a parallel kNN classification algorithm for processing a

large amount of encrypted data.

The contributions of this paper are as follows.

• Supporting privacy preservation: By processing queries using homomorphic encryption

without data decryption, we can protect the confidentiality of both data and user’s queries

while hiding data access patterns from an attacker.

• Reducing computation cost: By using the improved secure protocol based on an encrypted

random value pool, we can reduce the high computation cost of the random value genera-

tion for the data encryption.

• Improving the performance of kNN classification: By proposing a new parallel kNN classifi-

cation algorithm, we can reduce the amount of processing time for kNN classification.

The rest of this paper is as follows. In Section 2, we introduce the existing works on kNN

classification algorithms over the encrypted database. In Section 3, we describe the overall sys-

tem architecture and propose secure protocols for the proposed parallel kNN classification

algorithm. In Section 4, we propose a parallel kNN classification algorithm that preserves both

data and query privacy on the cloud. In Section 5, we provide the security proof of our kNN

classification algorithm. In Section 6, we perform a performance analysis of the proposed algo-

rithm. In Section 7, we describe the impact of the proposed parallel classification algorithm as

a discussion. Finally, in Section 8, we conclude our paper with the future work.

2 Background and related work

2.1) Background

2.1.1 Paillier cryptosystem. The Paillier cryptosystem is a probabilistic asymmetric algo-

rithm for public key cryptography [18]. In the Paillier cryptosystem, the encryption key pk is

given as (N, g), where N is the multiplication value between two large prime numbers p and q

in ZN2. Here, g is a random integer value at ZN2 where ZN2 denotes an integer domain ranged

from 0 to ZN2. Meanwhile, the decryption key sk is given as (p, q). The Paillier cryptosystem

has the following characteristics. First the Paillier cryptosystem can support homomorphic

addition and multiplication. Assume that the encryption function of the Paillier cryptosystem

is E(.) and its decryption function is D(.), For two encrypted data E(a) and E(b), the product E

(a) × E(b) is equal to E(a+b), which is the encrypted value of the plaintext a+b, as shown in Eq

(1).

Eðaþ bÞ ¼ EðaÞ � EðbÞ mod n2 ð1Þ

For two plaintexts a and b, the bth power of the encrypted data E(a), i.e, E(a)b, is equal to E

(a × b), which is the encrypted value of the plaintext a × b, as shown in Eq (2).

Eða� bÞ ¼ EðaÞb mod n2 ð2Þ

Second, the Paillier cryptosystem supports semantic security where only negligible informa-

tion about the plaintext can be feasibly extracted from the ciphertext. Specifically, any
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probabilistic, polynomial-time algorithm (PPTA), which is given the ciphertext of a certain

message m and its length, cannot determine any partial information on the message with a

probability higher than all other PPTA’s that only have access to the message length [19]. This

concept is the computational complexity similar to Shannon’s concept of perfect secrecy. Per-

fect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas

semantic security implies that any information revealed cannot be feasibly extracted.

2.1.2 Attack model. In the outsourcing database environment, two attack models can be

considered: a semi-honest attack model and a malicious attack model [20]. In the semi-honest

(or honest-but-curious) attack model, the cloud performs its own protocol honestly, but

attempts to obtain sensitive data about the data owner and the authorized user during the pro-

tocol execution. To prevent a semi-honest attack, sensitive data must always be protected. A

malicious attack model attempts to acquire sensitive data by deviating from a given secure pro-

tocol. Because a secure protocol can be contaminated by a malicious attack, it is difficult to

recover the secure protocol. To protect sensitive data against the malicious attack model, a

defender focuses on detecting attacks and recovering the damaged secure protocol. Since we

aim at protecting sensitive data in cloud computing, we design our algorithm based on the

semi-honest attack model. A secure protocol for the semi-honest attack model is defined as fol-

lows [17].

Definition 1. Assuming that ai is the input data of cloud Ci, ∏i(π) is the execution image of

Ci for the protocol π and bi is the result data of Ci executing the π protocol. If the execution

image ∏Si(π) simulating π is computationally indistinguishable from ∏i(π), the protocol π is

said to be a secure protocol for the semi-honest attack model.

In Definition 1, the execution image generally includes the input data and output data of

the protocol. The security of the protocol under the semi-honest attack model can be verified

by showing that the protocol’s execution image does not expose the cloud’s data.

2.2) Related work

2.2.1 B. Yao et al.’s work. B. Yao et al. proposed a secure kNN classification algorithm

[21] based on a partition-based secure Voronoi diagram (SVD) [22]. The SVD relies on any

standard encryption scheme E such as public-key encryption RSA and symmetric-key encryp-

tion AES, rather than using any new encryption schemes. Because the SVD is as secure as E for

any standard security model in which E is proven secure, the SVD is indistinguishable in either

chosen plaintext or chosen ciphertext attacks. To process the secure kNN classification queries,

the algorithm retrieves the relevant encrypted partition instead of finding the encrypted exact

k-nearest neighbors. However, most of the computations are performed locally by the end-

user while processing the kNN classification query. As a result, the algorithm conflicts the pur-

pose of outsourcing the DBMS functionalities to the cloud. Furthermore, the algorithm leaks

data access patterns to the cloud, such as the partition ID corresponding to a user query.

2.2.2 B. K. Samanthual et al.’s work. B. K. Samanthula et. al. proposed a secure k-NN

classification algorithm, denoted by PPkNN, over encrypted data in the cloud [16]. PPkNN

can protect the confidentiality of the data, user’s input query, and data access patterns. PPkNN

mainly consists of two stages: the secure retrieval of k-nearest neighbors and the secure com-

putation of majority class. In the secure retrieval of k-nearest neighbors, a query user initially

sends his query q (in encrypted form) to C1. Then, C1 and C2 involve in a set of sub-protocols

to securely retrieve the class labels corresponding to the k-nearest neighbors of the input query

q. At the end of this step, the encrypted class labels of the k-nearest neighbors are known only

to C1. In the secure computation of the majority class, C1 and C2 jointly compute the class label

with majority voting among the k-nearest neighbors of q. At the end of this step, only the
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query user knows the class label corresponding to input query record q. However, PPkNN

requires a very high computation cost for hiding data access patterns.

2.2.3 H. Kim et al.’s work. H. Kim et. al. proposed a secure kNN classification algo-

rithm which uses both the Paillier cryptosystem and an encrypted kd-tree index [17]. The

Paillier cryptosystem is a homomorphic encryption scheme which is indistinguishable in

either chosen-plaintext or chosen-ciphertext attacks, so that the cloud can process the kNN

classification queries without decrypting any data or a user’s query. Before outsourcing

data to the cloud, a data owner builds a kd-tree index and encrypts both the original data-

base and the leaf nodes of the kd-tree index. Therefore, the algorithm can protect the data,

the query and the data access pattern. By using the encrypted kd-tree index, the algorithm

can reduce the amount of query processing time. However, because the algorithm must

generate encrypted random values for privacy-preserving, it requires a high computation

cost.

2.2.4 W. Wu et al.’s work. W. Wu et al. proposed a privacy preserving kNN classification

algorithm over encrypted database in outsourced cloud environments [23]. The algorithm

newly generates unique classification label keys for each user through a secure three-party pro-

tocol. The keys are used to re-encrypt the labels into new ciphertexts that can only be

decrypted by the corresponding user. The algorithm hides the data access patterns from a fed-

erated cloud server which performs the process of kNN classification by using two non-collud-

ing clouds. However, the algorithm conflicts the purpose of outsourcing the DBMS

functionalities to the cloud because both the data owner and authorized users must participate

in the process of label re-encryption.

2.2.5 Y. Tan et al.’s work. Y. Tan et al. proposed a lightweight edge-based privacy-pre-

serving kNN classification algorithm over a hybrid encrypted cloud database [24]. A data

owner can upload his/her database to the cloud server, and an authorized user can send a

query to the cloud server to execute kNN queries. The algorithm is performed against the

semi-honest attack model. After the query is sent, the authorized user does not need to partici-

pate in the kNN classification. They also proposed a secure distance protocol in which the

cloud servers cannot derive any private information from the authorized user. Compared with

the SIP protocol in the state-of-the-art PPKC algorithm [16], the proposed secure distance

protocol has less corrupted computation.

2.2.6 J. Du and F. Bian’s work. J. Du and F. Bian proposed a non-interactive and efficient

privacy-preserving kNN classification algorithm [25]. The algorithm is performed against the

semi-honest attack model. To achieve privacy preservation, the algorithm encrypts all out-

sourced data and users’ query records by using two encryption schemes: order preserving

encryption [26] and the Paillier cryptosystem [16]. To hide the data access pattern, the infor-

mation in the cloud server is always maintained in ciphertext format. In terms of classification

accuracy, the algorithm is proven to be very close to one using both plaintext data and the

non-interactive encrypted data query scheme.

Table 1 shows the comparison of the existing studies. We explain their comparison with

respect to three major factors. First, B. K. Samanthula et al.’s work [16], H. Kim et al.’s work

[17], W. Wu et al.’s work [23] and Y. Tan et al.’s work [24] support hiding access pattern,

while B. Yao et al.’s work [21] and J. Du and F. Bian’s work [25] do not support it. Second, W.

Wu et al.’s work and Y. Tan et al.’s work require low computation overhead while B. K.

Samanthula et al.’s work and H. Kim et al.’s work need high computation overhead. Finally, B.

Yao et al.’s work, B. K. Samanthula et al.’s work, H. Kim et al.’s work and W. Wu et al.’s work

have low risk in terms of security, while Y. Tan et al.’s work and J. Du and F. Bian’s work have

high risk in terms of security.
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3 Overall system architecture and secure protocols

3.1) System architecture

In the outsourcing database environment, two attack models can be considered: a malicious

attack model and a semi- honest attack model [20]. In a malicious attack model, the cloud can

deviate from the protocol procedure. A protocol against malicious attack model is inefficient

because it requires exceedingly high cost. In the semi-honest attack model, the cloud correctly

follows the given protocol, but tries to acquire the sensitive information of both the data owner

and the query issuer. However, a protocol against a semi-honest attack model is practical

because the cloud has a higher level of authority than outsider attackers. Therefore, according

to earlier work [16, 17], we also adopt the semi-honest attack model. Table 2 shows a list of

Table 1. Comparison of existing studies.

Hiding access

patterns

Index Computation

overhead

Encryption User

involvement

Exact match /

Approximate match

Security

risk

B. Yao et al.’s work

[21]

Not support Secure Voronoi

diagram

Moderate Any Standard Encryption Involved Approximate match Low

B.K. Samanthula

et al.’s work [16]

Support None Very high Paillier Not involved Exact match Low

H. Kim et al.’s work

[17]

Support Encrypted kd-

tree

High Paillier Not involved Exact match Low

W. Wu et al.’s work

[23]

Support None Low self-production Involved Exact match Low

Y. Tan et al.’s work

[24]

Support None Low Paillier (data), ElGamal

(Classification label)

Not involved Exact match High

J. Du and F. Bian’s

work [25]

Not support Encrypted kd-

tree

Moderate Paillier (label), Order

preserving encryption(OPE)

Involved Approximate match High

https://doi.org/10.1371/journal.pone.0267908.t001

Table 2. Definitions of common notations.

Notations Description

E(�), D(�) Encryption function and decryption function

ti, ti,j ith record and jth attribute value of ith record

t0i ; t0i;j ith extracted record during the index search and its jth attribute value

q, qj A query of a user and jth attribute value of a query q

n, m The total number of data and attributes in T

cnt The number of data extracted during the index search step

h Level of the kd-tree

node zth node of the kd-tree

nodez.ts,j jth attribute of sth record stored in zth node of the kd-tree

lbz,j, ubz,j jth attribute value of lower/upper bound of zth kd-tree node

F Fan-out(maximum # of data in each leaf node)

αz Output of SCMP or SPE protocol for node

α A set of values consisting of α

l Domain size (in bits)

r Random integers

L Array for entire label

w The number of labels

L0 k-array of labels for k-nearest neighbors

https://doi.org/10.1371/journal.pone.0267908.t002
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notations used in this paper. Our system architecture supports secure protocols between

clouds by performing Secure Multiparty Computation (SMC). SMC is based on multi-party

data processing in which several entities cooperate to perform calculations for deriving specific

results. For this, the following factors must be satisfied to achieve the result of secure protocols

while avoiding data leakage.

3.1.1 Input privacy. No information about private data held by multiple parties can be

inferred from the messages sent during the protocol execution. The only information that can

be inferred about private data is whatever could be inferred from seeing the output of the func-

tion alone.

3.1.2 Correctness. Any proper subset of adversarial colluding parties that is willing to

share information or deviate from the instructions during the protocol execution should not

be able to force honest parties to output an incorrect result. This correctness goal comes in two

categories: either the honest parties are guaranteed to compute the correct output (a robust

SMC protocol), or the honest parties abort if they find an error (an SMC protocol with abort).

Fig 2 shows the overall system architecture. The data owner holds the original database T

consisting of n records ti (1� i� n). Each record ti includes m attributes (or columns) and

one label. Here, we call the jth attribute of the ith record as ti,j(1� i� n, 1� j�m + 1). First,

the data owner partitions the original data by using the kd-tree index. Assuming that the level

of the constructed kd-tree is h, the total number of leaf nodes is 2h−1. In the leaf node, an attri-

bute stores its region information, i.e., a lower bound lbz,j and an upper bound ubz,j, where 1�

z� 2h−1 and 1� j�m. Second, the data owner generates an encryption public key (pk) and a

decryption secret key (sk) based on the Paillier cryptosystem [18]. Third, the data owner

encrypts the database with the Paillier cryptosystem to protect the original data. Because the

Fig 2. Overall system architecture.

https://doi.org/10.1371/journal.pone.0267908.g002
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unit of the encryption is the attribute of each record, E(ti,j) (1� i� n, 1� j�m + 1) is gener-

ated. Finally, the leaf node of the constructed kd-tree is encrypted because the data owner

needs to protect the data access pattern. Because the unit of the encryption is the attributes of

each leaf node, E(lbz,j) and E(ubz,j) are generated(1� z� 2h−1, 1� j�m).

3.2) Secure protocols

3.2.1 Encrypted random value pool. To support data privacy in a cloud computing envi-

ronment, the existing works [16, 17] prevent CB from extracting meaningful information (Fig

2) while executing a secure protocol by using the Paillier cryptosystem. However, they require

high computation cost because the secure protocol generates an encrypted random value for

protecting the original data. Therefore, we propose an encrypted random value pool to reduce

the computation cost for encryption. Before CA processes a query (Fig 2), we generate the ran-

dom plaintext from ZN and store the encrypted random plaintext into an encrypted random

value pool. While processing a query in CA, a random ciphertext is selected from the encrypted

random value pool whenever a secure protocol is called. Therefore, while processing a secure

protocol, CA not only prevents CB from extracting meaningful information, but also reduces

the cost of generating encrypted random values. Table 3 shows a comparison of the number of

data encryptions for each secure protocol in our work and existing works [16, 17]. The Secure

Multiplication protocol of the existing works requires three times as the number of encryp-

tions as our work. The Secure Compare protocol used in B. K. Samanthula et al.’s work

requires log2 D times as the number of encryptions as our work while the one used in H. Kim

et al.’s work requires three times as the number of encryptions as our work.

3.2.2 Secure multiplication protocol using an encrypted random value pool. We pro-

pose a Secure Multiplication protocol using an Encrypted random value pool (SME protocol)

which multiplies two encrypted values E(α) and E(β). Algorithm 1 shows the SME protocol.

First, when two encrypted values E(α) and E(β) are given as inputs, CA selects two random val-

ues E(ra) and E(rb) from the encrypted random value pool (line 1). Second, CA calculates E(α +

ra) and E(β + rb) by using Eq (1), then sends them to CB (line 2*3). Third, CB decrypts E(α +

ra) and E(β + rb) by using the secret key and calculates the multiplication of the two plaintext α
+ ra and β + rb (line 4). Fourth, CB encrypts (α + ra) × (β + rb) and send it to CA (line 5). Finally,

CA obtains E(α × β) by removing α × rb, β × ra and ra × rb from the received value, where ‘N−x’

in the ZN domain is the same as ‘-x’ (line 6).

Algorithm 1 SME Protocol
Input: E(α), E(β)
Output: E(α × β)
CA:
1: Pick random value E(ra) and E(rb) in the encrypted random value pool
2: E(α0) E(α) × E(ra);E(β0) E(β) × E(rb)
3: Send E(α0), E(β0) to CB
CB:
4: h  D(E(α0) × D(E(β0) mod N // h = α × β + α × rb + β × ra + ra × rb
5: Send E(h) to CA

Table 3. A comparison of amount in secure protocols.

algorithms Secure Multiplication Protocol Secure Compare Protocol

B. K. Samanthula et al.’s work 3 × E log2 D × E
H. Kim et al’s work 3 × E 3 × E
Proposed algorithm 1 × E 1 × E

https://doi.org/10.1371/journal.pone.0267908.t003
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CA:
6: Eða� bÞ  EðhÞ � EðaÞN� rb � EðbÞN� ra � Eðra � rbÞ

N� 1

3.2.3 Garbled secure compare protocol using encrypted random value pool. We pro-

pose the Garbled Secure Compare protocol using an Encrypted random value pool (GSCE

protocol) which is performed by using a garbled circuit consisting of two ADD gates and one

CMP gate [27]. Assume that E(u) and E(v) are ciphertext for two plaintext u and v. When E(u)

and E(v) are given to CA, the GSCE protocol returns E(1) if u� v is satisfied, otherwise it

returns E(0). Algorithm 2 shows the GSCE protocol. First, CA selects two random value E(ru)
and E(rv) from the encrypted random value pool (line 1). Second, CA calculates E(m1) = E(u)2

× E(ru) and E(m2) = E(v)2 × E(1) × E(rv) (line 1*2). Third, CA randomly selects one of two

random functions, i.e., F0 and F1. The selected random function is not disclosed to CB. If CA
selects F0, CA sends an encrypted ordered pair<E(m2), E(m1)> to CB. If CA selects F1, CA
sends an encrypted ordered pair <E(m1), E(m2)> to CB (line 3*7). Fourth, CB decrypts the

data received from CA (line 8*11). When CA selects F0, CB acquires an ordered pair <m2,

m1>, otherwise CB acquires an ordered pair<m1,m2>. Fifth, CA creates a garbled circuit con-

sisting of two ADD gates and one CMP gate. If F0 is selected, −rv and −ru are transferred to the

first ADD gate and the second ADD gate, respectively. Otherwise, −ru and −rv are transferred

to the first and the second ADD gates, respectively (lines 12*16). Sixth, CB transfers the first

data to the first ADD gate, and the second data to the second ADD gate. Therefore, when F0 is

selected, CB transfersm2 andm1 to the first and the second ADD gates, respectively. Otherwise,

m1 andm2 are transferred to the first and the second ADD gates, respectively (line 17*20).

Seventh, the first ADD gate adds two input values: −rv andm2 for F0 and −ru and m1 for F1.

The result of the first ADD gate (result1) is transferred to the CMP gate (line 21*24). Eighth,

the second ADD gate adds two input values: −ru andm1 for F0 and −rv andm2 for F1. The

result of the second ADD gate (result2) is transferred to the CMP gate (line 25*28). Due to

the characteristics of the garbled circuit, the exposure of any information does not occur in the

ADD gate. Ninth, the CMP gate returns α = 1 if result1� result2, and α = 0 otherwise (line 29

30). Finally, the result α can be checked on CB side, and CB transmits E(α) to CA (line 31).

Because CB does not know whether F0 or F1 is selected by CA, CB cannot determine the result

of comparison of E(u) and E(v). When F0 is selected, CA changes E(α) through the SBN proto-

col [11] and returns E(α) (line 32*34). Here, CA cannot obtain the actual value of α due to the

characteristics of the Pallier cryptosystem.

Algorithm 2 GSCE Protocol
Input: E(u), E(v)
Output: E(1) when u � v, E(0) otherwise
CA:
01: Pick random value E(ru) and E(rv) in the encrypted random value
pool
02: E(m1) E(u)2 × E(ru)
03: E(m2) E(v)2 × E(1) × E(rv)
04: h  D(E(α0) × D(E(β0) mod N // h = α × β + α × rb + β × ra + ra × rb
05: Randomly choose F0 or F1
06: If F0 u>v is chosen, then
07: Send <E(m2), E(m1)> to CB
08: else
09: Send <E(m1), E(m2)> to CB
CB:
10: If F0 u>v is chosen, then
11: Obtain <m2, m1> by decrypting <E(m2), E(m1)>
12: else
13: Obtain <m1, m2> by decrypting <E(m1), E(m2)>
CA:
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14: Generate garbled circuit
15: If F0 u>v is chosen, then
16: Put −rv and −ru into 1st and 2nd ADD gates
17: else
18: Put −ru and −rv into 1st and 2nd ADD gates
CB:
19: If F0 u>v is chosen, then
20: Put m2 and m1 into 1st and 2nd ADD gates
21: else
22: Put m1 and m2 into 1st and 2nd ADD gates
1st ADD Gate:
24: If F0 u>v is chosen, then
25: result1 = calculate − rv + (v + rv)
26: else
27: result1 = calculate − ru + (u + ru)
2nd ADD Gate:
29: If F0 u>v is chosen, then
30: result2 = calculate − ru + (u + ru)
31: else
32: result2 = calculate − rv + (v + rv)
CMP Gate
34: If result1 > result2 is chosen, then
35: output α = 1 to CB
36: else
37: output α = 0 to CB
CB:
38: E(α) encrypt α
CA:
39: If F0 u>v is chosen, then
40: E(α) SBN(E(α))
41: Return E(α)

4 Privacy-preserving parallel kNN classification algorithm using

index filtering

The proposed parallel kNN classification algorithm can support the protection of data, query,

and data access pattern in a cloud computing environment. For this, the proposed privacy-pre-

serving parallel kNN classification algorithm is composed of four phases: secure index search,

k-nearest neighbors search, kNN verification, and kNN classification, as shown in Fig 3.

Fig 3. Proposed parallel kNN classification algorithm.

https://doi.org/10.1371/journal.pone.0267908.g003
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4.1) Secure index search phase

In the secure index search phase, the proposed algorithm determines the leaf node which

includes the given query in the encrypted kd-tree. The procedure of the secure index search

is shown in Algorithm 3. First, CA makes t number of partitions and allocates them to the

given threads (line 1). Here, t is calculated by dividing the number of leaf nodes by the num-

ber of threads. Second, by using the GSRO protocol, the algorithm finds which leaf node

includes the query in each thread. If a node includes the query, the GSRO protocol returns E
(1), otherwise the protocol returns E(0). The result of the GSRO protocol is stored in an

array E(α). The algorithm randomly reorders the members of the array E(α) and transfers

the reordered array E(α0) to CB(line 2*7). Third, CB decrypts the array E(α0) and makes

groups by allocating the decrypted members uniformly based on the number of 1s. If a node

has the decrypted value of 1, it becomes a seed of a group. CB sends groups to CA (line 8–15).

Finally, CA extracts all the encrypted data in the node corresponding to E(1). If a node has E
(1), the algorithm can safely extract the data of the node because the node includes the

query. Otherwise, the algorithm can remove the data of the node because it does not include

the query (line 16*30).

Algorithm 3 Secure Index Search
Input: kd � tree ¼ Eðnode1Þ; :::;EðnodeNumNodeÞ; query ¼ EðqÞ
Output: Eða1Þ; :::; EðaNumNodeÞja 2 ð0; 1Þ
CA:
01: t = NumNode/NumThread
02: Run thread
03: for 1 � i � NumThread
04: for t × (i − 1)�j � t × i
05: E(αj) = GSRO(E(q), E(q), E(rangej.lb), E(rangej.ub))
06: Terminate thread
07: E(α0) = ∏(E(α)); Send E(α0) to CB
CB:
08: α0 = D(E(α0))
09: c = the number of’1’ in α0

10: Create c number of node groups
11: for each node group
12: assign a node with α0 = 1
13: assign (numnode/c) − 1 nodes with α0 = 0
14: shuffle the sequence of nodes
15: Send node group to CA
CA:
16: cnt = 0
17: for each node group
18: permute node IDs using Π−1

19: t = F/NumThread
20: Run thread
21: for 1 � i � NumThread
22: for each node group
23: for t × (i − 1)�s � t × i
24: for 1 � z � num //num is # of nodes in the selected group
25: Eðt0z;jÞ  SMðnodez:ts;j; EðazÞÞ for 1 � j � m + 1
26: for 1 � j � m + 1
27: Eðcandcnt;jÞ  

Qnum
z¼1

Eðt0z;jÞ
28: cnt  cnt + 1
29: Terminate thread
30: return E(cand)
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4.2) k-Nearest neighbors search phase

In the k-nearest neighbors search phase, our algorithm finds k-nearest points among the

encrypted candidates which are extracted from the index search phase. The procedure of the

k-nearest neighbors search is shown in Algorithm 4. First, CA calculates the squared Euclidean

distance set E(di) (1� i� cnt, where cnt is the number of candidates) between the query and

the encrypted candidates through the ESSED protocol [17] in a parallel way (line 1*6). Sec-

ond, CA finds the minimum value E(dmin) among E(di)(1� i� cnt) through the SMSn protocol

[16] (line 8–10). Additionally, CA calculates the difference between E(dmin) and E(di) (1� i�
cnt) by using E(dmin) × E(di)N−1, and stores the results into an array E(τi) (1� i� cnt). CA
makes Eðt0i) (1� i� cnt) by raising E(τi) to the power of a random integer. CA makes E(βi) (1

� i� cnt) by applying a shuffling function π to Eðt0iÞ (1� i� cnt) and sends it to CB (line

11*18). Therefore, the original distance and data access patterns are protected from CB.

Third, if the ith decrypted value of E(βi) (1� i� cnt) is 0, CB sets to E(1) the ith value of a tem-

porary array E(Ui) (1� i� cnt). Otherwise, CB sets to E(0) the ith value of a temporary array E
(Ui)(1� i� cnt). CB sends E(Ui)(1� i� cnt) to CA (line 19*22). Fourth, CA makes E(Vi)(1�
i� cnt) by applying a deshuffling function π − 1 to E(Ui)(1� i� cnt). CA performs the SM

protocol between E(Vi)(1� i� cnt) and E(candi,j)(1� i� cnt and 1� j�m + 1, wherem is

the data dimension). CA stores the result of the SM protocol in a temporary array EðV 0i;j)(1� i
� cnt and 1� j�m + 1). Next, CA calculates Eq 3 by using Eq 1 (line 23*31). Fifth, if the

algorithm does not find k-nearest neighbors, CA updates E(di) (1� i� cnt) by calculating Eq 4

in a parallel way, where E(max) is the maximum value of the data domain (line 32*38). If E
(Vi) equals to E(1), E(di) corresponding to E(Vi) is updated to E(max) through Eq 4. Other-

wise, E(di) corresponding to E(Vi) is maintained. Finally, CA terminates the k-nearest neigh-

bors search phase if k-nearest neighbors are found (line 39).

Eðt0s;jÞ ¼
Ycnt

i¼1

EðVi;jÞð1 � j � mþ 1Þ ð3Þ

EðdiÞ ¼ SMðEðViÞ; EðmaxÞ � SMðSBNðEðViÞÞ; EðdiÞÞ ð4Þ

Algorithm 4 k-nearest neighbor search phase
Input: E(q), E(cand), k
Output: t0//candidatekNNresult
CA:
01: Run thread
02: t = NumNode/NumThread
03: for 1 � i � NumThread
04: for t × (i − 1)�j � t × i
05: E(dj) = ESSED(E(q), E(candj))
06: Terminate thread
07: for 1 � s � k
08: Run thread
09: E(dmin) = SMSn(E(d1), . . ., E(dcnt))
10: Terminate thread
11: Run thread
12: t = cnt/NumThread
13: for 1 � i � NumThread
14: for t × (i − 1)�j � t × i
15: E(τj) = E(dmin) × E(dj)

N−1

16: Eðt0jÞ ¼ EðtjÞ
ri

17: Terminate thread
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18: E(β) ∏(τj); Send E(β) to CB
CB:
19: for 1 � i � cnt
20: If D(E(βj)) = 0, then E(Ui) E(1)
21: Else E(Ui) E(0)
22: Send E(U) to CA
CA:
23: E(V) ∏−1(U)
24: Run thread
25: t = cnt/NumThread
26: for 1 � u � NumThread
27: for t × (u − 1)�i � t × u
28: for 1 � j � m + 1
29: EðV 0i;jÞ  SMðEðVi; Eðcandi;jÞÞÞ
30: Eðt0s;jÞ  

Qcnt
i¼1
EðV 0i;jÞ

31: Terminate thread
32: Run thread
33: t = cnt/NumThread
34: for 1 � i � NumThread
35: for t × (i − 1)�j � t × i
36: If s < k then,
37: E(dj) = SM(E(Vj), E(max)) × SM(SBN(E(Vj)), E(dj))
38: Terminate thread
39: return E(t0)

4.3) k-Nearest neighbors verification phase

In the k-nearest neighbors verification phase, the algorithm verifies whether the distance

between the a node and the query(E(q) =<E(q1), E(q2), . . ., E(qm)>, wherem is the data

dimension) is shorter than the distance, E(distk), between the query and kth nearest neighbor

(Eðt0Þ ¼< Eðt0k;1Þ; Eðt
0
k;2Þ; . . . ;Eðt0k;mÞ >). The procedure of the k-nearest neighbors verification

phase is shown in Algorithm 5. First, CA calculates E(distk) between E(q) and Eðt0kÞ using the

ESSED protocol (line 1). Second, the algorithm performs the GSCE protocol between E(qj)
and the lower bound of nodez(E(nodez.lbj) (1� z� numnode) for each dimension j(1� j�m),

and stores the result of the GSCE protocol into E(ψ1,j). If E(qj) (1� j�m) is less than or equal

to E(nodez.lbj), E(ψ1,j) is E(1). Then, the algorithm performs the GSCE protocol between E(qj)
(1� j�m) and the upper bound of nodez (E(nodez.ubj)(1� z� numnode) for each dimension

j, and stores the result of the GSCE protocol into E(ψ2,j) (line 2*5). If E(qj) is less than or

equal to E(nodez.ubj), E(ψ2,j) is E(1). Third, the algorithm performs the SBXOR protocol [16]

between E(ψ1,j) and E(ψ2,j), and stores the result of the SBXOR protocol into E(ψ3,j) (line 6).

Fourth, the algorithm calculates the shortest point of nodez (1� z� numnode), E(spz) =< E
(spz,1), E(spz,2), . . ., E(spz,m)> wherem is the data dimension, by using Eqs 5 and 6 (line

7*10).

f ðEðlbjÞ;EðubjÞÞ ¼ SMðEðc1;jÞ;EðlbjÞÞ � SMðSBNðc1;jÞ;EðubjÞÞ ð5Þ

Eðspz;jÞ ¼ SMðEðc3;jÞ;EðqjÞÞ � SMðSBNðEðc3;jÞÞ; f ðEðlbjÞ; EðubjÞÞÞ ð6Þ

Fifth, CA calculates the squared Euclidean distance between E(q) and E(spz)(1� z� num-

node) through the ESSED protocol and stores the result into the shortest distance of the nodez,
E(spdistz)(1� z� numnode) (line 11). In addition, CA updates E(spdistz)(1� z� numnode) by

using Eq 7 (line 12 13). E(αz) in Eq 7 is the result of the GSRO protocol in algorithm 1. This

update avoids an unnecessary index search phase by updating the shortest distance of the node
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already searched in the previous phase.

EðspdistzÞ  SMðEðazÞ;EðmaxÞÞ � SMðSBNðEðazÞÞ;EðspdistzÞÞ ð7Þ

Sixth, CA performs the GSCE protocol between E(spdistz) and E(distk), and stores the result

into E(αz) (line 14). If E(spdistz) is less than E(distk), the nodez needs additional searching.

Finally, by performing lines 9*33 of the secure index search phase, CA extracts the encrypted

data belonging to the nodez and adds them to E(t0). In addition, CA obtains the kNN result

array, E(resulti)(1� i� k), by performing the k-nearest neighbors search phase (line 15*17).

CA stores the label of the k-nearest neighbors into EðL0iÞð1 � i � kÞ (line 18*19).

Algorithm 5 k-nearest neighbors verification phase
Input: E(q), E(node), E(t0), k
Output: result
CA:
01: EðdistkÞ ¼ ESSEDðEðqÞ;Eðt0kÞÞ
02: for 1 � z � numnode
03: for 1 � j � m
04: E(ψ1) = GSCMP(E(qj), E(nodez.lbj))
05: E(ψ2) = GSCMP(E(qj), E(nodez.ubj))
06: E(ψ1) = SBXOR(E(ψ1), E(ψ2))
07: E(temp) = SM(E(ψ1), E(nodez.lbj))
08: E(temp) E(temp) × SM(SBN(E(ψ1)), E(nodez.ubj))
09: E(temp) = SM(E(temp), SBN(E(ψ3)))
10: E(spz,j) = E(temp) × SM(E(ψ1), E(qj))
11: E(spdistz) = ESSED(E(q), E(spz))
12: E(temp) = SM(E(αz), E(max))
13: E(spdistz) = E(temp) × SM(SBN(E(αz)), E(spdistz))
14: E(αz) GSCMP(E(spdistz), E(distk))
15: E(t00) perform 7 * 36 lines of Algorithm 1
16: E(t0) append E(t00) to E(t0)
17: result  performAlgorithm2
18: for 1 � i � k
19: EðL0iÞ ¼ Eðresulti;mþ1Þ

4.4) k-Nearest neighbors classification phase

In the kNN classification phase, the algorithm extracts the most frequent label from the label

of the k-nearest neighbors, EðL0iÞð1 � i � kÞ. The procedure of the kNN classification phase is

shown in Algorithm 6. CA and CB calculate the frequency of EðL0iÞð 1 � i � kÞ by using the

secure frequency protocol [17] (line 1). The label with the highest frequency is selected (line 2).

CA adds a random integer rq to the selected label and stores the result into a temporary variable

E(rq) (line 3). CA sends E(rq) to CB and rq to AU (line 4). CB decrypts E(rq) and sends it to AU
(line 5–6). AU obtains the final result by combining the results of CA and CB (line 7*8).

Algorithm 6 Knn classification
Input: < EðL1Þ; :::;EðLwÞ >;< EðL0

1
Þ; :::; EðL0wÞ >

Output: E(Lq)
CA and CB:
01: <E(f(L1), . . ., E(f(Lw)))> = SF(Δ, Δ0), where
D ¼< EðL1Þ; :::;EðLwÞ >;D

0
¼< EðL0

1
Þ; :::;EðL0wÞ >

02: (f(max), E(Lq)) = SXSw(<E(f(L1)), . . ., E(f(Lw)) >, < E(L1), . . ., E(Lw)
>)
CA:
03: E(λq) = E(cq) × E(rq), where rq 2 ZN
04: Send E(λq) to CB and rq to AU
CB:
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05: Receive E(λq) from CA
06: l

0

q ¼ DðlqÞ; Send l
0

q to AU
AU:
07: Receive rq from CA and λq from CB
08: cq ¼ l

0

q � rq

4.5) Example of kNN classification

Here, an example of the proposed secure kNN classification algorithm is described. Assume

that the original data is indexed and encrypted by using the kd-tree, as shown in Fig 4. The

encrypted kd-tree contains 4-fold attributes for each leaf node, i.e., a node identifier (ID), an

encrypted lower bound of the node, an encrypted upper bound of the node, and the encrypted

data. Fig 5 shows how to extract data in a selected node through the secure index search phase.

First, CA sends a node identifier (ID), an encrypted lower bound, an encrypted upper bound,

an encrypted query to all the threads. In each thread, the algorithm performs the GSRO proto-

col to determine whether a node includes the query or not. If a node includes the query, the

GSRO protocol returns E(1). Otherwise it returns E(0). Second, the algorithm performs the

RSM protocol by multiplying the encrypted data in each node(E(nodez.data)) and the results

of the GSRO protocol. As a result, E(nodez.data) is returned only if the result of the GSRO is E
(1). Finally, the algorithm can safely obtain the encrypted data by merging the results of the

RSM protocol. Fig 6 shows how to obtain kNN candidates through the k-nearest neighbors

search phase. First, the algorithm selects the encrypted data which has the minimum distance

Fig 4. Data and query used in example.

https://doi.org/10.1371/journal.pone.0267908.g004
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from the query by using the GSMINn protocol. In Fig 6, E(d3) is selected as 1NN because the

distance of d3 is the minimum. Second, the algorithm sets the distance of the selected data to

the maximum value for excluding the selected data. Therefore, the distance of E(d3) is set to E
(MAX). Finally, the algorithm is repeated until the kth nearest data is selected. In the same way,

E(d4) and E(d2) are selected as 2NN and 3NN, respectively. As a result, the algorithm can safely

select the k number of nearest neighbors. Figs 7 and 8 show the examples of index search and

k-nearest neighbor search in the kNN verification phase, respectively. In each thread, the algo-

rithm calculates the shortest distance E(spdistz) between the query and a leaf node(nodez), and

compares E(spdistz) with E(distk). If E(spdistz) is smaller than E(distk), the data in the nodez is

extracted. In Fig 7, because E(spdist2), i.e., (E(1)), is smaller than E(distk), i.e., (E(5)), node2 is

selected. Fig 8 shows how to obtain the final kNN. The algorithm merges the kNN candidates

and obtains the final k-nearest neighbors. In the kNN classification phase, the algorithm calcu-

lates the frequency of labels in E(L0). Because the frequency of E(L1) is the highest in kNN, E
(L1) is selected as the final result, as shown in Fig 9.

Fig 5. Example of secure index search phase.

https://doi.org/10.1371/journal.pone.0267908.g005

Fig 6. Example of kNN search phase.

https://doi.org/10.1371/journal.pone.0267908.g006
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5 Random value pool’s security proof

5.1) Security proof of the secure protocols

In this section, we describe the security proof of the SME and the GSCE protocols proposed in

Section 3. To prove that the proposed protocols are secure under the semi-honest model, we

show that the simulated images of the proposed protocols are computationally indistinguish-

able from their actual execution images. Security proof of the SME protocol: We describe the

security proof of the SME protocol by analyzing the security of the execution images of CA and

CB. First, the execution image on CB side, i.e.,
Q

CB
ðSMEÞ, is shown in Eq 8. Here, Eðv0

1
Þ and

Eðv0
2
Þ are the encrypted data received from CA (line 1*2 of Algorithm 1), v0

1
and v0

2
and are

obtained through the decryption of Eðv0
1
Þ and Eðv0

2
Þ, respectively. Also, α is a result which is

calculated by the SME protocol using v0
1

and v0
2

on CB side.

Y

CB

ðSMEÞ ¼ f< Eðv0
1
Þ; Eðv0

2
Þ; v0

1
; v0

2
>; ag ð8Þ

For example, assume that
Q
CBsðSMEÞ ¼ f< Eðs0

1
Þ;Eðs0

2
Þ; s0

1
; s0

2
>; s3g is the simulated exe-

cution image using the SME protocol on CB side. Here, Eðs0
1
Þ and Eðs0

2
Þ are the non-determin-

istic numbers selected in ZN2, and s0
1

and s0
2

are the indistinguishable numbers which are added

by each value in the random value pool. s0
3

is the result of the SME protocol using s0
1

and s0
2

on

CB side. Because the SME protocol is implemented based on the Paillier cryptosystem, it can

Fig 7. Example of index search in kNN verification phase.

https://doi.org/10.1371/journal.pone.0267908.g007
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support semantic security. Therefore, Eðs0
1
Þ and Eðs0

2
Þ are computationally indistinguishable

from s0
1

and s0
2
, respectively. s0

3
is indistinguishable from s0

1
and s0

2
because s0

3
is calculated by

multiplying two indistinguishable numbers in CA, s0
1

and s0
2
. Therefore, it can be said that

Q
CB
ðSMEÞ is computationally indistinguishable from

Q
CBS
ðSMEÞ. Because CB can check only

the result (e.g., α) of the multiplication between the non-deterministic numbers (e.g., v0
1

and

v0
2
), CB cannot obtain the original data while performing the SME protocol. Meanwhile, the

execution image of CA is
Q

CA
ðSMEÞ ¼ fEðaÞg such that E(α) from CB can be regarded as the

result of the SME protocol. Suppose that the simulated image of CA is
Q

CAS
ðSMEÞ ¼ fEðs4Þg,

where E(s4) is randomly generated from ZN2. Therefore, E(α) is computationally indistinguish-

able from E(s4). According to the above analyses, there is no information leakage both at CA
and CB side. Therefore, we can conclude that the proposed SME protocol is secure under the

semi-honest adversarial model. Security proof of the GSCE protocol: We describe the security

proof of the GSCE protocol by analyzing the security of the execution images of CA side and

CB side. First, the execution image on CB side, i.e.,
Q

CB
ðGSCEÞ, is shown in Eq 9. Here, Eðs0

1
Þ

and Eðs0
2
Þ refer to the encrypted data received from CA (line 1*2 of Algorithm 2), and both s0

1

and s0
2

are obtained through decryption of s0
1

and s0
2
, respectively. Also, β is the result which is

calculated by the GSCE protocol using s0
1
and s0

2
on CB side.

Y

CB

ðGSCEÞ ¼ f< Eðs0
1
Þ;Eðs0

2
Þ; s0

1
; s0

2
>; bg ð9Þ

Fig 8. Example of k-nearest neighbor search in kNN verification phase.

https://doi.org/10.1371/journal.pone.0267908.g008

Fig 9. Example of kNN classification phase.

https://doi.org/10.1371/journal.pone.0267908.g009
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For example, assume that CBSðGSCEÞ ¼ f< Eðs0
1
Þ;Eðs0

2
Þ; s0

1
; s0

2
>; s3g for the simulated exe-

cution image using the GSCE protocol on CB side. Here, Eðs0
1
Þ and Eðs0

2
Þ are the non-determin-

istic numbers selected in ZN2, and both s0
1

and s0
2

are the indistinguishable numbers selected in

the random value pool. s0
3

is the result of the GSCE protocol using s0
1

and s0
2

on CB side. Because

the GSCE protocol is implemented based on the Paillier cryptosystem, it can support semantic

security. Therefore, Eðs0
1
Þ and Eðs0

2
Þ are computationally indistinguishable from s0

1
and s0

2
,

respectively. s0
3

is indistinguishable from s0
1

and s0
2

because s0
3

is calculated by comparing two

indistinguishable numbers in CA, s0
1

and s0
2
. Therefore, it can be said that

Q
CB
ðGSCEÞ is com-

putationally indistinguishable from
Q

CBS
ðGSCEÞ. Because CB can check only the result (e.g., β)

of the comparison between the non-deterministic numbers (e.g., s0
1

and s0
2
), CB cannot obtain

the original data while performing the GSCE protocol. Meanwhile, the execution image of CA
is
Q

CA
ðGSCEÞ ¼ EðbÞ such that E(β) from CB can be regarded as the result of the GSCE proto-

col. Suppose that the simulated image of CA is
Q

CSA
ðGSCEÞ ¼ Eðs4Þ, where E(s4) is randomly

generated from ZN2. Therefore, E(β) is computationally indistinguishable from E(s4). Accord-

ing to the above analyses, there is no information leakage both at CA and CB side. Therefore,

we can conclude that the proposed GSCE protocol is secure under the semi-honest adversarial

model

5.2) Security proof of the proposed kNN classification algorithm

We prove that the proposed kNN classification algorithm on the encrypted database is safe

under the semi-honest attack model. The proposed kNN classification algorithm in the crypto-

graphic database consists of a secure index search phase (Algorithm 3), a kNN search phase

(Algorithm 4), a kNN verification phase (Algorithm 5), and a kNN classification phase (Algo-

rithm 6). To show that the proposed secure kNN classification algorithm is safe under the

semi-honest attack model, security analysis is performed at each execution phase. First,

because the secure index search phase is composed of the GSRO protocol [17] which has been

proven to be safe, the Algorithm 3 is safe under the semi-honest attack model by composition

theory [17]. Second, the kNN search phase is safe in CA side, because CA performs the ESSED,

SMINn and SM protocols which have been proven to be safe in the previous studies [16, 17].

Even though the kNN search phase decrypts the received data from CA, CB cannot extract the

original data. This is because the data received from CA is modified by raising the original data

to the power of a random integer and applying a shuffling function. Therefore, according to

the composition theory, Algorithm 4 is safe under the semi-honest attack model. Third, the

images which are generated by the kNN verification phase are the same as those generated by

Algorithms 3 and 4. Therefore the kNN verification phase (Algorithm 5) is safe under the

semi-honest attack model. Lastly, the kNN classification phase (Algorithm 6) is safe under the

semi-honest attack model because Algorithm 6 has been proven safe in the previous work [16,

17]. As a result, all the phases of the proposed secure kNN classification algorithm is safe

under the semi-honest attack model.

6 Performance analysis

Because there is no privacy-preserving parallel kNN Classification algorithm, we compare our

privacy-preserving parallel kNN classification algorithm with the extension of existing works.

That is, we make parallel SkNNC-M by extending B. K. Samanthula et. al.’s work [16] in a

naive way so that it may operate in a multi-core environment. We make parallel SkNNC-G by

extending H. J. KIM et. al.’s work [17] in the same way. For performance evaluation, three

algorithms were implemented by using C++ under an Intel(R) Xeon(R) CPU E5–2630 v4 @
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2.20GHz and 64GB (16GB × 4AE) DDR3 UDIMM 1600MHz in a Linux Ubuntu 18.04.2 envi-

ronment. We compare three parallel algorithms in terms of the query processing time by vary-

ing the number of data, the number of k, the level of the kd-tree, the number of the data

dimension, and the number of threads. We use both a synthetic dataset and real dataset [28]

for our experiments.

6.1) Performance analysis of kNN classification algorithm for synthetic

dataset

Table 4 shows the parameters used in the performance evaluation for the synthetic dataset. For

the synthetic dataset, we randomly generate 30,000 integer data with 12 dimensions. The

domain of data is ranged from 0 to 212. We do an experiment to find the optimal value of the

level of kd-tree(h). It is shown that the performances of both SkNNC-G and the proposed algo-

rithm are best when h is 7. So, we set h to 7 in our experiment.

The performance of the kNN classification algorithms is evaluated for synthetic data. Fig 10

shows the performance of the proposed algorithm, parallel SkNNC-M, and parallel SkNNC-G

Table 4. Parameters used in performance evaluation for synthetic data.

Parameter Values default

the number of data(n) 5k,10k,20k,30k 10k

k 5, 10, 15, 20 10

level of kd-tree(h) 5, 6, 7, 8, 9 7

the number of threads 1, 2, 5, 10 10

the number of data dimension(m) 3, 6, 9, 12 6

Size of encryption key(K) 512 -

bit size for data domain 12 -

https://doi.org/10.1371/journal.pone.0267908.t004

Fig 10. Processing time with varying the number of data.

https://doi.org/10.1371/journal.pone.0267908.g010
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according to the number of data. When n = 30k, the proposed algorithm, parallel SkNNC-G,

and parallel SkNNC-M require 215, 497, and 7,089 seconds, respectively. That is, the proposed

algorithm shows 2.3 times better performance than parallel SkNNC-G and 32 times better per-

formance than parallel SkNNC-M. This is because our secure protocols (SME and GSCE pro-

tocols) can reduce the number of data encryptions by selecting an encrypted value from the

random value pool instead of generating it, as mentioned in Table 3. Fig 11 shows the perfor-

mance of the proposed algorithm, parallel SkNNC-M, and parallel SkNNC-G according to k.

When k = 20, the proposed parallel algorithm, parallel SkNNC-G, and parallel SkNNC-M

require 202, 487, and 4,658 seconds, respectively. That is, the proposed algorithm shows 2.4

times better performance than parallel SkNNC-G and 23 times better performance than paral-

lel SkNNC-M. The reason is the same as mentioned in Fig 10.

Fig 12 shows the performance of the proposed algorithm, parallel SkNNC-M, and parallel

SkNNC-G according to the number of data dimension(m). When m = 6, the proposed parallel

algorithm, parallel SkNNC-G, and parallel SkNNC-M require 57, 112, and 2,353 seconds,

respectively. That is, the proposed algorithm shows 2 times better performance than parallel

SkNNC-G and 15 times better performance than parallel SkNNC-M. The reason is the same as

mentioned in Fig 10. Fig 13 shows the performance of the proposed algorithm, parallel

SkNNC-M, and parallel SkNNC-G according to the number of threads. When the number of

threads = 1(single-core), the proposed algorithm, parallel SkNNC-G, and parallel SkNNC-M

require 443, 894, and 15,572 seconds, respectively. That is, the proposed algorithm shows 2

times better performance than parallel SkNNC-G and 35 times better performance than paral-

lel SkNNC-M. This is because our secure protocols (SME and GSCE protocols) can reduce the

number of data encryptions by selecting an encrypted value from the random value pool

instead of generating it. When the number of threads = 10, the proposed algorithm, parallel

SkNNC-G, and parallel SkNNC-M require 93, 203, and 2350 seconds, respectively. That is, the

proposed algorithm shows 2.1 times better performance than parallel SkNNC-G and 25 times

Fig 11. Processing time with varying k.

https://doi.org/10.1371/journal.pone.0267908.g011
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better performance than parallel SkNNC-M. Because a thread performs secure protocols con-

currently without interfering with each other, query processing time linearly decreases as the

number of threads increases. As a result, our parallel algorithm shows better performance than

the existing algorithms in a multi-core environment.

Fig 12. Processing time with varying the number of dimensions.

https://doi.org/10.1371/journal.pone.0267908.g012

Fig 13. Processing time with varying the number of threads.

https://doi.org/10.1371/journal.pone.0267908.g013
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6.2) Performance analysis of kNN classification algorithm for real dataset

Table 5 shows the parameters used in the performance evaluation for real data. For this, we

used a chess dataset [28] generated by a chess endgame database for white king and rook

against black king. The chess dataset aims to classify the optimal depth of win for white. With

the real dataset, we do an experiment to find the optimal value of the level of kd-tree(h). It is

shown that the performances of both SkNNC-G and the proposed algorithm are best when h

is 7. So, we set h to 7 in our experiment.

Fig 14 shows the performance of the proposed algorithm, parallel SkNNC-M, and parallel

SkNNC-G according to k. When k = 20, the proposed algorithm, parallel SkNNC-G, and par-

allel SkNNC-M require 425, 894, and 13,175 seconds, respectively. That is, the proposed algo-

rithm shows 2 times better performance than parallel SkNNC-G and 27 times better

performance than parallel SkNNC-M. This is because our algorithm uses both SME and GSCE

protocols which can reduce the number of data encryptions by selecting an encrypted value

from the random value pool. Fig 15 shows the performance of the proposed algorithm, parallel

SkNNC-M, and parallel SkNNC-G according to the number of threads. When the number of

threads = 1 (single-core), the proposed algorithm, parallel SkNNC-G, and parallel SkNNC-M

Table 5. Parameters used in performance evaluation for real data.

Parameter Values default

the number of data(n) 28056 -

k 5, 10, 15, 20 10

level of kd-tree(h) 7 -

the number of threads 1, 2, 5, 10 10

the number of data dimension(m) 6 -

Size of encryption key(K) 512 -

bit size for data domain 12 -

https://doi.org/10.1371/journal.pone.0267908.t005

Fig 14. Processing time with varying k.

https://doi.org/10.1371/journal.pone.0267908.g014
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require 1106, 2306, and 44,570 seconds, respectively. That is, the proposed algorithm shows 2

times better performance than parallel SkNNC-G and 40 times better performance than parallel

SkNNC-M. The reason is the same as mentioned in Fig 14. When the number of threads = 10,

the proposed algorithm, parallel SkNNC-G, and parallel SkNNC-M require 227, 487, and 6,639

seconds, respectively. That is, the proposed algorithm shows 2 times better performance than

parallel SkNNC-G and 29 times better performance than parallel SkNNC-M. Because a thread

performs secure protocols concurrently without any interference of each other, it can be seen

that query processing time linearly decreases as the number of threads increases.

6.3) Theoretical analysis of the proposed algorithm in terms of privacy

Assuming that an attacker does not have any information of original data items, an adversary

needs tremendous time to obtain the original plaintext from paillier cryptosystem while using a

brute force attack. It means that it is impossible to do an experiment to prove data protection,

query protection and access pattern protection. Therefore, instead of experimental analysis, we

conduct the theoretical analysis of data privacy, query privacy and access pattern privacy to sup-

port the security analysis of the proposed algorithm. For this, we estimate the time complexity it

takes for the original data to be exposed and calculate the probability of access pattern leakage.

6.3.1 Theoretical analysis of data privacy. In CA, an attacker only obtains the ciphertext

of data. Because the data is protected by the paillier cryptosystem, the security performance is

measured through the time complexity of the brute force attack to break down the paillier

cryptosystem. Our paillier cryptosystem uses 512-bit encryption key size. Assuming that CPU

cycle is 4GHz, the time required to decrypt the ciphertext by changing the key is as shown in

Eq (10).

BFAtimeðsecÞ ¼
2512

4GHz
�

1:3� 10154

4GHz
ð10Þ

Fig 15. Processing time with varying the number of threads.

https://doi.org/10.1371/journal.pone.0267908.g015
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It is impossible to break down a paillier cryptosystem because it takes about 4.2 × 10146

years with 512-bit key size. It means that the proposed privacy preserving kNN classification

algorithm is secure in terms of data privacy even if the ciphertext is exposed. Fig 16 shows the

time taken for a brute force attack in CA as the key size is changed. In CB, an attacker only

obtains a plaintext data which adds a random number to the original data. In the paillier cryp-

tosystem, because the range of the plaintext data is 0�m� 2512, brute force attack time in CB
has the same as that in CA.

6.3.2 Theoretical analysis of query privacy. In CA, an attacker only obtains the ciphertext

of query. Because the query is protected by the paillier cryptosystem, the security performance

is measured through the time complexity of the brute force attack to break down the paillier

cryptosystem. Since our paillier cryptosystem uses 512-bit encryption key size, the time

required to decrypt the ciphertext by changing the key is as shown in 10, where CPU cycle is

4GHz. It is impossible to break down a paillier cryptosystem because it takes about 4.2 × 10146

years with 512-bit key size. It means that the proposed privacy preserving kNN classification

algorithm is secure in terms of query privacy even if the ciphertext is exposed. The times taken

for a brute force attack in CA is the same as that of data privacy in CA (Fig 16). In CB, query pri-

vacy is preserved because CB does not receive the query.

6.3.3 Theoretical analysis of access pattern privacy. The access pattern means the

sequence of accessing a data item. In the proposed algorithm, the sequence of accessing a data

item consists of the leaf node access of kd-tree and data access in the leaf node. In CA, an

attacker only obtains the ciphertext of leaf node. Because all the leaf nodes have the same num-

ber of data items, an attacker cannot distinguish the leaf node by using density of data items. If

the kd-tree level is h, the number of leaf node is 2h−1. The probability that an attacker can dis-

tinguish a node(nodei) from the others, i.e., P(nodei), is 1

2h� 1. Because nodei includes the same

number of data items as fanout, the probability that an attacker can distinguish a data item

from the others in nodei, i.e., P(nodei.dataj), is 1

fanout ¼
1

the number of data
2h� 1

¼ 2h� 1

n . Therefore, the

Fig 16. Brute force attack time with varying the key size.

https://doi.org/10.1371/journal.pone.0267908.g016
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probability of data access pattern leakage (PAPL) is shown in Eq (11).

PAPL ¼ P nodeið Þ � P nodei:dataj
� �

¼
1

2h� 1
�

2h� 1

n
¼

1

n
ð11Þ

PAPL is equal to the probability that an attacker distinguishes a specific data item from the

others in the entire data items. Therefore, the proposed algorithm can preserve the access pat-

tern privacy in CA. In CB, access pattern privacy is preserved because CB does not have any

data item.

7 Discussion

7.1 Impact of hiding data access patterns

The data access pattern is one of the most important factors for privacy preservation. If an

attacker possesses the order or the frequency of data, he/she can infer the original data by

using data access patterns. Therefore, hiding data access patterns is as important as encrypting

data. First, B. Yao et al.’s work [21] proposed a secure kNN classification algorithm using the

Voronoi diagram [22]. However, the order of accessing the Voronoi diagram is distinguishable

and an attacker can partially infer the original data from the query. Second, J. Du and F. Bian’s

work [25] proposed a kNN classification algorithm using an order-preserving index. However,

the index access patterns are exposed because the order of accessing the index can be easily

obtained from the query. This allows an attacker to easily infer the original data if he/she has

an index access pattern. Meanwhile, our algorithm uses the Paillier cryptosystem which sup-

ports semantic security for data protection. As a result, all of the ciphertext is indistinguishable

and secure from frequency-based attacks. In addition, the kd-tree filtering technique used in

our algorithm is secure from the exposure of data access patterns because our algorithm

accesses only the encrypted leaf nodes of the kd-tree without accessing the index by using a

top-down approach. Therefore, our algorithm can hide the data access patterns.

7.2 Impact of parallel algorithm with garbled circuit

First, a garbled circuit is used for efficient processing of secure protocols. B. K. Samanthual

et al.’s work [16] has high overhead by using a secure protocol based on the comparison of

binary array. To overcome this problem, our secure protocols use a garbled circuit that per-

forms a fast and secure comparison operation in the state of the ciphertext. Second, the exist-

ing algorithms do not use parallelism for the privacy-preserving classification algorithm [16,

17, 25]. On the contrary, our algorithm proposes a parallel classification algorithm adopting

the garbled circuit. Our algorithm performs three phases in parallel: index searching, kNN

searching and kNN verification. As shown in our performance evaluation, our parallel classifi-

cation algorithm shows performance improvement in proportion to the number of threads.

7.3 Impact of encrypted random value pool

In our secure system, we use two-party computation for the parallel kNN classification algo-

rithm. Thus, we need to prevent CB from extracting meaningful information while executing

secure protocols. For this, CA generates a random value r from ZN and encrypts r by using the

Paillier cryptosystem. Then, CA adds the encrypted random value E(r) to the encrypted plain-

text E(m) by computing E(m + r) = E(m) × E(r). Because m±r is independent fromm, CB can-

not obtain meaningful information with decryption. However, adding a random value to the

ciphertext in the Paillier cryptosystem leads to performance degradation because both encryp-

tion and decryption operations require higher computation cost than other encrypted
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operations. In the Secure Multiplication protocol, both B. K. Samanthula et al.’s work and H.

Kim et al.’s work require three times of the encryption: 2 encryptions for random values at CA
and 1 encryption for the result of multiplication at CB. Meanwhile, our algorithm requires only

one encryption for the result of multiplication at CB because it selects the encrypted random

values from the random value pool without encrypting the random values at CA. In the Secure

Compare protocol, B. K. Samanthula et al.’s work requires log2 D times of encryption where D
is a data domain. H. Kim et al.’s work requires three times of the encryption: 2 encryptions for

random values at CA and 1 encryption for the result of the comparison between two values at

CB. Meanwhile, our algorithm requires only one encryption for the result of comparison at CB
by using the random value pool. Therefore, our algorithm can reduce the amount of computa-

tion cost for encryption by using the encrypted random value pool.

7.4 Practical example of proposed kNN classification

The proposed secure kNN classification algorithm can be used in various fields. For example,

first, it can be used to diagnose a disease by classifying the patterns of the patient’s symptoms

[29]. Because the existing disease diagnosis system depends on only the doctor’s knowledge

and experience, it may cause damage to patients due to misdiagnosis. Therefore, kNN classifi-

cation algorithms can help doctors classify the pattern of the patient’s symptoms so as to diag-

nose what kind of disease it is. However, because patients’ information contains sensitive data,

such as past medical history, family history and allergies, the proposed privacy-preserving

kNN classification algorithm can be used to protect the sensitive data of patients. Second, the

proposed privacy-preserving kNN classification algorithm can be used to solve the problem of

insurance coverage recommendation where insurance companies provide the most suitable

coverage for customers [30]. The insurance coverage recommendation classifies customers’

grades based on various customers’ information, such as movement patterns and lifestyles. To

perform the classification of customers’ grades, the proposed privacy-preserving kNN classifi-

cation algorithm can be used to protect the personal information of customers.

8 Conclusion

In this paper, we proposed a parallel kNN classification algorithm over encrypted data to pre-

serve data privacy, query privacy, and access pattern privacy in cloud computing. To reduce

the computation cost for encryption, we proposed two secure protocols, SME and GSCE,

which support secure multi-party computation by using an encrypted random value pool. To

reduce the query processing time, we not only designed a parallel algorithm, but also adopted

a garbled circuit. In addition, we proved that our algorithm over the encrypted database is safe

under the semi-honest attack model. Through our performance evaluation, our algorithm

showed about 2*25 times better performance compared with the existing algorithms. For

future work, we plan to apply our parallel query processing algorithm to secure k-Means

clustering.
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