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Abstract. [Purpose] The purpose of this study was to examine the effect of a 40-minute race on muscle activity 
and spatiotemporal cycle variables at four-time points during a 12-km roller skiing test using the double-poling 
technique. [Subjects and Methods] Five elite cross-country (XC) skiers on the Korean National reserve team par-
ticipated in the study. Part of a biathlon course that consisted of both flat land and slopes was selected, and three 
measurements were recorded after every 4-km lap. Spatiotemporal variables, mean frequency and mean amplitude 
of 6 muscles were the chosen computational parameters. [Results] Significant differences were observed in cycle 
time and rate. The mean frequency of the upper-body muscles exhibited declining trends, with statistically signifi-
cant differences for the triceps brachii. In addition, there were significant differences in the mean amplitude of the 
tibialis anterior and gastrocnemius. The activity of the triceps brachii, tibialis anterior, and gastrocnemius showed 
some degree of dependence on the technique. [Conclusion] Training and race strategies that improve the function of 
elbow extensors and ankle dorsiflexors are important in XC skiing; the application of roller-ski training research to 
actual XC skiing competitions is needed.
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INTRODUCTION

Cross-country (XC) skiing is a Winter Olympic sporting event that requires a high level of power output and is character-
ized by repeated dynamic contraction of both upper and lower limbs. The skier utilizes various techniques depending on the 
terrain, and adapts by modifying the relative contributions of the upper and lower extremities to propulsive force1, 2).

A key technique in classic XC skiing is double-poling (DP), which plays a crucial role in performance, particularly during 
sprint competitions or the mass start3). The technique is primarily used on flatter terrain to achieve higher velocity3). Forward 
propulsion during DP technique is characterized by higher pole forces mainly generated by the dynamic flexion-extension of 
the upper extremities, especially the elbow joint, with a very short ground contact period3). Meanwhile, the lower extremities 
contribute to the application of body weight to pole forces1, 2, 4–6). Thus, as the DP technique involves continuous symmetrical 
and synchronous motion of both upper and lower extremities, there is a lack of recovery period between strokes, which 
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increases the fatigue accumulation rate4, 6).
Several studies have examined the underlying neuromuscular mechanisms of DP technique in XC skiing. Most of these 

studies were carried out in simulated conditions1, 3–11). However, few studies have examined how muscular fatigue affects 
performance in a natural environment for complex movements, such as XC races12–15).

To the best of our knowledge, there are no published studies on how muscle activity and spatiotemporal variables during 
prolonged racing affect performance by a skier in a natural setting. Therefore, the purpose of the study was to assess the effect 
of a 40-minute race on muscle activity and spatiotemporal cycle variables at four-time points during a 12-km roller skiing 
test using the DP technique.

SUBJECTS AND METHODS

Five male elite XC skiers from the Korean National reserve team participated in the study. The mean and standard devia-
tion of height, weight, and age of the subjects were 177.2 ± 3.3 cm, 69.0 ± 2.4 kg, and 20.4 ± 1.1 years, respectively; their 
professional career length was 7.4 ± 1.8 years. The subjects had no acute musculoskeletal injuries or surgeries in the prior 
six months. Before the test, the experimental purpose, procedure, and possible risks were communicated verbally and in 
writing to the subjects, who then gave informed consent approved by the Institutional Review Board (IRB), to comply with 
the ethical principles of the Declaration of Helsinki (1975, revised 1983).

The experiment was conducted on a biathlon course in Pyeongchang, Korea. The experiment was conducted over the 
course of 2 days. Three subjects participated on the first day of the experiment, and the two subjects participated on the 
second day. The average temperatures on the first and second day were 24° ± 2.8°C and 28° ± 4.2°C, respectively. A part of 
the biathlon course that consisted of both flat land and slopes was selected (4 km per lap × 3 measurement trials = 12-km 
course) for the overall run. But, the measurement was conducted only on the flat land, where DP technique was possible 
(Measurement area length on the flat land: 30 m).

Prior to the experiment, the subjects performed warm-up and stretching exercises for about 30 min upon arriving at the 
arena. The skin was prepared for attachment of electrodes by shaving the site and cleaning with sterile alcohol swabs to reduce 
any skin impedance. Disposable, self-adhesive Ag/AgCl snap surface dual electromyography (EMG) electrodes (Seedtech 
Inc. Seoul, Korea) with diameter 1 cm were attached at a total of six areas on the right side of the body, including two upper 
body areas (triceps brachii, latissimus dorsi) and four lower-body areas (vastus lateralis, tibialis anterior, biceps femoris, 
gastrocnemius lateralis). The intra-electrode distance was 25 mm. Telemyo DTS Wireless system (Noraxon, USA) was used 
for EMG measurement. The cotton adhesive tape was used to fix the sensors to the skin. The EMG sampling frequency was 
set to 3,000 Hz. For all subjects, the ski equipment was matched to the same brand and model (roller skis: aluminium, XLA 
900 Series, V2, USA; boots: model RC Carbon, Salomon, USA). Subjects used carbon graphite poles (model Triac CTO 500, 
Swix, Norway), but chose the length that they preferred to use during competition.

All participants were briefed on the procedural order of the test. The subjects were requested to maintain a normal pace 
throughout the 12-km course. In order to maintain a normal pace, the subjects were informed about their lap time every 
2 km. In the measurement zone (Mstart to Mend), the subjects were asked to perform DP technique at maximum capacity. The 
subjects were informed that they could not rest until the completion of the 12-km course. Three measurements from Mstart to 
Mend were recorded after every 4-km lap. Three DP cycles of 20 m each were selected for further analysis from Mstart to Mend.

A digital camcorder (Sony, Japan) was set up approximately 50 m to the side of the course to analyze cycle variables in 
the sagittal plane. The sampling rate of the digital camcorder was set to 30 Hz.

The analytical parameters considered were categorized as spatiotemporal cycle variables or muscle activity variables. 
The spatiotemporal cycle variables included the cycle time, cycle length, cycle rate, time ratios by phase (push vs. gliding), 
and mean velocity in the measurement section (30 m). Here, we have defined one cycle as a phase between two consecutive 
pole plants. The cycle time was the average for 3 cycles with DP technique. The average number of cycles was calculated 
by dividing the total time for the 30-m interval by the cycle time, and the 30-m length was divided by the average number 
of cycles to compute the cycle length. The cycle rate was the number of cycles per second during the cycle time, and the 
push-time ratio was calculated as the push-phase time divided by the cycle time, expressed as a percentage.

The EMG variables chosen were the mean frequency and mean amplitude. The raw data from the EMG were band-pass 
filtered at 80–250 Hz. The mean frequency was the average value of 3 cycles analyzed after converting time-scale signals 
into frequency-scale signals by fast Fourier transform (FFT) analysis. The mean frequency for each lap was expressed as a 
percentage after being normalized with respect to the value of the first lap. The mean amplitude was the mean of rectified 
EMG data during the 3 cycles. For EMG analysis, MR3.6 (Noraxon, USA) software was used.

A non-parametric test (Friedman) was conducted to examine the differences between all the variables using the data 
obtained for 3 laps. A post-hoc test was carried out using the Bonferroni method and statistical significance was set at α<0. 05. 
SPSS ver. 22 (IBM, USA) software was used for statistical analysis.

RESULTS

The results of lap time are shown in Table 1. No significant differences were observed in the time between each lap. 



943

Therefore, it can be concluded that the overall pace was consistent throughout the 12-km race.
The results obtained through analysis of the cycle variables are presented in Table 2. Significant differences were observed 

in cycle time and cycle rate. Although cycle time increased compared to that in the first lap, cycle rate showed a decreasing 
trend. No significant differences were observed in cycle length, push-time ratio, and mean velocity.

The results of normalized mean frequency for each muscle in the first lap are presented in Table 3. The mean frequency of 
the upper body muscles exhibited a declining trend, and there was a statistically significant difference for the triceps brachii 
(p<0.05). However, no significant differences were observed in post-hoc analysis.

Table 4 shows a significant difference in the mean amplitude percentage of maximum voluntary contraction (MVC) for 
the tibialis anterior and gastrocnemius (p<0.05). A declining trend over time is evident. However, no significant differences 
were observed in the post-hoc analysis.

DISCUSSION

DP is an essential classic racing technique and has steadily evolved to enhance athletic performance. It can increase speed 
up to 8 m/s, which is twice as fast as the maximum speed possible with a diagonal stride technique5, 9, 13, 16). The present study 
aimed to assess the effect of a 40-minute race on muscle activity and spatiotemporal cycle variables at four-time points during 
a 12-km roller-skiing test using the DP technique.

The analysis of spatiotemporal variables related to the DP technique indicated that from the first through the third lap, 
while the overall cycle time increased, cycle rate showed a decreasing trend. Zory et al., reported that a decrease in the cycle 
rate and an increase in the push and gliding durations was the result of fatigue during a XC skiing sprint competition12). In 
addition, they reported that even when the cycle time was maintained, the corresponding push-time ratio would increase. The 
push-phase time is a time segment during which force is generated by poling. In general, high performance is characterized 
by a short push-phase time and large force generation17). In the present study, the push-time ratio tended to increase over time, 
but no significant differences were observed.

Mean frequency for each lap was analyzed as an indicator of muscular fatigue. The mean frequency for upper body 
muscles decreased, and a significant decrease was observed in the triceps brachii. As DP technique is widely adopted in XC 
skiing, greater emphasis is being placed on upper body training for skiers3). Previous studies have reported that upper body 
muscular strength is highly correlated with performance in DP technique16, 18). According to Smith et al.19), high-speed skiers 
had relatively wider ranges and higher angular velocities of elbow motion; these involve the triceps brachii, and can affect 
elbow joint movement. As the triceps brachii contributes to extension of the elbow joint, the effect in XC skiing is to generate 
explosive poling force. A large poling force is related to high performance within a short poling time because it produces a 

Table 1.  Lap records for every 4 km lap (0–4 km, 
4–8 km, 8–12 km) (unit: minutes)

Distance Lap time
1st lap: 0 (start) to 4 km 13:57 ± 00:38
2nd lap: 4 km to 8 km 13:17 ± 00:34
3rd lap: 8 km to 12 km 13:04 ± 00:38
Total duration 40:17 ± 01:18
Mean ± SD; N=5

Table 2.  Results for non-parametric test (Friedman) for spatiotemporal 
cycle variables in each lap

Variables 1st lap 2nd lap 3rd lap
Cycle time (s) 0.85 ± 0.1 1.01 ± 0.38 0.94 ± 0.11
Cycle length (m) 5.36 ± 0.57 6.24 ± 0.76 6.16 ± 0.50
Cycle rate (Hz) 1.21 ± 0.14 1.04 ± 0.14 1.08 ± 0.14
Push time ratio (%) 31.37 ± 3.79 29.18 ± 3.93 30.43 ± 2.91
Mean velocity (m/s) 6.42 ± 0.28 6.41 ± 0.27 6.60 ± 0.45
Mean ± SD; N=5 Significant difference at p<0.05 only in cycle time (s) 
and cycle rate (Hz)

Table 3.  Results of non-parametric test (Friedman) for normal-
ized mean frequency of six muscles of the right limb in 
each lap (unit: %)

Muscles 1st lap 2nd lap 3rd lap
Triceps brachii 100 94.3 ± 3.5 63.9 ± 16.2
Latissimus dorsi 100 82.8 ± 48.7 69.6 ± 44.6
Vastus lateralis 100 91.8 ± 24.6 90.8 ± 35.5
Tibialis anterior 100 91.8 ± 8.6 97.1 ± 4.9
Biceps femoris 100 132.6 ± 96.8 157.6 ± 76.5
Gastrocnemius 100 100.4 ± 16.3 108.5 ± 13.0
Mean ± SD, N=5, Significant difference at p<0.05 in triceps bra-
chii

Table 4.  Results of non-parametric test (Friedman) for EMG 
mean amplitude of six muscles of the right side in each 
trial (unit: %).

Muscles 1st lap 2nd lap 3rd lap
Triceps brachii 100 45.1 ± 7.7 43.8 ± 60.2
Latissimus dorsi 100 85.3 ± 100.6 147.2 ± 107.6
Vastus lateralis 100 53.6 ± 9.8 28.3 ± 67.5
Tibialis anterior 100 58.8 ± 12.8 13.2 ± 57.7
Biceps femoris 100 60.9 ± 62.9 100.9 ± 105.6
Gastrocnemius 100 91.1 ± 12.8 27.8 ± 61.9
Mean ± SD, N=5, Significant difference at p<0.05 in Tibialis an-
terior and Gastrocnemius
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large ground reaction force. A short push-phase time and large force generation have been reported to be characteristics of 
relatively high performance17).

The mean amplitude percentage of MVC, an indicator of the activity level of muscles, displayed a declining trend in dif-
ferent laps, and significant decreases in the mean EMG amplitudes of the tibialis anterior and gastrocnemius were observed. 
Such decreases are attributed to the declining rate of fast-twitch muscle fiber mobilization due to fatigue14, 20). Holmberg, 
Lindinger5) reported that the DP technique can enhance athletic performance, as it facilitates not only the movement of the 
upper limbs but also that of the lower limbs. They also reported that use of the DP technique can reduce energy consumption, 
which highlights the functional importance of the lower limbs.

According to previous studies, better athletic performance is achieved at a submaximal DP velocity of 85% when the 
lower limbs are given a high degree of freedom. In other words, when the lower limbs can move freely, larger pole-planting 
forces and impulses can be generated and recovery times are longer5). These findings suggest that active movement of the 
lower limbs during DP increases performance. As the heels of XC ski boots are not attached to the ski plates, there is a fre-
quent activity of the tibialis anterior, which affects dorsiflexion of the ankle joints. Therefore, fatigue and decreased activity 
of the tibialis anterior is considered to adversely affect performance.

In conclusion, a decrease in activity over time was observed in the triceps brachii (upper body) and tibialis anterior and 
gastrocnemius (lower body). The activity of the triceps brachii, tibialis anterior, and gastrocnemius showed some degree of 
dependence on technique. Therefore, it can be concluded that training and race strategies that improve the functions of elbow 
extensors and ankle dorsiflexors are important in XC skiing; the application of roller-ski training research to actual XC skiing 
competitions is needed.
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