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Exposure to stress is recognized to be a triggering factor in several mood disorders,
including depression and anxiety. There is very little understanding of why female
subjects have a significantly higher risk for these conditions than males. Recent findings
in male rodents indicated that prophylactic ketamine can prevent the development
of a stress-induced depressive-like phenotype, providing a pharmacological tool to
study the mechanisms underlying stress resilience. Unfortunately, none of these studies
incorporated female subjects, nor did they provide a mechanistic understanding of the
effects of ketamine on stress resilience. Our previous work identified the prefrontal
glutamatergic and parvalbumin (PV) systems as potential molecular mechanisms
underlying sex differences in susceptibility to stress-induced emotional deregulations.
To further address this point, we treated male and female mice with a single dose of
ketamine before exposure to a chronic stress paradigm to determine whether stress-
resilience induced by a pre-exposure to ketamine is similar in males and females and
whether modulation of the prefrontal glutamatergic and PV systems by ketamine is
associated with these behavioral effects. Ketamine prevented chronic stress-induced
changes in behaviors in males, which was associated with a reduction in expression of
PV and the NMDA receptor NR1 subunit. Ketamine did not protect females against the
effects of chronic stress and did not change significantly prefrontal gene expression.
Our data highlight fundamental sex differences in the sustained effects of ketamine.
They also further implicate prefrontal glutamatergic transmission and PV in resilience
to chronic stress.

Keywords: ketamine, stress resilience and vulnerability, prefrontal cortex, sex differences, chronic
stress, parvalbumin

INTRODUCTION

Depression and anxiety are mood disorders characterized by an inherent sex bias. Not only are
women at increased risk for developing these conditions (Kendler, 1998; Kessler, 2003), but
they also often display more severe symptoms and higher prevalence of experiencing anxiety
as a comorbid symptom to depression (de Graaf et al., 2002; Schoevers et al., 2003). In many
instances these mood disorders are triggered by exposure to a single or succession of stressful
events (Gold and Chrousos, 2002; Duman and Monteggia, 2006), suggesting that women might
be more vulnerable to the effects of stress while men might display some resilience. Studies have
focused on sex differences in the neuroendocrine response to stress (Bangasser and Valentino, 2014)
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or in gene expression in particular brain regions (Hodes
et al., 2015) to explain this increased vulnerability in women.
Unfortunately, other neural circuits and molecular mechanisms
that are known to be major contributors to mood disorders have
been largely ignored, limiting our understanding of sex-specific
vulnerability to stress-related mood disorders. For instance, both
clinical and preclinical studies highlighted deregulations of the
prefrontal cortex (PFC) in mood disorders (Baxter et al., 1989;
Mayberg et al., 2005; Covington et al., 2010). Specifically, reduced
activity of the PFC is a hallmark of anxiety disorders and
depression (Martinot et al., 1990; Shin et al., 2001; Thompson
et al., 2015). This brain region is of particular importance
since, in preclinical studies, the PFC of females was found to
be especially sensitive to stress (Garrett and Wellman, 2009;
Shansky et al., 2010).

Recent work supports the idea that the female PFC might
be particularly vulnerable to stress and that its level of activity
underlies an increased risk for stress-related mood disorders.
The activity of the PFC is regulated by connections between
glutamatergic excitatory neurons and inhibitory GABAergic
interneurons. The female prefrontal GABAergic system, and
particularly parvalbumin (PV) interneurons, appears to be
particularly sensitive to chronic stress in mice (Shepard
et al., 2016; Page et al., 2019). PV is a calcium-binding
protein expressed in a subpopulation of cortical GABAergic
interneurons characterized by fast-spiking activity. In females,
chronic stress leads to increased activity of prefrontal PV
interneurons, potentially due to a stress-induced increase in
glutamatergic transmission onto those interneurons (Shepard
and Coutellier, 2018). These findings reveal sex-specific changes
in glutamatergic and GABAergic transmission in the PFC that
could underlie the increased vulnerability of females to stress-
related mood disorders.

Here, we used a pharmacological approach in a mouse
model of chronic stress-related disorders to further test this
idea. Ketamine, a nonselective NMDA receptor antagonist, has
been shown to have rapid and sustained antidepressant actions
(Berman et al., 2000; Zarate et al., 2006). Preclinical models
have been widely used to decipher the molecular mechanisms
of action of ketamine after various environmental exposures
known to induce depressive-like behaviors in rodents (i.e., severe
acute stress; chronic stress; social isolation—Maeng et al., 2008;
Koike et al., 2011; Li et al., 2011; Sarkar and Kabbaj, 2016).
Ketamine exerts its antidepressant effects by acting on NMDA
receptors located on GABAergic interneurons in the PFC;
this mechanism of action leads to disinhibition of prefrontal
pyramidal cells and eventually to increased synaptogenesis
(Gerhard et al., 2016). Specifically, ketamine acts onto NMDA
receptors located on somatostatin- and PV-expressing neurons
(Gerhard et al., 2020). Based on these findings, ketamine
appears to be a valid pharmacological tool to manipulate
prefrontal glutamatergic and GABAergic neurotransmissions
and determine their contribution to emotional deregulations.
However, the vast majority of studies on ketamine assessed the
effects of the drug on the brain and behavior once changes
in emotional behaviors were already established in rodents,
precluding any potential interpretation in terms of resilience

to stress. To address this issue, more recent works have used
ketamine prophylactically (i.e., before environmental exposures
known to induce changes in emotional behaviors—Amat et al.,
2016; Brachman et al., 2016; McGowan et al., 2017; Mastrodonato
et al., 2018). A single dose of ketamine given before stress
prevents the development of depressive-like behaviors in
male rodents. Unfortunately, these studies have not included
assessments of the prefrontal glutamatergic and GABAergic
transmission as potential modulators of ketamine-induced
stress resilience. More importantly, they focused only on male
subjects. This is rather surprising since sex-specific effects of
ketamine when given after a stressful event have been reported
(Franceschelli et al., 2015; Sarkar and Kabbaj, 2016). The goal of
the present work was to address these limitations to enhance our
understanding of potential sex-specific molecular mechanisms
regulating resilience to stress-related mood disorders. We
utilized a chronic stress paradigm in male and female mice to
determine the extent to which prophylactic ketamine prevents
changes in emotional behaviors and impacts the expression
of genes that regulate NMDA receptor and PV-dependent
GABAergic transmission in the PFC.

MATERIALS AND METHODS

Subjects
Adult (8 weeks) C57Bl/6 male and female mice were used
(Jackson Laboratory, Bar Harbor, ME, USA). Mice were
group-housed per sex in our facility (four to five mice/cage
unless specified otherwise) and maintained on a 12-h reverse
light-dark cycle with food and water ad libitum. Animals were
allowed 1 week of habituation to our facility before beginning
experiments. All procedures were approved by the Office of
Responsible Research Practices of the researchers’ institution and
conformed to the U.S. National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Drug Treatment
Mice received a single intraperitoneal (i.p.) injection of vehicle
(0.9% saline) or ketamine (10 mg/kg) 7 days before the beginning
of the chronic stress period. This dose was chosen based on
previous work showing that it is sufficient to decrease immobility
behaviors in male and female mice in the forced swim test (FST)
up to 24 h after the injection (Franceschelli et al., 2015; Gerhard
et al., 2020). Because the effects of ketamine in females have been
reported to vary according to the stage of the estrus cycle (Dossat
et al., 2018), we used a vaginal swab to determine the estrus cycle
stage at the time of injection. Females in di-estrus and met-estrus
were combined in one group, and females in estrus were kept in
another group. No female in pro-estrus was found.

Prefrontal Gene Expression and Behaviors
Before Chronic Stress Exposure
Seven days after injection with vehicle or ketamine, the first
cohort of mice (n = 8 mice/sex/group; one video of the male FST
was compromised leading to n = 7 for that group) was used to
assess for sustained effects of ketamine on behaviors in the open
field test (OFT) and FST in non-stressed mice (see Figure 1 for

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 October 2020 | Volume 14 | Article 581360

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Okine et al. Vulnerability to Stress in Females

a schematic of experimental timeline; see below for a description
of the behavioral assays).

An additional cohort of mice (n = 5–6 mice/sex/group)
was used to measure mRNA levels of genes regulating NMDA
receptors (NR1 and NR2A subunits) and PV using RT-qPCR.
The NR1 and NR2A subunits of the NMDA receptor were
shown to modulate mice behaviors in the FST and OFT
(Boyce-Rustay and Holmes, 2006; Halene et al., 2009). Our
previous work showed that changes in PV mRNA levels
correlate with levels of emotional behaviors in female mice
after UCMS (Shepard et al., 2016) and that chemogenetic
manipulation of prefrontal PV interneurons modulates levels
of anxiety-like behaviors in the OFT (Page et al., 2019). Brains
were collected 7-days post-injection (see Figure 2 for a schematic
of the experimental timeline). The PFC was dissected in a
cold room on dry ice following the instructions described by
Spijker (2011). RNA was extracted from tissue using PureZOL
RNA Isolation Reagent (Bio-Rad, Hercules, CA, USA) and
NucleoSpin RNA II (Machery-Nagel, Allentown, PA, USA).
cDNA templates were generated using the iScript Reverse
Transcription kit (Bio-Rad, Hercules, CA, USA). The target
cDNA and the reference target glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were amplified simultaneously with
SsoAdvanced SYBR Green Supermix in a CFX96 Real-Time PCR
Detection System (Bio-Rad, Hercules CA, USA).

Unpredictable Chronic Mild Stress (UCMS)
Experimental Groups
The 4-week UCMS paradigm was shown to consistently and
reliably induce changes in emotional behaviors in mice and are
suitable to study the increased vulnerability of female subjects
to stress-induced emotional dysregulation (Mineur et al., 2006;
Nollet et al., 2013; Shepard et al., 2016; Shepard and Coutellier,
2018). UCMS mice are single-housed throughout the 4 weeks
and exposed daily to alternating mild stressors presented in a
random order according to an unpredictable schedule. Stressors
included: the absence of nesting material for 24 h, 20◦ cage tilt
on the vertical axis for 6 h, absence of bedding in the cage for
8 h, restraint stress in the dark for 8 min, and restraint stress
under a bright light for 4 min. Control animals were group-
housed and handled once daily for 1–2 min throughout the
4 weeks. Mice were divided into four groups according to a
2 × 2 experimental design, with control daily handling/UCMS
and vehicle/ketamine as factors (n = 7–8 mice/group/sex).
Twenty-four hours following the UCMS (or handling) period,
mice were tested in the OFT, in the object recognition test (ORT),
and in the FST (see below for a description of the behavioral
assays). A subset of mice (n = 4–6/sex/group) was anesthetized
24 h after the FST and PFC collected to conduct RT-qPCR
analyses as described above (see Figure 3 for a schematic of the
experimental timeline).

Behavioral Assessments
All behavioral tests were conducted during the dark phase of
the light-dark cycle, and after a minimum of 1-h habituation
to the testing room. For females, we recorded the stage of the
estrus cycle by vaginal swab directly after each test. For the

OFT, mice were placed individually in an unfamiliar square
arena (40 × 40 cm) for 10 min and were free to explore.
Behaviors were recorded using an overhead camera, and videos
were scored offline using the Ethovision XT program (Noldus,
The Netherlands). The total distance traveled (cm) was used as a
measure of locomotor activity, while the time spent in the center
of the arena, and the ratio of distance traveled near the walls
vs. in the center (thigmotaxis ratio) were used as an indicator of
anxiety-like behaviors.

The ORT was adapted from Ennaceur and Delacour (1988).
The test took place 24 h after the OFT in the same arena. On
the first day (learning session), two identical unfamiliar objects
were placed equidistantly from the walls of the arena. Mice were
allowed to explore the objects for 10 min. After a 24-h inter-
trial interval (testing session), mice were placed back in the same
arena with one object encountered during the learning session
(now a familiar object) and with a novel unfamiliar object. Mice
were again allowed to explore both objects over 10 min. Each
session was recorded using an overhead camera and videos were
scored off-line by an experimenter blind to the sex or group
of the subjects. The time spent sniffing the objects during each
session was scored and a discrimination ratio (DR) was calculated
as an indicator of long-term memory (DR = time exploring
unfamiliar object-time exploring familiar object/total time of
object exploration).

The FST consisted of a single exposure to the test, similar
to previous reports that studied the effects of ketamine on FST
behaviors (Franceschelli et al., 2015; Ghosal et al., 2020). Briefly,
mice were placed individually in a glass cylinder (height: 30 cm;
diameter: 15 cm) filled with water (24–25◦C) for 6 min. At the
end of this period, mice were placed in a clean cage positioned on
a heating pad to prevent hypothermia. Behaviors were recorded
using a side camera and videos were scored off-line by an
experimenter blind to the sex or group of the subjects. The
latency to first immobility and the time spent immobile (in
seconds) during the last 4 min of the test were used to assess for
changes in despair-like behaviors and coping strategy to an acute
swim stressor (Molendijk and de Kloet, 2019).

Statistical Analyses
Data were analyzed using the software Prism 5.01 (GraphPad
Software Inc., CA, USA). Male and female data were analyzed
separately to assess the effect of chronic stress exposure and/or
of ketamine in each sex. Data were analyzed using unpaired
t-tests for the first group of mice, and using two-way ANOVAs
followed by Tukey’s multiple comparison tests when appropriate
for the UCMS group of mice. Locomotion in the OFT was
analyzed by time bin using repeated measure ANOVAs. Time
spent sniffing the novel vs. familiar object in the ORT was
analyzed using a paired t-test. Because our previous work showed
that high level of prefrontal PV mRNA could be associated
with vulnerability to stress-related emotionality (Shepard et al.,
2016), we conducted a correlation analysis (Pearson coefficient)
between PV mRNA levels at the end of the chronic stress and
behavioral testing period, and time spent immobile in the FST
(the only behavioral endpoint showing an effect of ketamine
after UCMS). In an attempt to obtain information about the
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potential contribution of the estrus cycle on the behavioral effects
of ketamine in females, we included the stage of the estrus
cycle (as high—di- and met-estrus—or low—estrus—levels of
estradiol) at the time of ketamine injection and at the time of
each behavioral assay as a covariate in our statistical model. The
eight females per group divided equally into the two estrus stage
groups leading to small sample size for each estrus stage group,
Data are presented as mean± standard error of the mean (SEM).
Statistical significance was set at p ≤ 0.05.

RESULTS

Distinct Sustained Molecular Changes in
the PFC Induced by Ketamine in Male and
Female Unstressed Mice Without
Behavioral Changes
No major changes in behaviors were observed 7 days of
post-ketamine injection in non-stressed mice (Figure 1). In
both males and females, behavior in the FST was unchanged
(Figures 1A,B,F,G). No ketamine effect was found in the open
field behavior of males (Figures 1C–E). In females, time in
center, thigmotaxis ratio, and locomotion were not changed
(Figures 1H–J).

We examined gene expression in the PFC 7-days after
ketamine injection using RT-qPCR. This time-point is equivalent
to when our behavioral cohorts would have started stress
exposure. Based on the known influence of ketamine on
glutamatergic and GABAergic transmission (Gerhard et al.,
2016, 2020), and on our previous work showing that UCMS
caused changes in PV expression in the PFC of male and
female mice that correlated with changes in emotional behavior

(Shepard et al., 2016), we hypothesize that prophylactic ketamine
provides resilience to stress-induced changes in emotional
deregulations via alterations in excitation and inhibition in
the PFC. Specifically, based on our published work (Shepard
et al., 2016; Page et al., 2019), we hypothesized that decreased
level of PV mRNA will be associated with resilience to stress-
induced changes in emotional behaviors. We quantified changes
in mRNA levels of NMDA receptor subunits and PV in
response to ketamine. The RT-qPCR analysis revealed that
males experienced more changes in the expression of prefrontal
markers of NMDA receptors and PV-dependent GABAergic
transmission. mRNA levels of NR1 and PV were significantly
reduced in the PFC of males 7 days post-ketamine (Figures 2A,C;
NR1: t(9) = 2.35, p = 0.04; PV: t(8) = 2.30, p = 0.05). In females,
no significant change was found (Figures 2D–F). However,
the trending ketamine-induced decrease in NR2A mRNA levels
(p = 0.07; Figure 2E) should be further investigated due to our
small sample size (n = 4/5 per group).

Prophylactic Ketamine Induces Resilience
to Chronic Stress-Induced Behavioral
Changes in the FST in Males, but Not
Females
The goal was to assess whether a single dose of prophylactic
ketamine could prevent the development of chronic stress
syndrome in male and female mice. After 4 weeks of
UCMS, we exposed mice to a series of behavioral tests.
In males, UCMS-induced increased in immobility in the
FST was prevented by the pre-treatment with ketamine
(Figure 3A; significant interaction between UCMS and ketamine:
F(1,25) = 8.38, p = 0.008; post hoc analyses: UCMS/vehicle vs.

FIGURE 1 | Behaviors in the forced swim and OFT were unchanged by ketamine 7 days after the injection in control male and female mice. Top left: schematic
representation of the experimental timeline. Top row (blue; A–E): males; bottom row (pink; F–J): females. N = 8/group/sex. Data analyzed by the Student’s t-test.
Veh, vehicle; Ket, ketamine; OFT, open field test; FST, forced swim test.
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FIGURE 2 | The sustained effects of ketamine exposure on mRNA levels of genes involved in glutamatergic and GABAergic transmission in the prefrontal cortex
(PFC) are different in control male and female mice. Top left: schematic representation of the experimental timeline. Top row (blue; A–C): in males, mRNA levels of
NR1 and parvalbumin (PV) are reduced 7 days post-ketamine injection. Bottom row (pink; D–F): in females, no changes are observed after ketamine injection at the
same time point. N = 4–6 mice/group/sex. Data analyzed by the Student’s t-test. *p ≤ 0.05. Veh, vehicle; Ket, ketamine.

control/vehicle p = 0.05 and vs. UCMS/ketamine p = 0.02).
Prophylactic ketamine also delayed the latency to first immobility
(Figure 3B; F(1,25) = 8.46, p = 0.008), especially after exposure
to UCMS (UCMS/vehicle vs. UCMS/ketamine p = 0.02). In
the OFT, UCMS induced hyperactivity (main UCMS effect
F(1) = 11.085, p = 0.003; main time bin effect F(9) = 25.69,
p < 0.0001) that was not prevented by ketamine (Figure 3C).
UCMS did not affect time spent in the center (Figure 3D),
as previously reported in males (Shepard et al., 2016), while a
significant interaction between UCMS and ketamine was found
for the thigmotaxis ratio (Figure 3E; F(1,27) = 4.53, p = 0.03)
but post hoc analyses did not reveal significant differences
between groups.

In females, UCMS increased immobility in the FST
(Figure 3H; main UCMS effect F(1,28) = 10.17, p = 0.004).
However, unlike males, prophylactic ketamine did not prevent
this UCMS effect (no main or interaction effect of ketamine).
Interestingly, we observed a trend for an effect of the estrus
cycle stage at the time of the ketamine injection (F(1,28) = 3.07,

p = 0.09), whereby females injected with ketamine in di- or
met-estrus have higher immobility time than females injected
with ketamine when in estrus. No change in latency to first
immobility was observed (Figure 3I), and the stage of the estrus
cycle at the time of the FST did not affect results. Similar to
males, females exposed to UCMS showed hyperactivity (main
effect of UCMS F(1) = 69.43, p < 0.0001; main time bin effect
F(9) = 28.53, p < 0.0001), which was not prevented by ketamine
(Figure 3J). Finally, while the thigmotaxis ratio was not affected
by UCMS or ketamine (Figure 3L), UCMS reduced center time
(Figure 3K; F(1,28) = 6.78; p = 0.015), which was not prevented
by ketamine. No effect of the estrus cycle stage at the time of the
ketamine injection or at the time of testing was found for the
behaviors measured in the OFT.

Because ketamine use has been associated with cognitive
deficits, we assessed long-term memory in mice using the ORT.
Males and females of all groups showed a preference for the
novel object over the familiar one during the testing phase of
the assay (Figures 3F,M). However, we observed that a single
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FIGURE 3 | Prophylactic ketamine confers resilience to UCMS-induced changes in FST behaviors in males only. Top left: schematic representation of the
experimental timeline. Top row (blue; A–G): in male mice, UCMS increases passive coping behaviors in the FST, which is prevented by prophylactic ketamine (A,B).
UCMS also increase general activity in the OFT, a phenotype that is not prevented by prophylactic ketamine (C). Anxiety-like behaviors in the OFT are not affected by
UCMS or ketamine (D,E). While all the male mice show a preference for the novel object vs. the familiar one in the ORT, ketamine reduces the discrimination ratio
(F,G). Bottom row (pink; H–N): in female mice, UCMS-induced increased in passive coping strategy in the FST (H,I), and anxiety-like behaviors and general activity in
the OFT (J–L) are not prevented by prophylactic ketamine. In the FST (H), the stage of the estrus cycle at the time of ketamine injection contributes to the effects
(open-label: di- and met-estrus; closed label: estrus). Long-term memory measured in the object recognition test is not affected by UCMS or ketamine (M,N).
N = 7–8 mice/group/sex. Data analyzed by two-way ANOVA, with a repeated measure for locomotor activity per time bin, or by paired Student’s t-test to compare
time spent sniffing the familiar object (F) vs. the new object (N). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, a vs. bp ≤ 0.05, $main ketamine effect for p ≤ 0.05 or $$p ≤

0.01. Veh, vehicle; Ket, ketamine; UCMS, unpredictable chronic mild stress; OFT, open field test; ORT, object recognition test; FST, forced swim test.

dose of ketamine reduced the discrimination ratio in males,
independently of UCMS exposure (Figure 3G; main effect of
ketamine: F(1,27) = 4.89; p = 0.03).

Ketamine Interacts With Chronic Stress to
Reduce mRNA Levels of Parvalbumin in
the PFC of Males, Which Correlates With
Lower Time Spent Immobile in the FST
We measured mRNA levels of markers of NMDA receptor
subunits and PV-dependent GABAergic transmission in the
PFC of mice exposed to UCMS after vehicle or ketamine
treatment. In males, UCMS decreased levels of NR1 (Figure 4A;
F(1,14) = 22.29, p = 0.0003) and NR2A (Figure 4B; F(1,13) = 57.6,
p < 0.0001). By comparison, no UCMS effects were found
in females for NR1 or NR2A (Figures 4D,E). Ketamine
significantly reduced mRNA levels of NR2A in males
(F(1,13) = 13.19, p = 0.003), an effect mostly driven by a
reduction of NR2A mRNA in control mice injected with
ketamine vs. vehicle (significant interaction F(1,13) = 5.97,
p = 0.03; post hoc test: control/vehicle vs. control/ketamine
p = 0.03). Ketamine also reduced mRNA levels of PV in
both males and females (Figures 4C,F; males: F(1,12) = 8.87,
p = 0.01; females: F(1,14) = 4.89, p = 0.04). Importantly,
UCMS interacted with ketamine to reduce PV mRNA levels
especially in males (interaction: F(1,12) = 4.75, p = 0.01; post hoc
analyses: UCMS/ketamine < all other groups for p < 0.03).
In females, the main ketamine effect is mostly driven by the
reduced level of PV mRNA in the UCMS group after the
ketamine treatment (interaction: F(1,14) = 3.42, p = 0.08; post hoc
analyses: UCMS/ketamine < UCMS/vehicle for p = 0.053). The
correlation analysis between PV mRNA at the end of the testing

period and the immobility time in the FST showed that in males
low levels of PV mRNA in the PFC correlates with low levels
of immobility in the FST (Pearson’s coefficient = 0.472;
p = 0.038), while the same was not true in females
(Pearson’s coefficient = 0.295; p = 0.117—see
Supplementary Figure 1).

DISCUSSION

The findings of the present study reveal that a low dose
of ketamine, when used as a prophylactic drug, promotes
resilience to some behavioral changes induced by chronic stress
exposure in male mice, but fails to confer such protection in
females. They also show that ketamine has sustained effects
on the expression of genes that regulate glutamatergic and
GABAergic transmission in the PFC and that these effects
differ in males and females. While a causal relationship
was not established here between gene expression changes
and behavioral resilience to stress, our results support the
idea that the state of the glutamatergic/GABAergic circuits
in the PFC before exposure to chronic stress might directly
contribute to resilience to stress-related mood disorders and
that further studying sex differences in ketamine effects on
those circuits might help our understanding of the mechanisms
underlying increased vulnerability to emotional deregulations
in females.

Based on our model of chronic stress, our behavioral data
support previous research showing that ketamine exposure
prevents the stress-induced increase in despair-like behaviors
in the FST in male mice (Brachman et al., 2016; Mastrodonato
et al., 2018). While immobility in the FST is traditionally
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FIGURE 4 | Ketamine and UCMS interact to change mRNA levels of genes involved in glutamatergic and GABAergic transmission in the PFC. Top row (blue; A–C):
in males, mRNA levels of NR1 and NR2A are significantly reduced by UCMS. NR2A mRNA levels are also reduced by ketamine, mostly in the control group. PV
mRNA levels are significantly lower in the PFC of mice exposed to UCMS and ketamine. Bottom row (pink; D–F): in females, only PV mRNA levels were reduced by
ketamine. N = 4–6 mice/group/sex. Data analyzed by two-way ANOVA. **p ≤ 0.01, ***p ≤ 0.001, $main ketamine effect for p ≤ 0.05, λdifferent than all other groups
for p ≤ 0.03.

interpreted as a measure of ‘‘depressive-like behaviors,’’ recent
criticisms of the test (Reardon, 2019) have led to the conclusion
that it is rather an approach to assess an animal strategy to
cope with acute inescapable stress (Molendijk and de Kloet,
2019). In this sense, an active coping style (analogous to less
immobility in the FST) is characteristic of individuals with
low hypothalamic pituitary adrenal (HPA) axis activity and
higher resilience to specific stressors (Veenema et al., 2003;
Wisłowska-Stanek et al., 2019). Our data, therefore, support that
prophylactic ketamine increases resilience to stress as shown
by lower immobility time in the FST. However, prophylactic
ketamine does not provide resilience against chronic stress-
induced hyperactivity tested in the OFT. This observation
replicates previous findings (Brachman et al., 2016) showing
that only a subset of behavioral domains that are sensitive to
stress exposure are also sensitive to ketamine treatment. It is
unlikely that changes in behaviors in the FST are due to the
increase in locomotor activity observed following chronic stress
exposure. Increased locomotion following chronic stress has
been reported by others (e.g., Boulle et al., 2014). If anything,
increased locomotor activity would have resulted in a higher level
of active behaviors in the FST and increased total sniffing time in
the ORT, which was not the case here.

In females, none of the chronic stress-induced changes
in behaviors were prevented by pre-exposure to ketamine.

Similar to males, UCMS-induced changes in behaviors in
the OFT (elevated anxiety-like behaviors and hyperactivity)
remained despite pre-treatment with ketamine. Importantly,
the increase in despair-like behavior in the FST after chronic
stress exposure was still observed in females that received
prophylactic ketamine. The absence of a ketamine effect on
this behavior is surprising considering that previous work in
rodents showed heightened sensitivity of females to ketamine
given after stress exposure (Franceschelli et al., 2015; Sarkar
and Kabbaj, 2016), and given Dolzani’s data showing resilience
to the effects of inescapable tail shock in female rats after
prophylactic ketamine (Dolzani et al., 2018). However, unlike
Dolzani’s protocol, we used a long chronic stress procedure
that extents to 5 weeks after the ketamine injection (vs.
1 week in Dolzani’s study). Differences in species and dose
could also explain the discrepancies in results. Studies show
that while both male and female mice experience a reduction
in immobility in the FST 24 h after a single injection of
ketamine (10 mg/kg; Gerhard et al., 2020), unlike males,
female mice do not benefit from sustained antidepressant
effects of ketamine (7-day post-treatment; Franceschelli et al.,
2015). Reports from human studies support the idea that
ketamine effects last longer in males (Coyle and Laws, 2015;
Rybakowski et al., 2017). This suggests that by the time female
mice were facing the bulk of our chronic stressors, ketamine
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effects on pathways that could induce resilience were already
severely reduced, if not completely absent. This is supported by
our gene expression analysis conducted 7-days post-ketamine
injection showing no difference between vehicle-injected and
ketamine-injected females. It is also important to note that
the stage of the estrus cycle at the time of the ketamine
injection could play a role in our findings. Others reported
that females in pro-estrus have increased sensitivity to the
anti-depressant effects of a low dose of ketamine (Dossat et al.,
2018). Here, none of our females were in pro-estrus at the
time of injection; but our findings suggest similarly that the
prophylactic effects of ketamine to prevent the development
of depressive-like behavior in the FST might be modulated by
estradiol levels at the time of injection. While our interpretation
of our analysis of the estrus cycle at the time of injection
is limited by the small sample size, our data are informative
especially as they support other recent findings showing that
ovarian hormones are necessary for prophylactic ketamine to
drive resilience to stress in female mice (Chen et al., 2020).
This adds to the current knowledge that gonadal hormones
mediate the effects of ketamine on emotional behaviors. This
topic deserves further investigation, including a design that is
sufficiently powered to address directly the role of the estrus cycle
stage on ketamine effects on emotional behaviors in females.
This is of particular interest considering the higher rate of
depression in females, and the current lack of efficient and
efficacious treatments.

The sex-specific effects of ketamine in conferring resilience
to stress-induced increased in emotional behaviors are paralleled
by differences in ketamine-induced changes in the prefrontal
glutamatergic and PV systems. We focused our gene expression
analysis on markers of NMDA receptor and PV-dependent
GABAergic transmissions since previous work showed that
increased PV cells activity in the PFC, potentially due to
increased glutamatergic input, could contribute to increased
anxiety-like behaviors after stress in females but not males
(Page et al., 2019). Furthermore, preclinical and clinical
findings suggest that ketamine acts on NMDA receptors
located on inhibitory neurons, including somatostatin and
PV interneurons, thereby leading to disinhibition of PFC
pyramidal cells and a burst of glutamate that contributes to
the sustained effects of ketamine through synaptic and spine
plasticity (Duman and Aghajanian, 2012; Stone et al., 2012;
Moda-Sava et al., 2019; Gerhard et al., 2020). Our data show
that a single ketamine injection induces sustained changes
in male prefrontal expression of genes regulating NMDA
receptors and PV that could contribute to their resilience to
chronic stress. At the time chronic stress was initiated (1 week
after the ketamine injection), prefrontal expression levels of
NR1 and PV were downregulated, while levels of NR2A are
unchanged. Previous reports indicate that the anti-depressant
effects of ketamine are independent of the NR2A subunit of
the NMDA receptor (Gerhard et al., 2020). Ketamine effects
on NR1 and PV have been more studied. Others reported
decreases in NR1 and PV expression lasting up to 2 days
after an acute injection of ketamine (Tang et al., 2015; Zhou
et al., 2015). The difference in the length of the ketamine

effects between these studies and our findings can reflect
differences in animals (mice vs. rats) and doses (30 mg/kg
vs. 10 mg/kg). While our approach does not allow us to
determine whether the decrease in NR1 expression is specific
to a cell type in the PFC, it is tempting to suggest that
the stress-resilient effects of ketamine are driven by reduced
expression of NR1 on PV-interneurons. In support of this
idea, we previously showed that the chronic stress-induced
increased in emotional behaviors in mice is associated with an
increased number of glutamatergic terminals onto prefrontal
PV neurons (Shepard and Coutellier, 2018). Others showed
that the anti-depressant effect of ketamine is blocked in
mice with reduced levels of NMDA receptor on prefrontal
GABA interneurons (somatostatin- and parvalbumin-expressing
neurons) but not glutamate neurons (Wohleb et al., 2017;
Gerhard et al., 2020). Whether a similar mechanism drives the
prophylactic effects of ketamine would need to be determined,
especially since others provided evidence that the mechanisms
underlying the anti-depressant vs. prophylactic behavioral effects
of ketamine are different in the hippocampus (LaGamma
et al., 2018). Cell type-specific transgenic mouse models or
single-cell RNA sequencing approaches could help address
this question.

The reduced level of PV expression 7 days post-ketamine
injection would support decreased sensitivity of these cells
to glutamatergic transmission since PV expression is activity-
dependent and responds to glutamatergic input (Caballero
and Tseng, 2016). Others reported a reduced number of
PV neurons in the PFC 30 min after ketamine injection
in male mice (10 mg/kg) and associated these changes at
the cell level with the psychotomimetic effects of ketamine
(Yang et al., 2015). We do not observe changes in locomotor
activity 1- or 5-weeks post-ketamine in non-stressed mice. A
sustained reduced sensitivity of PV-interneurons to glutamate
could offset the effects of chronic stress-induced enhancement
in glutamatergic transmission on this neuronal population
(Farley et al., 2012; Shepard and Coutellier, 2018), potentially
preventing their over-active phenotype (Page et al., 2019)
and provide resilience to stress-induced changes in emotional
behaviors. This hypothesis needs to be verified using more
direct methodologies, including for instance specific ablation
of NR1 from PV cells through genetic approaches. It is
important to observe that in non-stressed animals, ketamine
injection does not lead to change in behaviors at the
1-week and 5-week post-injection time points. The fact that
changes in NR1 and PV mRNA levels 1-week post-injection
does not correlate with changes in emotional behaviors
is however not surprising and replicate previous studies
showing that the behavioral effects of ketamine are specific
to stress-induced behaviors (e.g., Amat et al., 2016; Brachman
et al., 2016; Dolzani et al., 2018). Other systems than the
prefrontal glutamatergic/GABAergic ones are likely impacted
by stress and interact with each other to drive changes
in behaviors.

Interestingly, the sole long-lasting (5 weeks post-injection)
effect of ketamine we observed in non-stressed mice is the
reduced performance in the long-term memory task. This
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cognitive impairment 5 weeks after the ketamine injection
in male mice is associated with a decreased level of the
NR2A mRNA in non-stressed mice, while both NR1 and PV
mRNA returned to vehicle-injected mice value at that same
time point. Return to baseline levels 5 weeks post-ketamine
injection was anticipated since ketamine seems to mostly impact
synaptogenesis, and not glutamatergic/GABAergic transmission,
on the long-term in the PFC (Moda-Sava et al., 2019). The
long-lasting decrease in NR2A mRNA levels in both control
and stressed mice is intriguing and could contribute to the
cognitive deficits observed. The NR2A subunit of the NMDA
receptor is necessary for long-term potentiation and synaptic
plasticity in the cortex, particularly in the anterior cingulate
cortex, that are important to form long-term memory (Massey
et al., 2004; Toyoda et al., 2006). To our knowledge, no
other work studied the effects of ketamine on NMDA receptor
subunits 5 weeks post its injection in adults; further work is
needed to validate our observation of long-lasting reduction
of prefrontal NR2A mRNA levels, which can have important
medical implication for the use of ketamine for the treatment
of depression.

In females, ketamine has different effects on prefrontal
genes that regulate the expression of NMDA receptor subunits
and PV: no changes in expression of NR1, NR2A, and PV
were observed 7-days post-ketamine injection in females.
The absence of changes in the expression of our targeted
genes in the female PFC could explain in part the absence
of changes in behaviors before and after chronic stress.
However, we cannot exclude that ketamine has a sustained
effect on other prefrontal genes expression or might exert its
resiliency effect through non-prefrontal mechanisms, including
synaptic plasticity in the hippocampus (Mastrodonato et al.,
2018; Krzystyniak et al., 2019). More in-depth analysis of
changes in gene expression in the PFC and other brain regions
of males and females is needed, and causal relationships
between transcriptional and behavioral changes have to
be established.

Finally, our results showed that ketamine interacts with
chronic stress to modulate PV expression in the PFC of both
male and female mice. Our previous work demonstrated that
high prefrontal PV expression and increased activity of PV
neurons directly contribute to a stress-induced increase in
emotional behaviors (Shepard et al., 2016; Page et al., 2019).
We would therefore expect that lower PV mRNA levels in
the PFC of mice lead to dampened stress effects on emotional
behaviors. Males show this association with resilience to stress-
induced changes in the FST, but females still display high levels
of passive coping behaviors and anxiety-like behaviors. This
finding supports partly our hypothesis as we validated this
correlation between PV mRNA and emotional behaviors only
in males, while our previous work demonstrated a stronger
association in females (Shepard et al., 2016). Interestingly,
PV mRNA levels were reduced by ketamine before and after
stress only in males, which could suggest that PV might
contribute to stress resilience if its expression is reduced as
early as the beginning of stress exposure, and throughout
the entire period of stress. On the contrary, decreased PV

expression after the onset of stress (as observed in females)
might not be sufficient to induce a resilient phenotype. This
idea is supported by some of our unpublished data showing
that decreasing the activity of prefrontal PV neurons with
chemogenetics is insufficient to restore normal emotional
behaviors in both male and female mice after chronic stress
exposure. Manipulation of activity of PV neurons starting at
the beginning of the stress period will help us confirm that
early decrease in their activity (and therefore decreased PV
expression) is the key to resilience to stress-induced increase
in emotional behaviors. So far, the timing of decreased PV
mRNA levels of females exposed to UCMS and ketamine is
unknown and is likely to be further complicated by gonadal
hormones (Carrier and Kabbaj, 2013). Whether variability in
the estrus cycle in our cohort of females influences ketamine-
and UCMS-induced changes in PV mRNA levels needs to be
determined. As a whole, the dynamic of changes in PV expression
in response to ketamine remains unclear. Here we showed
that under stressful conditions, PV expression is reduced up
to 5 weeks post-ketamine injection, while others showed that
up to 8 h after the injection PV neurons display enhanced
activity under acute stress conditions (Ng et al., 2018). The
dynamic response of PV interneurons to ketamine deserves
more research, especially since it appears to be sex-specific
and since it contributes to the therapeutic efficacy of ketamine
(Gerhard et al., 2020).

In conclusion, our findings replicate previous works showing
that prophylactic ketamine induces some resilience to stress
in male rodents and that this effect might potentially be due
to changes in PV-dependent GABAergic neurotransmission
within the PFC. For the first time, our study included the
variable of sex, which is of particular importance considering
that female subjects are more susceptible to the effects of stress
on mood and affective behaviors, as demonstrated here by
the appearance of an anxiety-like phenotype in addition to
the depressive-like phenotype after UCMS. We highlight that
the prefrontal mechanisms underlying stress resiliency in males
and females might be different. This novel finding needs to be
further investigated to obtain sufficient preclinical information
that could eventually lead to sex-specific clinical solutions to
prevent the development of stress-related mood disorders.
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