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Abstract: Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result
of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of
excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide
association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation
sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue,
with the shared goal of utilizing genomics to identify the transcriptional networks and biological
pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing
disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute
injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the
pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing
therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately,
successful bench-to-bedside translation of observations from genomic studies will result in the
development of novel anti-fibrotic therapeutics that improve functional quality of life for patients
and decrease mortality from fibrotic diseases.

Keywords: fibrosis; genomics; genome-wide association study; transcriptome; wound healing; keloid;
scleroderma; cirrhosis; pulmonary fibrosis; chronic kidney disease

1. Introduction

1.1. Background and Scope

Fibrotic disorders are implicated in nearly 45% of all deaths in the developed world [1].
Pathological fibrogenesis is associated with an uncontrolled wound healing response and is remarkably
similar at the cellular level across different organs. Classically, disease-specific triggers initiate
site-specific injuries, which activate distinct cells that drive fibrosis in genetically susceptible individuals.
More specifically, an acute injury becomes a persistent inflammatory stimulus that sustains the
production of fibrogenic growth factors, proteolytic enzymes, and cytokines, which collectively
stimulate excess extracellular matrix (ECM) deposition and remodeling, destroying tissue architecture
and resulting in progressive functional impairment and sometimes death [2–4] (Table 1). Intriguingly,
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fibrotic damage may be reversible with the removal of the inciting inflammatory trigger [5], yet there is
a dearth of effective treatment strategies targeting fibrosis.

Table 1. Wounding as a trigger of human fibrosing disorders in multiple organs.

Organ Injury Trigger Fibrotic Disease (s)

Skin Breach of epidermal barrier Keloid; hypertrophic scar; chronic ulcer

Vascular endothelial cell injury Scleroderma/SSc 1; morphea; lichen sclerosus

Exogenous insult (radiotherapy, heat, contrast agent) Radiation fibrosis; burn; nephrogenic systemic fibrosis

Liver Exogenous insult (alcohol), infection, cholestasis, NASH 2 Cirrhosis (hepatic cirrhosis; primary biliary cirrhosis)

Kidney Obstruction, infection, autoimmune destruction,
underlying disease (diabetes, hypertension) Chronic kidney disease; SLE 3

Lung Alveolar epithelial damage Idiopathic pulmonary fibrosis

Heart Genetic defect, ischemia Cardiomyopathy; heart failure
1 SSc, systemic sclerosis. 2 NASH, non-alcoholic steatohepatitis. 3 SLE, Systemic Lupus Erythematosus.

In this review, we summarize genomic studies designed elucidate the injury-driven pathogenesis
of human fibrosing disorders of the skin, liver, kidney, lung, and heart. These encompass genome-wide
association studies (GWAS) identifying loci that confer susceptibility to fibrotic disease; transcriptome
analyses (microarray, whole exome and RNA-sequencing) identifying differential gene expression
changes in lesional fibrotic tissue and ex vivo fibroblasts; profiling of epigenomic factors, specifically
non-coding RNA (microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA));
and DNA methylation studies that define global regulatory networks of fibrosis. In each organ,
we describe the initial acute injury that drives unresolved inflammation, identify genomic studies
that have defined the pathogenic gene changes leading to excess matrix deposition and fibrosis,
and conclude with a summary of therapies directly targeting pro-fibrotic factors as well as removing
the inappropriate wounding response to reverse existing fibrosis. We restrict the scope of this review
to genomic studies in humans, i.e., those performed on biomaterials from patients with fibrosing
disorders. Ultimately, successful translation of genomic findings to the development of targeted
therapeutics will result in decreased morbidity and mortality from fibrotic diseases.

1.2. Inflammation, Remodeling and Fibrosis in Wound Healing

The wound healing process features overlapping phases of hemostasis, inflammation, proliferation,
and extracellular matrix (ECM) remodeling that are tightly regulated to prevent damage and, in skin,
quickly restore epidermal barrier [6]. Inflammatory response during wound healing is generated
by complex interplay between systemic and resident immune cells, and tissue-specific cell types
and is a main trigger for post-injury scar in adult organism [6]. Inflammation during acute wound
injury activates the transition of fibroblasts to myofibroblasts to release ECM proteins that remodel the
surrounding tissue [7]. Of mesenchymal origin, fibroblasts express vimentin and contain a large volume
of endoplasmic reticulum and golgi to facilitate the excretion of extracellular matrix proteins such
as collagens, proteoglycans, and fibronectin. Activated myofibroblasts additionally have α-smooth
muscle actin stress fibers, with increased fibronectin and gap junction expression, and lack desmin and
myosin smooth muscle markers [7]. Resident epithelial cells also shift to myofibroblast phenotype
through an epithelial mesenchymal transition (EMT) process [8]. Early and prolonged EMT activation
promotes excessive inflammation and fibrogenesis (reviewed in [8]). Regardless of the tissue type
ECM, including its disruption by injury, its production or its remodeling, provides biomechanical
forces that contribute to overall mechanisms of scar formation [9].

While myofibroblasts are primary players in remodeling, the inflammatory wounding response
also features immune cells that signal and release profibrotic mediators that contribute to ECM
deposition and fibrosis (reviewed in [10]). For instance, neutrophils release neutrophil extracellular
traps (NETs) that further activate fibroblasts and promote differentiation into myofibroblasts [11].
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Dysregulation of these processes in any connective tissue-containing organ can cause excessive
ECM deposition and tissue fibrosis, ultimately leading to loss of organ function [6]. As an example,
robust yet short-lived wound healing response of injured oral epithelium can result in scarless
healing [12], while a prolonged response with pro-fibrotic mediators can produce the non-healing bed
of chronic wounds [8,13].

2. Fibrosing Disorders of the Skin

Physiologic wound healing after skin injury is a dynamic process aimed at efficiently restoring a
compromised epidermal barrier, and proceeds through distinct yet overlapping phases of inflammation,
proliferation, and remodeling. The inflammatory response drives repair and is tightly regulated in a
temporal fashion to minimize damage such as excessive scarring. While fetal skin is capable of scarless
regeneration [14], postnatal skin injury results the formation of a scar, and a sustained remodeling
response leads to deposition of excess ECM and fibrotic scarring with loss of structure and function [6].
Fibrosing skin disorders encompass hypertrophic scars and keloids, a spectrum of localized and diffuse
sclerodermoid conditions, and chronic (non-healing) skin ulcers with fibrotic wound beds.

2.1. Keloids and Hypertrophic Scars

Hypertrophic scars and keloids are induced by skin injury deep enough to affect the reticular dermis
that involves excess collagen production during the wound healing process [15,16]. Hypertrophic scars
typically develop after surgery or trauma such as burns, and appear as thick raised lesions
characteristically contained within the site of injury that may regress spontaneously [6]. In contrast,
keloids extend beyond the original borders of the injury, display horizontal growth without regression,
and have a higher recurrence rate after excision [15]. Histologically, the collagen in hypertrophic scars
is arranged in a regular pattern parallel to the dermis, whereas keloids feature irregularly arranged
collagen and an increased ratio of type I: type III collagen [15].

Population-level genomic studies have played a key role in elucidating the pathogenesis underlying
abnormal scar formation in the skin. Both family history and darker skin color are associated with
increased incidence of keloids [17], suggesting a genetic predisposition, though no single causal gene
has been implicated, and a non-mendelian polygenic pattern of inheritance is most likely [15,16].
A multistage GWAS of keloid predisposition in a Japanese population identified several single
nucleotide polymorphisms (SNPs; rs873549, rs1511412, rs940187, and rs8032158) in three chromosomal
regions in linkage disequilibrium with SNPs in FOXL2 and NEDD4 [18]. 3 of these SNPs were
subsequently confirmed in a Chinese Han population with further identification of risk and protective
keloid haplotypes [19], and additional genomic studies further correlated rs8032158 with clinical
keloid severity [20]. In African Americans, an approach using admixture mapping and whole exome
association identified SNPs in two myosin genes, MYO1E and MYO7, as being associated with keloid
formation [21]. GWAS of Japanese and African American families displaying autosomal dominant
keloid inheritance identified susceptibility loci on chromosomes 2q23 and 7p11, respectively [22].
Notably, unique SNPs located within NEDD4 (chr15q21.2–22.3) independently showed association
with keloid risk in multiple populations [21].

Genomic studies have profiled hypertrophic scars and keloids utilizing full-thickness skin
biopsies, laser capture-microdissected segments, and patient tissue-derived fibroblasts cultured ex
vivo, as the sources of genomic material [23]. Gene expression profiles of fibroblasts from progressing
vs. regressing sites within individual keloid lesions have also been compared [24]. Upregulated genes
in keloids include Interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor-α [15,25]; insulin-like growth
factor-binding proteins (IGFBP)-3, -5, -7 and connective tissue growth factor (CTGF; also associated
with fibrosis in systemic sclerosis (SSc), idiopathic pulmonary fibrosis (IPF) and leiomyomas) [26];
chondrocyte and osteoblast differentiation markers such as RUNX2 (in both African American and
Japanese populations); and associated induction of transcription factors SOX9 and scleraxis and
upstream factors Trichostatin A and CAV1 [27–29]. HIF-1α is upregulated in keloid fibroblasts,
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and HIF-1α inhibition reduces collagen levels in keloid as well as hypertrophic scar fibroblasts [30,31]
introducing a pathophysiological link between a hypoxic microenvironment and collagen production
in keloids and hypertrophic scars. FKBP10 is upregulated in hypertrophic scars, regulating α-SMA
expression and pro-collagen maturation in fibroblasts; it may represent a novel therapeutic target [32].
Wnt pathway inhibitors and several IL1-inducible genes were decreased in fibroblasts cultured from
keloids in comparison with normal scars [26]. At the pathway level, aberrant fibroblast activation
in conjunction with altered transforming growth factor beta (TGF-β)-related signaling has been
observed [15]. Moreover, integrative RNA-seq and microRNA expression analysis of keloid formation
in keloid-prone Taiwanese patients [33] identified temporal changes in the initiation, progression,
and maintenance of keloids; this study noted decreased Notch signaling and Toll-like receptor pathway
activity as well as mitogen-activated protein (MAP) kinase signaling, which remained dysregulated six
weeks after wounding.

Epigenetic factors such as non-coding RNA (miRNA, circRNA, lncRNA) and DNA methylation also
modulate genomic changes in keloids and hypertrophic scars. Analysis of miRNA expression patterns
in keloids reveal decreased miR-194-3p, an inhibitor of fibroblast proliferation and migration [34] and
decreased miR-199a-5p [35], a fibrotic regulator also associated with IPF and SSc. Downregulation of
miR-196a, which binds COL1A1 and COL3A1, has been associated with an increase in secreted
type I and III collagen in keloids [36]. Additional differentially expressed miRNA have been
identified and connected to target genes that are involved in MAP kinase and HIF-1 signaling
pathways [37]. In hypertrophic scars, downregulation of miR-200b was associated with increased
cell proliferation, decreased cell apoptosis, and altered collagen I and III production of fibroblasts
in vitro [38]. Further upstream, a series of circRNAs are upregulated in keloid tissue, interacting with
fibrosis-associated miR-29a, miR-23a-5p, and miR-1976 to form a regulatory network with predicted
role in keloid development [39].

Microarray profiling of long noncoding RNAs (lncRNAs) has also been performed in lesional
keloid tissue, identifying altered expression of CACNA1G-AS1 and HNF1A-AS1, which interact
not only with pro-fibrotic TGF-β pathways, but also with cellular adhesion and tight junction
signaling [40,41]. Another study reported altered expressions of 30 lncRNAs relating to hedgehog
signaling pathways, which were accompanied by mRNA changes reflecting upregulation of cell
proliferation and tissue repair and downregulation of apoptotic pathways in keloid tissue [42].
Similarly, lncRNAs NR_125715 and NR_046402 differentially expressed in fibroblasts from hypertrophic
scars correlated with expression levels of TGF-β pathway genes TGFB2 and POLD1 transcripts [43].
Finally, genome-wide profiling of DNA methylation in keloids and normal skin identified a series of
differentially hyper- and hypo-methylated genes in keloids with roles in diverse signaling pathways,
providing new opportunities for the study of keloid pathogenesis [44]. In addition, hypermethylation
of the SFRP1 promoter has been shown to contribute to downregulated Wnt/beta catenin signaling in
keloids [45].

Currently, there are a range of treatment options for keloids and hypertrophic scars, including
topical and intralesional corticosteroids, radiotherapy, compression therapy, 5-fluorouracil therapy,
and surgical approaches to reduce tension [15,16]. However, although genomic studies have identified
many promising targets in the fibrotic cascade [46], successful translation to targeted therapies in the
clinical setting has yet to occur.

2.2. Scleroderma (Systemic Sclerosis, Localized Scleroderma, and Lichen Sclerosus)

Scleroderma, or “hardened skin”, is a condition of autoimmune fibrosis that is implicated in a
spectrum of diseases including systemic sclerosis (SSc), localized scleroderma, and lichen sclerosus.
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease that presents with symmetric
hardening of the skin of the fingers, hands, and face (“limited cutaneous SSc”) that may spread to
other sites (“diffuse cutaneous SSc”); both cutaneous SSc subtypes may involve fibrosis of visceral
organs. Localized scleroderma (LSc), sometimes termed morphea, is an inflammatory disease of the
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dermis and subcutaneous fat that leads to scar-like fibrosis, while lichen sclerosus primarily involves
atrophic, fibrotic skin lesions most commonly occurring in genital and perianal areas and affecting
the epidermis and superficial dermis [47,48]. Both LSc and lichen sclerosus are not associated with
systemic fibrosis. The pathological mechanism behind systemic and localized forms of scleroderma
is hypothesized to be microvascular injury. Endothelial cell injury promotes perivascular injury and
autoimmune reactivity, inducing fibroblast activation, tissue fibrosis, and eventually scleroderma-like
disease [49], though etiology of the initial endothelial injury is unclear [2]. In addition, uncontrolled
NETosis occurs in SSc neutrophils and contributes to early progression of fibrosis [50].

Genomic studies have furthered understanding of fibrotic mechanisms in sclerodermoid disorders,
with SSc as the prototypical condition. GWAS have identified susceptibility loci for SSc in extracellular
matrix genes (COL4A3, COL4A4, COL5A2, COL22A1, COL13A1, CTGF) and autophagy (ATG5) as well
as genes involved in (auto)immunity: interferon signaling (IRF4, IRF5, STAT4), interleukin signaling
(IL12A, IL12RB1, IRAK1), and B-cell signaling (BANK1) (reviewed in [2,51]). As such, an exacerbated
immune response to endothelial cell injury in genetically prone individuals might provoke a sustained
autoimmunity that leads to fibrosis [2]. Additional GWAS coupled with Immunochip array data
investigating alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region
identified polymorphisms particularly in class II HLA genes that show significant association with SSc
susceptibility [52,53].

Gene expression profiling of the skin from patients with SSc have identified distinct gene signatures
that correlate with extent of skin fibrosis and end-organ damage. One study [54] identified distinct
keratin versus fibroinflammatory signatures, in which a predominating keratin pattern correlated with
shorter disease duration and presence of interstitial lung disease, while the fibroinflammatory pattern
correlated with diffuse cutaneous involvement and greater skin thickening. Other studies have utilized
gene expression patters to further divide cutaneous SSc into inflammatory, fibroproliferative, limited,
and normal-like [48,55–58], wherein the inflammatory subset involves infiltrating T cells, B cells,
and macrophages, with the profibrotic IL-13–IL-4 pathway primarily driving fibrosis [56,57]; NOTCH4,
IRF7, and GRB10 are differentially expressed in this subset [48]. The fibroproliferative subset involves
a pro-fibrotic platelet-derived growth factor (PDGF) pathway, though TGF-β signaling is involved in
both inflammatory and fibroproliferative subsets. Limited and normal-like subsets are comprised of
profiles reflecting a non-proliferative, immunologically quiescent state [56]. In another study, datasets
of SSc patients were integrated and analyzed to identify a common 415-gene signature that accurately
distinguished SSc patients from healthy controls [59]. Integrative multi-tissue network analysis [60]
also used multiple datasets to identify a gene expression signature involving pro-fibrotic macrophages
that were common among various SSc-affected tissues (skin, lung, esophagus, and peripheral blood),
supporting the presence of fundamental mechanisms driving fibrosis across organs in SSc.

A series of miRNA expression profiling studies have identified miRNAs involved in fibrosis and
ECM formation in scleroderma, and several miRNAs have demonstrated utility as biomarkers of
disease activity and severity. One of the most extensively studied is anti-fibrotic miRNA-29, which is
strongly downregulated in SSc fibroblasts as compared to healthy controls and is and associated with
increased mRNA and protein expression of types I and III collagen [61,62]. Exogenous stimulation
with known SSc pro-fibrotic mediators TGF-β, PDGF-B, and IL-4 decreased miR-29a expression in skin
fibroblasts [61], suggesting downstream involvement of miR-29a in these pathways as well. In contrast,
skin from patients with localized scleroderma did not demonstrate downregulation of miR-29a,
instead featuring downregulation of miR-7, which correlated with COL1A2 overexpression [63].
In both SSc and LSc tissues, downregulation of let-7a compared to normal and keloid skin was
associated with excess type I collagen expression [64], and upregulation of miR-483-5p was associated
with increased type IV collagen expression [65]. Other fibrosis-associated miRNAs in SSc include
downregulated antifibrotic miR-150 [66] and miR196a [36] (also decreased in keloids), and upregulated
profibrotic miR-21, miR-92a, miR-145, and miR-202-3p [62,67].
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lncRNA function in fibrosis of SSc patients is has also been explored. lncRNA TSIX is increased
in serum and skin fibroblasts of patients with SSc compared to SLE and healthy patients, involving
in type I collagen regulation and the TGF-β signaling pathway [68]. RNA sequencing of SSc skin
biopsy samples have also further identified a group of antisense lncRNAs, primarily associated with
significant deregulation of genes CTBP1, OTUD6B, and AGAP2 [69].

Treatment options for SSc include systemic immunosuppressants (e.g., mycophenolate
mofetil, cyclophosphamide, methotrexate, and anti-IL6 receptor antibody, tocilizumab) to dampen
autoinflammation. Targeted therapies based upon findings from genomic studies are also becoming
available; for instance, clinical trials have been performed for abatacept (targeting CTLA4-associated
inflammation) and romikimab (targeting IL-4 and IL-13-mediated fibrosis) [2]. An open-label trial
of fresolimumab, a high-affinity antibody targeting all three TGF-β isoforms (TGF-β1, TGF-β2,
and TGF-β3), successfully inhibited TGF-β signaling in SSc, as demonstrated by decreased mRNA of
TGFβ regulated genes, decreased myofibroblast infiltration, and decreased skin fibrosis [70]. Moreover,
the genomic signatures that are used to classify patients into subsets as discussed above may have
therapeutic implications, as it was observed that patients with the inflammatory subset improved
more significantly when treated with mycophenolate mofetil [55] and abatacept [71] than those with
fibroproliferative and normal-like subsets. That said, there is debate over whether the genomic
signatures change or reflect disease progression within the individual [48,58], and further studies on
disease course and clinical presentation in relation to gene expression changes are needed.

2.3. Chronic Ulcers

Chronic non-healing ulcers (diabetic foot ulcers, venous leg ulcers, and pressure ulcers) are a
widespread clinical challenge, affecting up to 2% of the population, and are associated with impaired
quality of life, chronic pain, physical disability, and increased mortality in patients [72]. Fibrosis is
a shared histologic feature that is identified in approximately 50% of chronic wounds and aids
in guiding the margin of therapeutic debridement [73]. In non-healing ulcers, an inappropriately
prolonged acute inflammatory response transitions to chronic ineffective inflammation that fails
to result in re-epithelialization and is associated with a sustained remodeling response and the
development of a fibrotic ulcer bed [6]. In venous leg ulcers (VLU) in particular, the wound bed is
histopathologically characterized by disorganized ECM, marked fibrosis, and chronic inflammatory
infiltrates, all of which contribute to impaired healing; in fact, increased presence of dense fibrosis
and high mature collagen levels in VLUs correlate with poor healing outcomes in the clinical
setting [74]. Using microarray profiling, our group reported enrichment of inflammatory response
and fibrogenetic pathways in non-healing VLU [13], corresponding to the histological findings of
disorganized ECM, fibrosis, and chronic inflammation [73–75]. Specifically, we observed enrichment
of collagens and secreted matricellular proteins in conjunction with upregulation of fibronectin (FN1),
tenascin (TNC), osteopontin (SPP1), connective tissue and hepatocyte growth factors (CTGF, HGF),
and PAI-1 (SERPINE1). Pro-fibrotic canonical TGF-ß signaling was highly enriched and activated in
the lesional VLU bed as well, thus marking the chronic VLU as a fibrotic skin disease. We extended our
findings in a randomized controlled post-marketing clinical trial examining the mechanism of action of
a bioengineered bilayered cellular construct (BLCC), a commercial skin substitute with demonstrated
efficacy in promoting VLU closure. BLCC application triggered an acute wound healing response at
the ulcer edge to reverse chronic inflammation [76] while coordinately stimulating remodeling of the
ulcer bed, as evidenced by decreased expression of profibrotic TGFß1 gene targets, increased levels of
TGF-ß inhibitor decorin, and endogenous release of matrix metalloproteinase (MMP)-activating zinc
to stimulate antifibrotic remodeling [13]. As such, the development and application of anti-fibrotic
therapies represent a novel treatment approach for VLUs and other non-healing ulcers.
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2.4. Exogenous Triggers

Other instances of pathological skin fibrosis occur in burn wounds and radiation induced
injury, and genomic studies have helped identify additional signaling factors and pathways involved.
Healing of burns can involve extensive hypertrophic scarring and contracture in up to 60% of
wounds [77]. GWAS in adults with deep-to-partial-thickness burns have associated reduced severity of
hypertrophic scarring with intronic variants in CSMD1, which encodes proteins involved in regulation
classical and lectin complement pathways, neuronal growth and tumorigenesis, and with PTPN5, a
MAPK inhibitor expressed in neurons [78,79]. A polymorphism in melanocortin-1 receptor (MC1R) is
associated with increased risk for severe hypertrophic scarring via increased fibroblast proliferation [79].
An exome-wide array association study with gene pathway analysis also associated genes involving
innervation and cell adhesion with scar height and scar pliability of patients with burn injuries;
however, the study failed to replicate findings of significantly associated SNP variants previously
described [80]. Microarray analysis of cutaneous gene expression during the first 17 days post-burn
injury revealed significant upregulation of the osteopontin (SPP1), previously shown to impede wound
repair and induce inflammation-triggered fibrosis. IL6 and IL8 were also upregulated, confirming
involvement of common fibrotic and inflammation pathways in the hypertrophic scarring of burn
patients [77].

Radiation-induced injury is commonly defined by endpoints such as telangiectasia, atrophy and,
most significantly, fibrosis that impairs function and decreases quality of life [81]. GWAS have identified
polymorphisms in TGFB1 as well as XRCC1 (which encodes a protein involved in DNA base excision
repair) as conferring risk for radiation-associated fibrosis. In breast cancer patients, TGFB1 −509T
and +869C alleles are associated with increased risk of fibrosis [82], while XRCC1 rs2682585 has
been associated with decreased risk of fibrosis post radiation therapy [83]. The association of TGFB1
−509T with increased radiation-induced fibrosis was subsequently validated in a prospective cohort
study following breast cancer patients over a minimum of 3 years after whole breast irradiation [84].
Conversely, wild type alleles of TGFB1 and XRCC1 were associated with a lower grade of fibrosis
post radiation therapy in head and neck cancer patients [85]. Significant association was also
found in breast cancer patients between radiation-induced fibrosis and polymorphism of TXNRD2,
a mitochondrial enzyme important in reactive oxygen species removal [86]. This link suggests that,
in addition to common fibrotic signaling and DNA repair pathways, impaired antioxidant response
plays a role in post-radiation fibrosis. Gene expression profiling of whole blood collected from breast
cancer survivors post-radiotherapy identified 87 differentially expressed genes, most significantly
involving downregulation of TGF-β1 signaling and interleukin-2 pathways, along with upregulation
of plasminogen activator inhibitor 1, a transcriptional activator inhibiting fibrinolysis [87]. With respect
to epigenetic mechanisms, DNA methylation profiling of dermal fibroblasts from breast cancer
patients identified diacylglycerol kinase alpha (DGKA) as a promising region of regulation, in which
hypomethylation led to EGR1-mediated induction of DGKA associated with increased risk of
fibrosis [88]. Despite the contribution of genomic studies in elucidating pathogenic pro-fibrotic
mechanisms, targeted therapies aimed at preventing or treating radiation-associated fibrosis are not
currently available in the clinical setting.

Nephrogenic systemic fibrosis is a rare, progressive disorder of skin thickening, hyperpigmentation,
and extracutaneous fibrosis that develops following administration of gadolinium-based contrast
agents in a subset of patients with renal insufficiency [89–91]. In this condition, an exaggerated
fibrogenic response features high numbers of macrophages and fibroblasts, increased circulating
monocytes, and higher levels of TGF-β in dendritic cells of skin and fascia from patients [92,93].
Among the few genomic studies performed in patients with this condition, one case-control genotyping
study failed to identify associations of disease incidence with polymorphisms in profibrotic mediators
TGFB1 and CAV1, though further studies are needed.
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3. Hepatic Fibrosis

Like other organs, liver fibrosis is the end product of chronic inflammation in response to
injury from a wide variety of sources including alcohol, viral infection, non-alcoholic steatohepatitis,
and cholestasis [94]. A majority of myofibroblasts arise from activated hepatic stellate cells (HSC),
although endogenous fibroblasts, fibrocytes, bone-marrow derived cells, and liver parenchymal cells
can be a source as well. Hepatic stellate cells secrete ECM proteins and metalloproteinases to remodel
tissue. Hepatic fibrosis is characterized by the replacement of collagen IV and VI with collagen
types I and II and fibronectin [94]. A concert of chemokine molecules, adipokines, neurotropic
factors, inflammatory feedback loops, oxidative stress, macrophages, T cells, neutrophils, and mast
cells contribute to fibrogenesis [95]. Cirrhosis develops with progression of hepatic fibrosis, and is
characterized by abnormal hepatocyte regeneration, liver nodules and changes in vasculature [96].
Liver cirrhosis, in conjunction with predisposing genetic and environmental factors, sets the stage for
hepatocellular carcinoma and terminal liver dysfunction. While fibrosis is a common denominator
in liver dysfunction, hepatic disease can be generally divided into non-alcoholic fatty liver disease
(NAFLD), alcoholic cirrhosis, and primary biliary cirrhosis (PBC). Notably, due to the liver’s regenerative
capacity, fibrosis may sometimes be reversible upon removal of the inciting inflammatory factors,
making these attractive targets for therapeutic intervention [95].

Several GWAS have been conducted in patients with NAFLD. A GWAS in a Japanese cohort
identified the SNP in PNPLA3 as associated with NAFLD [97]. A 2011 GWAS of several cohorts
including the AGES, Family Heart, Old Order Amish, and Framingham Heart studies also identified
PNPLA3 associations as well as NCAN, GCKR, and LYPLAL1 [98]. A recent GWAS of a European
cohort confirmed PNPLA3 as a risk factor for NAFLD and additionally identified TM6SF2, HSD17B13,
and PYGO1 [99]. A study of patients in the electronic medical records and genomics network (eMERGE)
identified 3 SNPs at the PNPLA3-SAMM50 area (rs738409, rs738408, and rs3747207) as well as IL17RA
and ZFP90-CDH1 [100]. In a Hispanic pediatric male cohort, a GWAS identified SNP rs6128907 near
actin related protein 5 homolog (ACTR5) and SNP rs11166927 in TRAPPC9 to be associated with
fibrosis progression and NAFLD severity. [101]. A transcriptome analysis of RNA from plasma and
liver biopsies in separate cohorts with NAFLD showed a statistical upregulation of osteopontin (SPP1)
and CXCL10, serving as a potential biomarker of NAFLD [102]. In human samples of non-alcoholic
steatohepatitis, miR-223 was elevated and implicated in the progression of steatosis to nonalcoholic
steatohepatitis [103]. GWAS of non-alcoholic steatohepatitis patients treated with obeticholic acid,
an activator of farnesoid X nuclear receptor, identified loci associated with successful reversal of
fibrogenesis following treatment [104]. For a recent review on ‘omics of non-alcoholic fatty liver disease,
see the review by Perakakis et al. [105].

While abstinence from alcohol has proven beneficial at reversing fibrosis [106], the underlying
genomic changes in alcoholic cirrhosis are poorly understood. In one study, mice and human cultured
HSCs were compared using single-cell RNA-seq; CSF1R, PLEK, LAPTM5, CD74, CD53, MMP9, CD14,
CTSS, TYROBP, and ITGB2 were upregulated in both alcohol-induced mouse HSCs and alcohol liver
disease HSCs [107]. GWAS studies of a Mestizo Mexican and European Caucasian cohorts found the
SNP rs738409 in PNPLA3 to be linked with alcoholic liver disease, similar to NAFLD [108,109]. To date,
however, the majority of genetic analyses in alcoholic cirrhosis have focused on alcoholism-related
behavior or alcohol metabolism rather than the progression of liver damage in alcoholic cirrhosis [110].

Several GWAS studies of PBC have been performed in Japanese, North American, Italian, and other
European cohorts. In Japanese cohorts, TNFSF15, POU2AF1, ARHGAP31, TMEM39A, POGLUT1,
TIMMDC1, and CD80 were found to be susceptibility loci of primary biliary cholangitis [111,112],
while SNP rs13720 in CTSZ was strongly associated with jaundice progression [113]. Another Japanese
GWAS compared Crohn’s disease and PBC and found susceptibility loci in ICOSLG and IL12B to be
associated with both disorders [114]. A GWAS of 2072 North American patients identified 16 SNPs
associated with PBC with the strongest association at the HLA-DQB1 locus as well as SNPs at IL12A
and IL12RB2, implying a role for interleukin-12 in the development of primary biliary cirrhosis [115].
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In the same North American cohort, additional associated SNPs in STAT4 and CTLA4 loci were
identified. GWAS in an Italian cohort replicated the association with IL12A and IL12RB and further
identified susceptibility in SPIB, IRF5-TNPO3, and 17q12-21 loci [116]. Another European cohort
including more than 7000 individuals identified 12 new loci related to biliary cirrhosis, among them
were STAT4, IL7R, CD80, IKZF3, CXCR5, TNFRSF1A, and NFKB1 [117]. Finally, viral hepatitis and
alpha-1 antitrypsin deficiency also contribute to the burden of fibrotic liver disease, and fibrosis severity
in patients coinfected with human immunodeficiency virus (HIV) and HCV was associated with locus
on chromosome 3p25 (rs61183828) neighboring CAV3 and RAD18 [118].

There has been an abundance of clinical evidence showing the regression of liver fibrosis with the
removal of the inciting agent, making it the current best anti-fibrotic therapy [119–121]. Removal of the
offending toxin decreases cytokine levels and increases collagenase and metalloproteinase activities to
remove ECM [122], and there are ongoing clinical trials of therapies directed at apoptosis inhibition,
HSC inhibition, and immune modulation [123]. In the phase II FLINT clinical trial, obeticholic acid
showed benefit in liver fibrosis and improvement of steatosis and inflammation in patients with
nonalcoholic steatohepatitis [104]. Unfortunately, preclinical-to-clinical translation of many antifibrotic
therapies from mice to humans has proven challenging; while ACE inhibitors, ARBs, the insulin
sensitizing agent farglitazar, the PPARγ agonist pioglitazone, and TNFα antagonist pentoxifylline
showed promising pre-clinical results, clinical trials showed no significant antifibrotic benefit in
humans [124–127]. Beyond identifying novel therapeutic targets, genomics can be used to create
non-invasive diagnosis tools. Transcriptome analysis of peripheral blood in patients with HBV infection
identified COL5A1, HLA-DQB1, MMP2, and CDK4, and created an edge-based panel for determining
diagnosis and prognosis of hepatocellular carcinoma in patients [128]. As results of ongoing genomic
studies in the various types of liver disease become available, new biomarkers and therapeutics will
hopefully be developed.

4. Renal Fibrosis

4.1. Chronic Kidney Disease

Renal injury, inflammation, and subsequent fibrosis can be triggered by exogenous insults such as
obstruction and infection. However, the majority of antifibrotic research centers on chronic kidney disease
(CKD), most often resulting from diabetes and hypertension. CKD is histopathologically characterized
by progressive extracellular matrix replacement of interstitial or glomerular tissue [129,130]. During CKD
progression, pro-inflammatory and profibrotic cytokines and growth factors are continually released,
leading to an excessive ECM accumulation and resulting in kidney fibrosis.

Beginning in 2009, GWAS have been conducted in numerous populations (East Asian, African
American, Native American, Hispanic/Latino, and European cohorts) [131–140] and regions (Sri Lanka,
Saudi Arabia) [141,142] to identify CKD-associated loci. In a meta-analysis of four European cohorts,
CKD susceptibility variants were identified in SHROOM3 and STC1 [143], which was followed by an
expanded CKDGen study that correlated renal function and creatinine indices with susceptibility loci
in or near a series of genes with roles in podocyte function, angiogenesis, solute transport and renal
metabolism [134,144]. Notably, many of the GWAS commonly identified various SNPs in UMOD as
being strongly associated with CKD risk. UMOD encodes the protein uromodulin that is produced in
the loop of Henle, and while its exact function in renal fibrosis is unclear, rare mutations in UMOD are
associated with autosomal dominant kidney diseases such as familial hyperuricemic nephropathy and
medullary cystic kidney disease type 2 [143] and there is evidence that uromodulin is a non-invasive
urinary biomarker of nephron tubule health in CKD [145]. GWAS in patients with diabetic kidney
disease/diabetic nephropathy identified a strong association with a variant in COL4A3, a structural
component of the glomerular basement membrane [146]. Similar studies in a type 2 diabetes cohort
reported associations with UMOD and PRKAG2, both also correlated with estimated glomerular
filtration rate; an expanded analysis in larger cohorts confirmed these variants and further identified
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an association between GABRR1 and microalbumiuria [147]. Another GWAS [132] further associated
UMOD, GALNT11, and CDH23 variants with CKD progression. A compartment-specific GWAS
combined with expression of quantitative trait (GWAS-eQTL), wherein the kidney glomerulus and
tubule compartments were microdissected prior to GWAS-eQTL to enhance gene identification by
reducing cellular heterogeneity; identified DAB2 as a likely causal gene for CKD development [148].

Missing from GWAS studies are direct associations with TGF-β, whose canonical signaling
drives renal fibrosis and whose pro-fibrotic actions are regulated by noncoding RNAs and epigenetic
changes [3]. Meta-analysis of GWAS in type 1 diabetic nephropathy found that renal fibrosis is
associated with AFF3, which may possibly modulate renal tubule fibrosis through TGF-β [149].
TGF-β generates intracellular signals through SMADs and is elevated in fibrosis models and chronic
kidney disease [150]. Specifically, TGF-β plays a role in ECM deposition in the mesangium and perhaps
in epithelial–mesenchymal transition (EMT) in tubular cells, through the exact role of TGF-β in EMT is
under debate [8,151].

Exome sequencing, epigenomics, and transcriptomics have provided additional insights into
the pathogenesis of CKD fibrosis. Homozygosity mapping of a family with karyomegalic interstitial
fibrosis revealed a homozygous nonsense mutation in FAN1, a nuclease that repairs DNA inter-strand
crosslinks, suggesting a connection between DNA repair and renal fibrosis [152]). Through epigenomics,
DNA methylation changes have been implicated in aging kidney fibrosis of both the glomerulus
and the interstitium [153]. In particular, DNA methylation can be specifically localized to CKD gene
targets such as RASAL1, which also is found to be methylated in liver fibrosis [150]. A complementary
comparison study between African American and Caucasian patients with CKD uncovered an
association between lncRNA LINC00923 and CKD progression [154]. Transcriptome analysis of the
aging kidneys in which nephrons scar and involute identified genetic variants in age-related genes
including TSPYL5, which modulates p53 expression and telomerase activity [155]. Transcriptome data
from micro-dissected kidney specimens with different clinical presentations of CKD identified a subset
of genes enriched for immune signaling pathways whose expression correlated with fibrosis even
after adjusting for functional indices like eGFR [156]. Another study profiled renal epithelial cells
stimulated with TGF-β ex vivo and confirmed the resulting pro-fibrotic signature in human diabetic
nephropathy tissue [157].

There has recently been an abundance of discoveries of differential miRNA expression in fibrotic
tissues and may be a potential source of new therapies in the future through antimir oligonucleotides
development. However, nearly all miRNA studies for renal fibrosis are limited to rodent models and
are outside the scope of this review. It is worth noting that urinary sediment miRNAs can serve as
non-invasive biomarkers of kidney disease, much like uromodulin. In a study of IgA nephropathy,
miR-21 and mir-205 were significant biomarkers that could be used to monitor disease progression [158].

Approved anti-fibrotic therapies for CKD currently include drugs that modulate the
renin-angiotensin-aldosterone system (RAAS), such as ACE inhibitors, ARBs, and statins which
likely modulate TGF-β expression [159]. The central role of TGF-β in renal fibrosis has directed the
focus of many clinical trials to TGF-β directed therapies. A humanized monoclonal TGF-β antibody
was tested in clinical trials in patients with diabetic nephropathy, but was terminated early due to
lack of efficacy [160]. Fresolimumab, which inhibits three isoforms of human TGF-β, did not progress
beyond phase II clinical trials due to underpowering of studies [161,162]. Pirfenidone, a small molecule
inhibitor of TGF-β signaling, improved GFR in a small study of focal segmental glomerulonephritis
patients [163] as well as in a randomized double-blind placebo-controlled study in patients with
diabetic nephropathy [163].

4.2. SLE and Lupus Nephritis

Beyond CKD, renal fibrosis often occurs in the setting of systemic lupus erythematosus (SLE) as a
consequence of autoimmune inflammation leading to lupus nephritis. SLE is a complex, heterogenous
autoimmune disease that develops from an interplay of genetic, environmental and immunologic risk
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factors [164] and can affect nearly every organ system. Microarray profiling of biopsied glomeruli from
patients with lupus nephritis identified fibrotic biomarkers including COL1A2, COL6A3, MMP7, DSP,
KRT18, and CCL2 [165]. Single cell RNA sequencing of renal biopsies showed elevated type I interferon
in the tubular cells compared to controls, a marker that was also correlated to treatment resistance.
In treatment-resistant patients, pathway analysis revealed the upregulation of ECM proteins TIMP1
and SERPING in renal tubular cells, both of which are associated with renal fibrosis. Interestingly,
COL1A1, COL14A1, COL1A2, and COL5A2 expressions in renal tubules as well as in non-lesional
patient skin biopsy keratinocytes could be used to differentiate between treatment responders and
non-responders [166].

Several miRNAs have demonstrated utility as biomarkers in lupus nephritis. Tissue levels of
miR-150, which is downstream of anti-fibrotic protein suppressor of cytokine signaling 1 (SOCS1),
is a biomarker of disease chronicity [167]. MiR-3201 and miR-1273e were downregulated in lupus
nephritis as compared with diabetes-associated nephrosclerosis [168]. MiR-21, miR-150, and miR423
were identified as circulating plasma biomarkers [169]. In urinary exosomes of patients with lupus
nephritis, miR-146 served as a biomarker of disease-associated fibrosis in a mechanism involving
TRAF6 signaling [170], while miR-21, miR0150, and miR-29c levels correlated with disease chronicity
via their targeting of VEGFA and SP1 [171,172].

Regarding extra-renal manifestations of SLE, transcriptome profiling of cutaneous SLE tissue
identified downregulation in miR-150, miR-21, and miR-1246 [173]. In discoid lesions, upregulation
of miR-31 and miR-485-3p contributed to skin inflammation and fibrosis [174], which was linked to
overexpression of TGF-β pathway genes SERPINE1, MMP9, and TGFBR1 and phosphorylation of
SMAD3 and TGFB1 [175].

5. Lung Fibrosis

Idiopathic pulmonary fibrosis (IPF) is an incapacitating, fatal, progressive disease that represents
the most common form of idiopathic interstitial pneumonia [176,177]. IPF is characterized by initial
damage to the alveolar epithelium, which sends signals to fibroblasts and macrophages, stimulating
tissue damage and synthesis of ECM. NETs released from neutrophils contribute to inflammation
and further activate associated myofibroblasts to perpetuate fibrosis [11]. The resultant destruction
of parenchyma and replacement of alveoli by dense fibrotic tissue causes decline in lung function,
leading to respiratory failure and death [178]. Although the pathogenesis of IPF is not well understood,
various environmental and infectious triggers as well as genetic risk factors are associated with its
development. Among environmental factors, 20+ pack-years of smoking has a strong causative
relationship. Other environmental exposures that increase IPF risk are metal dusts (brass, lead,
and steel) and wood dust (pine). Occupational factors include farming, raising birds, hair dressing,
stone cutting/polishing, and exposure to livestock and to vegetable dust/animal dust [179–181].
In addition, several viruses including Epstein-Barr virus (EBV) hepatitis C, cytomegalovirus, human
herpesvirus (HHV-) 7, and HHV-8 may play a role in the pathogenesis of IPF [182–185].

A growing body of evidence in the form of GWAS have supported the role of genetic factors
in the development of familial and sporadic IPF, to the extent that at least one-third of the risk
for developing fibrotic IIP is explained by common genetic variants [186]. Risk loci in ELMOD2
(on chromosome 4q31) [187–191], SFTPA2 (encoding A2 surfactant protein) [192], and genetic variants
within the human telomerase reverse transcriptase (hTERT) or RNA (hTR) components of the
telomerase [193–197] have been associated with familial IPF. Other studies in sporadic IPF patient
cohorts have identified polymorphisms in genes encoding cytokines IL-1 α, TNFα, lymphotoxin α, IL-4,
IL-6, IL-8, IL-10, and IL-12 enzymes (α1-antitrypsin and angiotensin-converting enzyme) [198–200],
profibrotic molecules TGFB1, coagulation pathway genes PAI1 and PAI2, genes for surfactant proteins
A and B, immunomodulatory NOD2/CARD15, and matrix metalloproteinase MMP1 in association
with increased risk of IPF. Human leukocyte antigen (HLA) class I and class II allele haplotypes have
also been shown to have a skewed distribution among patients with IPF [201–203]. Additional IPF
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GWAS have identified independent association signals with genes linked to epithelial cell function,
including lung defense (MUC5B), telomere maintenance (TERT and STN1), and cell–cell adhesion
(DSP and DPP9) [204]. While telomerase mutations are associated with short telomeres and more
rapid disease progression [205], MUC5B and toll-interacting protein (TOLLIP) variants are associated
with slowed progression [206]. AKAP13 has been identified as a potential driver of IPF pathogenesis;
rs62025270 was associated with disease susceptibility and correlated with increased AKAP13 expression
in fibrotic lung tissue [207]. Taken together, genes in IPF-associated risk loci are implicated in a series
of biological processes including alveolar stability, host defense, cell–cell barrier function, and cellular
senescence [186].

Transcriptome profiling by microarray and next-generation sequencing has been used to identify
differential gene expression in IPF, using genomic material from IPF lung and ex vivo fibroblasts
isolated from IPF samples, in comparison with normal lung samples [208]. For instance, profiling of
non-cultured IPF fibroblasts identified altered expression of genes involved in global processes of
cellular homeostasis, including Wnt signaling, apoptosis, and cell cycle regulation [209]. Most recently,
single-cell RNA-seq of lung parenchyma from IPF patients catalogued the spectrum of cell populations,
which included myofibroblasts, profibrotic macrophages, and a new population of epithelial basaloid
cells expressing mesenchymal markers that neighbor myofibroblast collections in the lung [210].

Non-coding RNAs also have demonstrated roles in IPF pathogenesis. MiRNA profiling of lung
tissue from IPF patients has been performed by numerous groups, though functional implications of
differential miRNA expression in IPF has primarily been studied in animal models. Pro-fibrotic miR-21
and miR-155 expressions are differentially upregulated and anti-fibrotic let-7a, miR-29, miR-30,
and miR-101 expressions are differentially downregulated in IPF patient lungs [211–215]. The expression
of miR-21, which downregulates SMAD7 leading to increased pro-fibrotic canonical TGFβ pathway
signaling, was increased in the serum of IPF patients, and its levels correlated with a decrease in lung
function [216]. Njock et al. [217] performed miRNA expression profiling of sputum-derived exosomes
from IPF patients, identifying 21 miRNAs that were differentially expressed, including upregulated
miR-142-3p and miR-33a-5p and downregulated let-7d-5p. In addition to miRNAs, long non-coding
RNAs are emerging as contributors to IPF development (reviewed in [218]); as one example, lncITPF is
highly upregulated in lung fibrosis [219].

Advances in therapies have led to the development and approval of two drugs that slow the
rate of fibrosis and associated functional decline in IPF: nintedanib, a tyrosine kinase inhibitor that
targets growth factor signaling downstream of VEGFR, FGFR, and PDGFR; pirfenidone, which exerts
anti-inflammatory as well as anti-fibrotic effects via inhibition of collagen synthesis, downregulation of
TGF-β and TNF alpha, and decreased fibroblast proliferation [177]. Proteomic analysis of serum from
IPF patients at baseline and 1 year after nintedanib treatment identified differences in proteins related
to cell differentiation and epithelial-mesenchymal transition [220]. Pamrevlumab, an antibody therapy
targeting connective tissue growth factor, is currently in phase II clinical trials.

6. Cardiac Fibrosis

The heart has minimal regenerative potential as compared to other organs. Multivariate factors
influence the development of cardiac fibrosis, including diabetes, systemic hypertension, ischemia,
and primary cardiomyopathies [221]. Cardiac fibrosis is initially beneficial in the setting of myocardial
infarction or other cardiac insults by preventing heart wall rupture, but prolonged fibroblast activation
leads to fibrosis beyond the infarcted tissue. The excessive ECM deposition causes ventricle stiffness,
decreased compliance, and eventual heart failure [222]. Despite the major health burden of cardiac
fibrosis, there are limited antifibrotic therapies available, and there is a need for studies to elucidate the
factors driving fibrosis in cardiac disease [221].

RNA-Seq of cardiac tissue from patients with dilated cardiomyopathy identified differential
expression of WWP2, an E3 ubiquitin protein ligase 2, which regulates SMAD function and
subsequent development of cardiac fibrosis [223]. Transcriptome analysis of 15 patients with ischemic
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cardiomyopathy identified 35 lncRNAs involved in the regulation of extracellular matrix proteins [224].
In another study, gene expression profiling identified CORIN, FIGF, and COL1A1 as playing putative
roles in fibrosis of cardiomyopathy [225]. Another study [226] used machine learning to analyze
RNA-seq data in patients with dilated and ischemic cardiomyopathy for the purposes of improving
diagnostic accuracy, identifying a series of “highly contributing genes” relating to fibrosis that achieved
93% accuracy. Additionally, epigenomic studies of dilated cardiomyopathy patients found that
abnormal DNA methylation changed mRNA expression of LY75 and ADORA2A [227] with later
studies linking 517 loci with dilated cardiomyopathy [228]. A case-control GWAS identified a SNP
within contractile protein-encoding FHOD3 with risk of hypertrophic cardiomyopathy [229].

Other genomic studies in fibrosing cardiac disorders have focused on changes in gene expression
and regulation in the context of myocardial infarction. GWAS identified SNPs within the novel gene
MIAT as conferring risk for myocardial infarct [230]. Through microarray analysis, galectin-3 was
reported to be overexpressed in infarcted myocardium, which was clinically verified in patients with
ST-elevation myocardial infarction [231]. Biopsies of infarcted tissues in transplanted hearts showed
upregulation of pro-fibrotic miR-21, miR-214, and miR-223 and downregulation of anti-fibrotic miR-29b
and miR-149 [232]. Transcriptomic analysis of circulating plasma RNA in post-myocardial infarction
patients found mitochondrial long noncoding RNA uc022bqs.1 (LIPCAR) to be differentially regulated
depending on the stage of disease progression, serving as a predictor of future death in patients with
heart failure [233]. Moreover, ex vivo stimulation of differentiated human cardiac fibroblasts with
TGF-β followed by RNA-seq analysis identified a critical role for upregulation of interleukin-11 (IL11)
in cardiac fibrosis [234].

With regard to therapeutics, clinical trials have been designed to target molecules implicated
in fibroblast activation (TGF-β, endothelin, Angiotensin II, CCN2, PDGF, and others), as activated
fibroblasts increase expression of alpha-smooth muscle actin to increase ECM deposition; however,
most studies are still in the pre-clinical phase [235]. The few approved cardiac antifibrotic therapies
modulate the renin-angiotensin-aldosterone system, such as angiotensin receptor inhibitors, which has
been shown to slow cardiac fibrosis but not completely inhibit or reverse its progression [236]. Relaxin,
a vasodilatory peptide hormone expressed in the heart, endometrium, mammary gland, placenta,
and prostate has been reported to suppress cardiac remodeling [237], and human recombinant serelaxin
inhibits production and perhaps even mediates the reversal of fibrosis through relaxin family peptide
receptor 1 (RXFP1) [237]. Unfortunately, while initial trials were promising, phase III trials of serelaxin
showed no significant difference in worsening heart failure or incidence of death in the treatment
group vs. placebo [238].

7. Conclusions and Future Directions

In this review, we have synthesized findings from a diverse spectrum of genomic studies
conducted in patient samples across multiple platforms. Findings from these studies have elucidated
the pathophysiologic mechanisms that underlie the development of fibrosis in multiple organs.
While the inciting acute injury trigger may vary, fibrosis is the shared end result of a disordered
wound healing response. It is, therefore, not surprising that many of the genes and pathways reported
in the studies herein are conserved among different tissues (Figure 1). Ultimately, the design and
development of therapies targeting shared and distinct processes of fibrosis identified through genomic
studies will result in improved quality of life for millions of patients suffering from fibrotic diseases.
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Abbreviations

ACE Angiotensin-converting enzyme
ADORA2A Adenosine A2a receptor
AFF3 AF4FMR2 family member 3
AGAP2 ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 2
AGES Age, gene/environment susceptibility
ALMS1 Alstrom syndrome 1
ARB Angiotensin II receptor blocker
ARHGAP31 Rho GTPase activating protein 31
ATG5 Autophagy related 5
ATXN2 Ataxin 2
BANK1 B Cell Scaffold Protein With Ankyrin Repeats 1
BCAS3 Breast carcinoma amplified sequence 3
BLCC Bioengineered bilayered living cell construct
CACNA1G-AS1 CACNA1G antisense RNA 1
CAV1 Caveolin-1
CCN2 Cellular communication network factor 2
CD80 Cluster of differentiation 80
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CDH1 Cadherin 1
CDH23 Cadherin 23
CDK4 Cyclin-dependent kinase 4
circRNA circular RNA
CKD Chronic kidney disease
COL1A1 Collagen type I alpha 1
COL4A3 Collagen type IV alpha 3
COL5A1 Collagen type V alpha 1
CORIN Corin, atrial natriuretic peptide-converting enzyme
CPS1 Carbamyl phosphate synthetase I
CSF1R Colony stimulating factor 1 receptor
CSMD1 CUB And Sushi Multiple Domains 1
CTBP1 C-terminal binding protein 1
CTGF Connective tissue growth factor
CTLA4 Cytotoxic T-lymphocyte associated protein 4
CTSS Cathepsin S
CTSZ Cathepsin Z
CXCL10 C-X-C motif chemokine ligand 10
CXCR5 C-x-c motif chemokine receptor 5
DAB2 Disabled homolog 2
DACH1 Dachshund homolog 1
DGKA diacylglycerol kinase alpha
DPP9 Toll-interacting protein
EBV Epstein Barr virus
ECM Extracellular matrix
EGR1 Early Growth Response 1
eMERGE Electronic medical records and genomics
EMT Epithelial-mesenchymal transition
eQTL Expression of quantitative trait
FAN1 Fanconi anemia associated nuclease 1
FGFR Fibroblast Growth Factor Receptor
FIGF C-fos–induced growth factor
FKBP10 FK506-binding protein 10
FN1 Fibronectin 1
FOXL2 Forkhead box L2
GABRR1 Gamma-aminobutyric acid type A receptor subunit rho1
GALNT11 Polypeptide N-acetylgalactosaminyltransferase 11
GCKR Glucokinase regulator
GRB10 Growth factor receptor bound protein 10
GWAS Genome-wide association study
HBV Hepatitis B virus
HCV Hepatitis C virus
HGF Hepatocyte growth factor
HHV Human herpesvirus
HIF-1α Hypoxia inducible factors
HLA Human leukocyte antigen
HLA-DQB1 Major histocompatibility complex, class II, DQ beta 1
HNF1A-AS1 HNF1A Antisense RNA 1
HSC Hepatic stellate cells
HSD17B13 Hydroxysteroid 17-beta dehydrogenase 13
hTERT Human Telomerase Reverse Transcriptase
hTR Human Telomerase RNA
ICOSLG Inducible T-cell costimulator ligand
IGF, IGFBP Insulin-like growth factor, Insulin-like growth factor binding protein
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IIP Idiopathic interstitial pneumonia
IKZF3 IKAROS family zinc finger 3
IL11 Interleukin-11
IL12A Interleukin-12 subunit alpha
IL12B Interleukin-12 subunit beta
IL12RB2 Interleukin 12 receptor subunit beta 2
IL17RA Interleukin 17 receptor A
IL7R Interleukin 7 receptor
IPF Idiopathic pulmonary fibrosis
IRAK1 Interleukin 1 receptor associated kinase 1
IRF4, 5, 7 Interferon regulatory factor
IRF5-TNPO3 Interferon regulatory factor 5 - transportin 3
ITGB2 Integrin subunit beta 2
LAPTM5 Lysosomal protein transmembrane 5
LASS2 Ceramide synthase 2
LINC00923 Long intergenic non-protein coding RNA 923
LIPCAR Long non-coding cardiac associated RNA
lncRNA Long non-coding RNA
LY75 Lymphocyte antigen 75
LYPLAL1 Lysophospholipase like 1
MAPK mitogen-activated protein kinase
MIAT Myocardial infarction associated transcript
miRNA MicroRNA
MMP 1 Matrix metallopeptidase 1
MMP2 Matrix metalloproteinase 2
MMP9 Matrix metallopeptidase 9
MYO 1E, MYO7 Myosin 1E, Myosin 7
NAFLD Non-alcoholic fatty liver disease
NCAN Neurocan
NEDD4 Neural precursor cell expressed developmentally down-regulated protein 4
NET Neutrophil extracellular trap
NFKB1 Nuclear factor kappa B subunit 1

NOD2/CARD15
Nucleotide-binding oligomerization domain-containing protein 2 / Caspase
Recruitment Domain-Containing Protein 15

NOTCH4 Neurogenic locus notch homolog 4
OTUD6B Ovarian tumor domain deubiquitinase 6B
PAI1/ PAI2 Plasminogen Activator Inhibitor 1/ Plasminogen Activator Inhibitor 2
PBC Primary biliary cirrhosis
PDGF Platelet-derived growth factor
PDGFR Platelet Derived Growth Factor Receptor
PIP5K1B Phosphatidylinositol-4-phosphate 5-kinase type 1 beta
PLEK Pleckstrin
PNPLA3 Patatin like phospholipase domain containing 3
POGLUT1 Protein O-glucosyltransferase 1
POLD1 DNA Polymerase Delta 1, Catalytic Subunit
POU2AF1 POU domain class 2-associating factor 1
PRKAG2 Protein kinase AMP-activated non-catalytic subunit gamma 2
PTPN5 Protein tyrosine phosphatase non-receptor type 5
PYGO1 Pygopus family PHD finger 1
RAAS Renin-angiotensin-aldosterone system
RASAL1 RAS protein activator like 1
RUNX2 Runt-related transcription factor 2
RXFP1 Relaxin family peptide receptor 1
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SAMM50 Sorting and assembly machinery component 50 homolog
SFTPA2 surfactant protein A2
SHROOM3 Shroom family member 3
SLC22A2 Solute carrier family 22 member 2
SLC34A1 Solute carrier family 34 member 1
SLC6A13 Solute carrier family 6 member 13
SLC7A9 Solute carrier family 7 member 9
SLE Systemic lupus erythematosus
α-SMA Alpha smooth muscle actin
SOCS1 Suppressor of cytokine signaling 1
SOX9 SRY-box transcription factor 9
SPIB Spi-b transcription factor
SPP1 Secreted phosphoprotein 1
SSc Systemic sclerosis
STAT4 Signal transducer and activator of transcription
STC1 Stanniocalcin 1
TFDP2 Transcription factor DP-2
TGF-β Transforming growth factor beta
TIMMDC1 Translocase of inner mitochondrial membrane domain containing 1
TM6SF2 Transmembrane 6 superfamily member 2
TMEM39A Transmembrane protein 39a
TMEM60 Transmembrane protein 60
TNC Tenascin C
TNFRSF1A TNF receptor superfamily member 1a
TNFSF15 TNF superfamily member 15
TOLLIP Matrix Metalloproteinase
TRAPPC9 Trafficking protein particle complex 9
TSIX Antisense to Xist (X-inactive specific transcript)
TSPYL5 Testis-specific Y-encoded-like protein 5
TXNRD2 thioredoxin reductase 2
TYROBP TYRO protein tyrosine kinase-binding protein
UBE2Q2 Ubiquitin conjugating enzyme E2 Q2
UMOD Uromodulin
VEGFA Vascular endothelial growth factor A
VEGFR Vascular Endothelial Growth Factor Receptor
VLU Venous leg ulcer
WDR37 WD repeat domain 37
WDR72 WD repeat domain 72
WWP2 WW domain-containing protein 2
XRCC1 X-Ray Repair Cross Complementing 1
ZFP90 Zinc finger protein 90 homolog
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