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When mammalian spermatozoa are released in the female reproductive tract, they are
incapable of fertilizing the oocyte. They need a prolonged exposure to the alkaline medium
of the female genital tract before their flagellum gets hyperactivated and the acrosome
reaction can take place, allowing the sperm to interact with the oocyte. Ionic fluxes across
the sperm membrane are involved in two essential aspects of capacitation: the increase in
intracellular pH and the membrane hyperpolarization. In particular, it has been shown that
the SLO3 potassium channel and the sNHE sodium-proton exchanger, two sperm-
specific transmembrane proteins, are necessary for the capacitation process to occur.
As the SLO3 channel is activated by an increase in intracellular pH and sNHE is activated
by hyperpolarization, they act together as a positive feedback system. Mathematical
modeling provides a unique tool to capture the essence of amolecular mechanism and can
be used to derive insight from the existing data. We have therefore developed a theoretical
model formalizing the positive feedback loop between SLO3 and sHNE in mouse
epididymal sperm to see if this non-linear interaction can provide the core mechanism
explaining the existence of uncapacited and capacitated states. We show that the
proposed model can fully explain the switch between the uncapacitated and capacited
states and also predicts the existence of a bistable behaviour. Furthermore, our model
indicates that SLO3 inhibition, above a certain threshold, can be effective to completely
abolish capacitation.
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1 INTRODUCTION

Despite continuous research in reproductive biology over the last two decades, the prevalence
of couple infertility (over 12 months) remains around 15%, among which 30% is due to a male
infertility factor (Hajder et al., 2016). The sperm count has been continuously decreasing for
40 years, raising the alarm for a major fertility crisis by the midst of the 21st century and the
need for increased research in male infertility (Barratt et al., 2017; Levine et al., 2017; Duffy
et al., 2020). Our knowledge of the molecular regulation of sperm motility and its fertilization
potential is still incomplete and the etiology of a number of human male infertility cases
remains unknown. Therefore, whether in search of new male fertility screening methods or
novel contraceptive solutions, a deeper understanding of the molecular events regulating sperm
functions is needed. These functions notably depend on ion homeostasis, which is controlled by
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ion channels and transporters. Many of these proteins or their
regulatory subunits are expressed exclusively in sperm
cells, making them ideal pharmacological targets (Wang
et al., 2021).

Before mammalian spermatozoa are able to fertilize the
oocyte, they need to spend some time in the female genital
tract. In human this duration must be of several hours while
in mouse it is around an hour. During this transit, spermatozoa
are exposed to a diversity of environmental and intracellular
signals allowing sperm to acquire a special form of motility,
known as hyperactivation, and the ability to undergo the
acrosome reaction. This process is called capacitation and
since its discovery (Austin, 1951; Chang, 1951), in vitro
studies of mammalian sperm showed that the presence of
albumin and bicarbonate in the physiological incubation
medium is essential for capacitation to occur (Lee and Storey,
1986; Stival et al., 2015).

Mammalian sperm capacitation is characterized by an
increase in intracellular pH (pHi) (Zeng et al., 1996),
membrane hyperpolarization (Arnoult et al., 1999) and a
calcium influx from the extracellular medium (Ruknudin and
Silver, 1990), and since nearly three decades now,
pharmacological and genetic studies have revealed the
presence of sperm-specific proteins that are essential for male
fertility and necessary for the sperm to reach capacitation: The
sNHE sodium-proton exchanger, the SLO3 potassium channel
and the CATSPER calcium channel. The absence of any of the
corresponding genes leads to male infertility without any
systemic abnormality, in accordance with the fact that these
proteins are expressed only in the sperm (Ren et al., 2001; Wang
et al., 2003; Santi et al., 2010).

The calcium influx, increase in pHi and hyperpolarization
observed during capacitation are dependent on the activity of
CATSPER, sNHE and SLO3 (Carlson et al., 2003; Wang et al.,
2003; Santi et al., 2010), and these actors operate all together as
CATSPER and SLO3 are activated by an elevation of pHi and
sNHE is activated by hyperpolarization (Schreiber et al., 1998;
Kirichok et al., 2006; Windler et al., 2018). These considerations
led Chávez et al. (2014) to the proposal of the existence of a
positive feedback loop between the activation of sNHE and SLO3,
leading to a high pHi and membrane hyperpolarization, that
could promote the pHi-dependent CATSPER’s activity during
capacitation.

In order to test this hypothesis and find if capacitation can
indeed be controlled by the feedback loop between sNHE and
SLO3, we propose a mathematical model for the capacitation
process based on these two essential molecular actors of
capacitation. The model also includes the known effect of
PKA-dependent phosphorylation on SLO3, and even though
the capacitation process includes other regulatory changes, the
focus is here set on a minimal number of actors that could be at
the core of a capacitation switch. Using this minimal model we
then investigate the conditions necessary for the incubation
medium to promote capacitation and ask whether this process
of capacitation can be reversed back. Finally we also investigate
the most effective way of preventing capacitation by inhibition of
sNHE and SLO3.

2 MATERIALS AND METHODS

Our model is a minimal two variables model describing the
evolution in time of the intracellular pH (pHi) and the
transmembrane electrical potential (Vm) of a mouse
epididymal spermatozoon, which includes the feedback
between the increase in pHi and hyperpolarization resulting
from the activations of sNHE and SLO3.

The first Eq. 1 links the evolution of pHi to the different
mechanisms related to proton homeostasis (Figure 1A),
where the β factor is the total pHi buffer capacity of the
sperm cell. The second Eq. 2 is based on the conservation of
the electrical charge and shows that the evolution of the
transmembrane potential depends on the contributions of
SLO3 and a leak current. The factor Cm is the membrane’s
capacitance of the sperm cell. All the actors taken into account
in the two equations of the model are schematized on
Figure 1A.

The first term on the right side of Eq. 1 represents the
contribution of the sperm-specific sodium-proton exchanger
sNHE. This contribution is always positive as the extrusion of
protons has the effect of increasing the pHi. This transporter
has a putative voltage sensor (Wang et al., 2003) and is
activated by hyperpolarization in sea urchin sperm
(Windler et al., 2018) (Figure 1B). Moreover, the half
maximal activation’s voltage of sNHE, VsNHE

50 , depends on
the intracellular cAMP concentration. As the cAMPi
production by the soluble adenylyl cyclase (sAC) is a
function of the concentration of HCO3

−, VsNHE
50 can be

modeled as a Hill function as follow:

VsNHE
50 � ~V

sNHE

50 + ksNHE · 1

1 + KsNHE
Ab

[HCO −
3 ]i( )

2 (3)

The constant ~V
sNHE
50 is the half maximal activation’s voltage of

sNHE in absence of bicarbonate. The maximal activation shift of
sNHE, ksNHE, has been set to the value of 14 mV, corresponding
to experimental data where [cAMP]i = 1mM, which is well above
the physiological level (Garbers et al., 1982; Jansen et al., 2015).
Precise data for the voltage activation parameters of sNHE against
[HCO3

−]i is not available in the literature; yet, based on the
percentage of hyperpolarized sperm against the bicarbonate
concentrations obtained by Escoffier et al. (2015) showing a
jump around or below 7 mM, it is reasonable to take KsNHE

Ab
at 3 mM.

In our model, the soluble adenylyl cyclase activation is controlled
directly by the intracellular bicarbonate concentration. Intracellular
calcium concentration is also known to activate this adenylyl cyclase
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(Litvin et al., 2003). As a first approximation, our model indirectly
includes this effect of sAC’s activation by calcium through KsNHE

Ab
because an elevation of calcium is concomitant with an elevation of
bicarbonate. Experimental data shows indeed that the addition of
bicarbonate to the sperm incubating medium leads to a 1minute
scale increase in pHi (which is concomitant with a [HCO3

−]i increase
by virtue of equation 11) and [Ca2+]i (Luque et al., 2018; Chávez
et al., 2019). Finally, the pHi’s dependence of the activity of sNHE is
taken into account as follow:

E � EsNHE

1 + KsNHE
A

[H+]i( )
j (4)

The maximal activity of sNHE (EsNHE),KsNHE
A and j, for which

data is not yet available for mouse sperm, have been set to the
values obtained for sodium-protons’ exchangers in fibroblasts
(Boron, 2004). All parameters are given in Supplementary
Appendix Table S1.

The other contributions to the variation in pHi of the sperm
cell are the following:

Firstly the contribution from the flux of bicarbonates,
J(HCO3

−)
H , representing the sum of the fluxes through all the
bicarbonate transporters. To date, the bicarbonate transporters
reported in sperm are SLC26A3 (Wang et al., 2021), SLC26A6

and a putative electroneutral anion exchanger (Chávez et al.,
2012), possibly a Na+/HCO3

− cotransporter (Demarco et al.,
2003; Vyklicka and Lishko, 2020), and the cystic fibrosis
transmembrane regulator (CFTR) (Hernández-González et al.,
2007; Xu et al., 2007; Escoffier et al., 2012). This bicarbonate flux,
including both active and passive transports, is reduced to its
most simple expression of a linear dependence on the
transmembrane gradient of the bicarbonate concentration
([HCO −

3 ]e − [HCO −
3 ]i), as shown in Eq. S1 in Supplementary

Appendix. We made this choice as we are building a minimal
model of sperm capacitation; only the core process of the
feedback loop, comprising SLO3 and sNHE, is treated to
produce the significant shifts in Vm and pHi of the cell,
regardless of details in the bicarbonate transports.

Secondly, a term of passive flux of protons across the
membrane JpassiveH , described by the Goldman-Hodgkin-Katz
equation for electrodiffusion (Eq. S2 in Supplementary
Appendix), for which the permeability is here chosen in the
physiological range (Putnam, 2012). This term was added to the
model in order to prevent a shift to extra-low pHi values when
[HCO3

−]e is abruptly changed.
The next contribution to the variations in pHi comes from

the effect of changes in extracellular carbon dioxide
concentration which are instantly followed by the same

FIGURE 1 | The feedback loop regulating capacitation. (A) The model takes into account the potassium channel SLO3 and the sodium-proton exchanger sNHE.
SLO3 is activated downstream of cAMP production through the activation of PKA. The cAMP production by the soluble adenylyl cyclase is activated by the presence of
bicarbonate (HCO3

−). A leak current, regrouping all transmembrane electrical currents except through SLO3, is taken into account. HCO3
− passes through the plasma

membrane by a variety of transporters. The carbon dioxyde (CO2) freely and instantly crosses the cell membrane, and equilibrates with HCO3
− and H+. An influx of

protons resulting from themetabolism is taken into account and the intracellular pH varies due to a leak of protons through the plasmamembrane. Finally the total intrinsic
protons buffer βI is present. (B) sNHE activation curve against Vm. Hyperpolarization activates sNHE. In this graph, the intracellular cAMP concentration, which influences
the half activation voltage, is fixed at 1 mM. The y-axis label denominator E is the maximal activity of sNHE. (C) SLO3 activation against pHi. Intracellular alkalization
activates SLO3. In this graph the transmembrane potential Vm is fixed at +80 mV and the phosphorylation level PSLO3 is kept at 0 (unincubated spermatozoa). The y-axis
label denominator gmax

SLO3 denotes ~gSLO3 in the text. (D) An increase in pHi activates SLO3 which lets potassium ions flow out and so hyperpolarizes the cell. This
hyperpolarization activates sNHE which in turn extrudes protons and so increases pHi.
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intracellular carbon dioxide concentration changes as the
permeability of the plasma membrane to CO2 is high. So in
the model, the CO2 concentration is the same on both sides of
the sperm membrane and an increase CO2 results in
acidification of the cell as the CO2 is converted to
bicarbonates and protons. This intracellular equilibration
between carbon dioxide and bicarbonate is fast as the
carbonic anhydrases [CAII, Wandernoth et al. (2015)]
catalyse the reversible reaction, as schematized in
Figure 1A. In the extracellular medium, as the incubation
medium is devoid of carbonic anhydrases as it is usually the
case in vitro incubations, the equilibration should be
considered not instantaneous, but for simplicity we do not
include this delay in our model. We nevertheless carried out
simulations using explicitly the reaction rates of the
conversion of CO2 into protons and checked that the
results and conclusions presented in this paper are not
different (data not shown).

The last contribution to the variations in pHi is the acid
loading resulting from the metabolism, taken as a constant.
This acid loading, which allows the sperm to reach an
equilibrium state by compensating the pHi increase due to the
protons’ extruders, includes the contribution of the leak of
protons from the acrosome which is an acidic organelle that
has been shown to alkalize during capacitation (Nakanishi et al.,
2001). The value of this parameter is adjusted so that the pHi of
the sperm cell in uncapacitating conditions lies in the range of the
experimental data of the literature, between 6.4 and 6.85 (Zeng
et al., 1996; Carlson et al., 2007; Chávez et al., 2019).

The first term on the right side of Eq. 2 is the contribution of
SLO3, considered with its auxiliary subunit LRRC52 (Yang et al.,
2011), to the transmembrane electrical potential. It is activated by
alkalization as shown by the Hill’s [H+]i dependence of its
conductance. The H+

i concentration for half occupation of
SLO3 (written KSLO3

A ) and the cooperativity coefficient q of
this Hill’s function have been determined by Yang et al.
(2011) using heterologous expression of SLO3 and LRRC52 in
oocytes, and the corresponding activation’s curve is drawn on
Figure 1C for uncapacitated spermatozoa.

The factor ~gSLO3 appearing in the contribution from SLO3
includes a factor representing the phosphorylation by the cSrc
kinase which occurs downstream of the activation of the soluble
adenylyl cyclase by intracellular bicarbonate, as follows:

~gSLO3 � ~g · 1 + α · PSLO3( ), PSLO3 � 1

1 + KSLO3
Ab

[HCO −
3 ]i( )

n (5)

where PSLO3 is the phosphorylation level of SLO3 and is chosen as
a Hill equation. The pathway to SLO3 phosphorylation is
initiated by the activation of the soluble adenylyl cyclase (sAC)
from an increase in [HCO3

−]i, which is followed by the activation
of the protein kinase A (PKA) and finally leads to the auto-
phosphorylation of the cSrc kinase (Stival et al., 2015) which then
phosphorylates tyrosine residues of SLO3. In fact, the
phosphorylation of SLO3 is slow, of a timescale of 15 min
(Stival et al., 2015), but we do not include this delay in our
equations because we will focus on the results concerning the

steady states of the sperm cell that are reached during incubations
in various media. The half maximal concentrationKSLO3

Ab is set at a
value around 5 mM as shown in Supplementary Appendix Table
S1, and the value of the cooperativity coefficient n is set at 6, as
explained in Supplementary Appendix. Finally the SLO3’s
conductance depends not only on pHi but also on Vm (Zeng
et al., 2015) and this is taken into account in the factor ~g
appearing in the SLO3’s conductance, independently of the
pHi activation, as follows:

~g � ~gmax
SLO3

1 + exp − Vm−VSLO3
50

sSLO3
( )

(6)

where the Boltzmann activation parameters were measured by
Zeng et al. (2015) with electrophysiological techniques on
spermatozoa at a pHi of 8. This way of modeling the voltage
activation of SLO3 independently of the intracellular pH value is
based on experimental activation curves obtained by Yang et al.
(2011) for various membrane voltages that indicate a
pHi-independent voltage activation’s behavior.

The second term on the right of Eq. 2 is regrouping into a
leak current the contribution from all other electrogenic
transporters of the sperm cell membrane, where the resultant
leak conductance gl is a constant (the value of which is
described in Supplementary Appendix). This choice of taking
solely SLO3 as the effector of Vm changes during capacitation is due
to the fact that we are considering the coremodel of a feedback loop
in order to build a minimal model of capacitation. This choice is
supported by the demonstration that the variation in SLO3’s
conductance is responsible for the hyperpolarization of the
sperm cell during capacitation (Santi et al., 2010; Chávez et al.,
2013). The value of Vleak is set at −40mV according to the
transmembrane voltage obtained by Chávez et al. (2013) for
SLO3’s knock-out and SLO3’s inhibited mouse spermatozoa,
both giving a value around −40mV.

Finally, it could be objected that because the Na+/HCO3
−

cotransporter has been suggested to induce hyperpolarization
upon addition of bicarbonate (Demarco et al., 2003), the model
should include this contribution explicitly. In our approach, this
effect was not taken into account as this instantaneous
hyperpolarization seems to be transient and disappears in
minutes (Demarco et al., 2003; Santi et al., 2010; De La Vega-
Beltran et al., 2012; Chávez et al., 2013; Escoffier et al., 2015; Stival
et al., 2015). Yet we do not exclude the participation of the
cotransporter in the subsequent capacitation-related
hyperpolarization as its activity is voltage-dependent. The
model could be refined by including such voltage-dependent
contributions as the Na+/HCO3

− cotransporter or the CFTR
channel among others.

With this minimal model built around the two actors SLO3
and sNHE, we made simulations of the time evolution of the state of
a sperm cell in order to check if it gives account of the capacitation
process and if a positive feedback between sNHE and SLO3 could be
at the core of the process. We also simulated the effects of the
inhibition of SLO3 or sNHE on the state of the sperm.

The simulations, using the evolution Eqs 1, 2, were performed
using the software XPPAUT 6.11 (Free Software Foundation Inc.,
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Cambridge, United States). In all simulations, the extracellular
pH (pHe) is fixed at the value of 7.4 and the temperature is set at
37°C, as usually the case in sperm incubating media. Original
source code is available on GitHub1.

3 RESULTS

3.1 The Positive Feedback Between SLO3
and sNHE Causes Capacitation
In order to find if the model reproduces the transition from a
depolarized acidic state (not promoting capacitation) to a
hyperpolarized alkaline state (promoting capacitation, or
“capacitating”) of the sperm, we performed a simulation of the
incubation of a sperm cell as it is usually done in the laboratory,
consisting of the incubation into a solution containing 15 mM
bicarbonate ([HCO3

−]e = 15 mM).

This protocol is represented on the top graph of Figure 2A
showing a step of 15 mM of bicarbonate at time t = 2 min. The
initial concentration of bicarbonate in the medium is set at
[HCO3

−]e = 0.2 mM, which corresponds to a solution of pH =
7.4 at equilibrium with ambient atmosphere. As indicated in the
graphs of the pHi(t) and Vm(t) on Figure 2A, before the
bicarbonate step (t< 2 min) the sperm is at a steady state of
(pHi,Vm) ≃(6.6,−45 mV). After the 15 mMpulse of bicarbonate at
time t = 2 min, the state of the sperm shifts to a pHi of 7.1 and a
Vm of −75 mV. This transition of the sperm’s state is here fast, of
the timescale of 5 min; however, adding the phosphorylation
delay of SLO3 results in a transition’s timescale of 15 min (data
not shown), in accordance with data of the literature for
capacitation of mouse sperm cells (Arnoult et al., 1999; Stival
et al., 2015).

This simulation of the time evolution of the state of the sperm
therefore shows two steady states, one at 0.2 mMHCO3

−
e and one

at 15 mM HCO3
−
e , which are reported on the two diagrams of

Figure 2C (black squares and bullets), one corresponding to the
uncapacitated state of the sperm and one corresponding to the
capacitating state of the sperm.

FIGURE 2 | Transition between uncapacitated and capacitated state as the bicarbonate concentration is increased. (A) Time evolution of the pHi and Vm following a
step from 0.2 to 15 mM extracellular bicarbonate ([HCO −

3 ]e) at time t = 2 min. Following the increase in [HCO3
−]e, the pHi rises from the initial uncapacitated value of

around 6.6 to the capacitating value above 7.1. This significant increase comes with the cell’s hyperpolarization from −45 mV to −75 mV and reflects the feedback loop
between SLO3 and sNHE. Beware the instant phosphorylation of SLO3 used in the simulations induces a transition in the 5 min’ time scale, faster than the 15 min
timescale necessary for the hyperpolarization of mouse sperm. (B) Graphs of the nullclines of the mathematical model for three different extracellular bicarbonate
concentrations. Equalling to zero the two Eqs 1, 2 leaves us with two nonlinear equations of the two variables pHi and Vm, providing two lines (called nullclines) in the
(pHi,Vm) plane as shown on each three graphs. The lines labeled _Vm � dVm / dt � 0 correspond to the states for which the transmembrane potential does not changewith
time, and the lines labeled _pHi � 0 (� dpHi /dt) correspond to the states for which the cytosolic pH of the sperm does not change with time. The intersections of these
two lines give the steady states of the sperm cell at which both Vm and pHi do not change in time. The graph on top shows the two nullclines for 5 mM HCO3

−
e; middle

graph: 10 mMHCO3
−
e; bottom graph: 15 mM HCO3

−
e. (C) Bifurcation diagrams showing the steady states of the sperm as a function of the concentration of HCO −

3e. The
upper diagram shows the pHi of the steady states and the lower diagram shows the transmembrane potential Vm of the steady states. On the left of the gray region
appear in thick solid lines the stable steady states corresponding to an uncapacitating sperm. On the right of the gray region (i.e., for high [HCO3

−]e) appear the stable
steady states (thick solid line) corresponding the capacitating sperm. The transition between the uncapacitating state and the capacitating state occurs in the gray region
where two stable steady states and one unstable steady state (represented in dashed line) are found. This gray region corresponds to the values of [HCO3

−]e where the
system is bistable: The sperm can be found in two different stable steady states.

1https://github.com/bdeprelle/MouseCapaModel
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3.2 Bistability of the Capacitation Process
Having found two steady states of the sperm, one at 0.2 mM
HCO3

−
e and one at 15mM HCO3

−
e , we wondered if these sperm

states were the only possible ones for each of these extracellular
bicarbonate concentration, and whether there is a threshold in
[HCO3

−]e above which the uncapacitated sperm will
spontaneously shift to the capacitating state of low Vm and
high pHi. As a positive feedback loop can give rise to
bistability we can expect that for some values of the parameter
[HCO3

−]e we would find two possible stable states, one
capacitating and one uncapacitating.

The top graph of Figure 2B shows that when [HCO3
−]e =

5 mM there is only one possible steady state for the sperm. When
[HCO3

−]e = 15 mM (bottom graph of Figure 2B), there is also
only one steady state, at the point (pHi,Vm) ≃(7.1,−75 mV). This
latter state is hyperpolarized and alkaline, and so corresponds to a
sperm’s capacitating state, as the one found in Figure 2A where
[HCO3

−]e = 15 mM.
Between these two bicarbonate concentrations of 5 and 15 mM

however, at [HCO3
−]e = 10 mM we find three intersections of the

nullclines, which are shown in the middle graph of Figure 2B,
and indicating that the sperm can be found in three different
steady states, one of these three states corresponding to a
capacitating state of the sperm at Vm ≃−70 mV and pHi ≃7.1.
In order to gain insight of what is happening here we computed
the steady states for all values of [HCO3

−]e and plotted these
steady states in two diagrams shown on Figure 2C, where we
observe that a transition between uncapacitating states and
capacitating states happens when the extracellular bicarbonate
concentration crosses a threshold at around 12 mM HCO3

−
e .

Below 8 mM HCO3
−
e spermatozoa are in uncapacitating states

and above 12 mM HCO3
−
e are found the capacitating states of the

sperm, and between these two appears a region (shaded in the
figure) where three steady states of the sperm coexist. The analysis
of the dynamics of the system shows that the steady states in the
middle (dashed lines in Figure 2C) are unstable; in reality the
sperm will never be found at such steady states because any
imperceptible fluctuation in the physiological conditions brings
the sperm state away from these unstable steady states. Therefore,
in the shaded region, the sperm can be found in two different
steady states; it is a phenomenon of bistability where the state of
the spermatozoa will depend on what happened before they were
brought to this bistable region. Indeed, if we start on the left of the
diagram where [HCO3

−]e is low, and increase slowly the
medium’s bicarbonate concentration to the bistable region, the
sperm will be found at the state (pHi,Vm) ≃(6.7,−45 mV), but if
the sperm is prepared on the right of the diagram, decreasing the
[HCO3

−]e to the gray region will keep the sperm at the
capacitating state near (7.1,−70 mV).

3.3 The Capacitation Switch has Hysteresis
yet is Reversible
The bistability arising from the feedback loop between sNHE and
SLO3 implies that the sperm will chose one of the two stable states
according to its initial state. This hysteresis phenomenon implies
that once the sperm has chosen one of the two stable states, it will

remain locked in this state regardless of small changes in the
surrounding physiological conditions.

That is what we show here with a simulation of an experiment
where a hysteresis effect resulting from this bistability arises in the
state of the sperm. The simulation, shown on Figure 3, consists in
preparing the sperm cell in the bistability region at 10 mM
HCO3

−
e before imposing a pulse of 15 mM HCO3

−
e that brings

the sperm to a capacitating state. We find that the capacitating
state is robust as the sperm remains in the hyperpolarized high
pHi state when the bicarbonate concentration is brought back to
its initial value of 10 mM after the pulse. This is a hysteresis effect
and it shows that once the sperm cell is in the capacitating state, it
is blocked in this state regardless of small variations in the
physiological conditions surrounding the sperm cell. We find
however that this switch is reversible as a sufficient depletion of
[HCO3

−]e for some time is able to bring the sperm back to the
uncapacitating state.

We would like to insist here that a capacitating state does not
mean a capacitated state, we are rather assessing the intracellular
ionic state consistent with sperm incubated in capacitating
conditions.

3.4 SLO3’s inhibition is More Robust Than
sNHE at Preventing Capacitation
The proposed minimal model can also be used as a tool in order
to predict how the capacitation process can be blocked efficiently.
We simulated the time evolution of the sperm’s states when either
SLO3 or sNHE is inhibited and have examined the transition

FIGURE 3 |Hysteresis and reversibility of the capacitation process. After
having prepared the sperm at 10 mM HCO−

3e, a pulse of 15 mM HCO−
3e at t =

80 min switches the sperm to the capacitating state (i.e., Vm ≃-70 mV and
pHi≃7.1). However, when HCO −

3e is brought back to the initial value of
10mM, the sperm remains in the capacitating state. Nevertheless, when
HCO −

3e is pulsed down to 5 mM for 20 min, the state switches back to the
initial non-capacitating state. The extracellular pH is always fixed at 7.4.
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between the uncapacitating and capacitating states. The result of
the simulation of the incubation of sperm in 15 mMHCO3

−
e when

SLO3 is inhibited at a level of 70% is presented on Figure 4A and
shows that capacitation can not occur anymore; the sperm does
not hyperpolarize and the intracellular pH shows an increase of
only 0.2 unit.

By carrying on the same simulations with different inhibition
percentages of SLO3 we find a threshold at 60% above which
this ions’ fluxes aspect of capacitation is prevented (Figure 4B);
the pHi will increase no more than 0.2 unit, from 6.6 to less than
6.8, and the transmembrane potential will not hyperpolarize
below −45 mV. The existence of this inhibition threshold above
which the sperm does not capacitate anymore is due to the fact
that the system is brought into the bistable region and will
therefore remain blocked to the uncapacitated state during
incubation.

When simulating an incubation at the same concentration of
15 mM HCO3

−
e but with 70% inhibition of sNHE, the effect on

capacitation is similar to the SLO3 inhibition (Supplementary
Figure S1), but when increasing the HCO3

−
e concentration of

the incubation medium we find that the sNHE inhibition is not
as effective at preventing the capacitation switch as the
inhibition of SLO3. This is illustrated on Figure 5 showing
the states of incubated spermatozoa as a function of the
[HCO3

−]e at a fixed 95% inhibition. The SLO3 inhibition
keeps the state depolarized for all bicarbonate concentrations
(Figure 5A) but in contrast, when [HCO3

−]e crosses the
threshold of 20mM, the capacitation switch is not prevented
by a 95% sNHE inhibition (Figure 5B). The prevention of the
hyperpolarization in the case of the SLO3’s inhibition is due to
the fact that its conductance remains small compared with the
leak conductance.

4 DISCUSSION

In this work we have built a minimal model for the ions fluxes
aspect of capacitation of mouse spermatozoa as a function of the
incubating medium’s bicarbonate concentration. We modeled
the sperm’s state evolution on the minimal basis of the effect of
sNHE and SLO3 on pHi and Vm. By doing so, for the homeostasis
of sperm pHi we included, in addition to sNHE and SLO3, the
alkalizing effect of bicarbonate transporters and the acidifying
effect of the metabolism of the sperm cell.

The majority of the parameters values used in the model are
based on existing data, with the exception of three which remain
free. These free parameters are the acid loading from the
metabolism and the bicarbonate concentration for downstream
half activation of sNHE or SLO3. Nevertheless, the acid loading
from the metabolism, which compensates the alkalizing effects of
the protons and bicarbonate transporters in order to allow pH
homeostasis, is inherently physiological as the alkalizing
parameters are physiological.

Concerning the half activation of sNHE and SLO3
downstream of the protein kinase A activation by bicarbonate,
our parameter’s values are taken consistently with results from
Stival et al. (2015) giving the percentage of hyperpolarized
spermatozoa as a function of the HCO3

−
e concentration, which

indicates a threshold below 7 mM HCO3
−
e above which a

substantial proportion of spermatozoa do hyperpolarize during
the incubation. However, the exact value of these two parameters
do not affect the essence of the feedback loop and bistability in
our model; it rather shifts the shaded bistability region
(Figure 2C) to the right or to the left. In particular, decreasing
KsNHE

Ab will shift the capacitation threshold from around 12 mM
(as in Figure 2C) to a lower concentration (data not shown).

FIGURE 4 | Capacitation dependence on SLO3 inhibition. (A)When SLO3 is 70% inhibited, the transition to the capacitated state does not occur and the state is
blocked at the values of pHi = 6.8 and Vm = −45 mV. In the case of 100% inhibition of SLO3, the model shows no variation in Vm during capacitation. (B) Graph of the
steady states of the sperm against the percentage of SLO3 inhibition. These are the steady states reached after the incubation in capacitating medium (15 mM
bicarbonate) of spermatozoa previously prepared at 0.2 mM bicarbonate. A threshold appears at 60% inhibition above which both the increases in pHi and
hyperpolarization are much reduced.
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Our minimal model gives account of the experimentally
observed hyperpolarization and alkalization of the mouse
sperm’s cell during capacitation. Indeed the hyperpolarization
of the sperm’s cell to −75 mV lies in the range (Vm<70 mV) found
in the literature for capacitated spermatozoa (Arnoult et al., 1999;
Escoffier et al., 2015). We emphasize here that our results concern
individual spermatozoa that effectively capacitate, and not a
“capacitated population” of spermatozoa that consists of
capacitated and uncapacitated subpopulations for which the
measured hyperpolarization represents the sum of the
depolarized uncapacitated subpopulation and the
hyperpolarized capacitated subpopulation. In such
heterogenous populations, the measured hyperpolarization is
around −60 mV (Arnoult et al., 1999; Stival et al., 2015).

Concerning the evolution of the sperm’s pHi during capacitation,
ourmodel shows an increase in pHi from6.6 before incubation to 7.1
after incubation. The uncapacitated value given by the model was in
fact adjusted to the value of 6.6 obtained by Chávez et al. (2019), and
the capacitated value of 7.1 is in the range around 7.2 obtained
recently by Ferreira et al. (2021). However, we would like to stress
here that our model’s pHi values of 6.6 before capacitation and 7.1
after capacitation are not fixed and do depend on the exact value of
the acid load from the metabolism which is a free parameters as
mentioned here above.

Our analysis of the sperm’s steady states as a function of the
bicarbonate concentration in the incubating medium showed the
existence of a bistability region where the sperm can be found in
two different states and we showed that once the sperm has
reached the hyperpolarized and alkaline state of capacitated
sperm, it will remain capacitated regardless of small
fluctuations in the bicarbonate concentration. In addition, we
show that this hysteresis phenomenon in the cellular response
allows the encoding of transient signals, like a pulse in the
external bicarbonate concentration, by long-lasting changes

both in pHi and Vm. This capacitation switch can be reversed
back as a sufficiently strong decrease in [HCO3

−]e will bring the
sperm back to an uncapacitating state. The existence of this
hysteresis phenomenon resulting in a capacitation threshold
which is different from the decapacitation threshold is a
prediction of the model that can be tested experimentally. On
a functional level, the predicted hysteresis, inducing a shift in
bicarbonate sensitivity, allows the capacitation process to be more
robust in presence of local variations of bicarbonate
concentration. This ensures that, once capacitated, sperm cells
are less sensitive to these fluctuations, providing a possible
explanation for how sperm persist capacitating even when
they travel through various parts the female genital tract.

The reversibility of capacitation is still a matter of debate. Even
though the reversibility of capacitation could be abolished by
other factors not included in the model, such as the degradation
of Catsper (Ded et al., 2020), several aspects of capacitation have
reversible characteristics. Indeed, various studies indicate that the
responses of the sperm state to stimuli such as pulses in
bicarbonate concentration, intracellular pH, intracellular
calcium concentration, alkaline depolarization, and epididymal
extract addition have reversible characteristics (Oliphant and
Brackett, 1973; Babcock and Pfeiffer, 1987; Suarez et al., 1987;
Espinosa and Darszon, 1995; Schreiber et al., 1998; Wennemuth
et al., 2003). We nevertheless insist that the reversibility predicted
by the present mathematical model holds for the switch between
the acidic depolarized state and the alkaline hyperpolarized state
of the sperm, and not for the whole process of capacitation.

Concerningthe inhibition of capacitation, when the sperm is
incubated in a 15 mM bicarbonate solution we find a switch at
60% inhibition of SLO3 above which capacitation is prevented.
Even though the inhibition of sNHE has similar effect on
capacitation in an incubation medium of 15 mM bicarbonate,
we find that inhibiting SLO3 is more effective than inhibiting

FIGURE 5 | SLO3 inhibition is more robust than sNHE at preventing capacitation. (A)When SLO3 is 95% inhibited, the switch to the capacitated sperm does not
occur for any HCO3

−
e concentration. (B) When sNHE is 95% inhibited, the capacitation switch is not prevented when the HCO3

−
e concentration exceeds 20 mM.
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sNHE when the bicarbonate concentration is increased. Indeed, a
95% inhibition of SLO3 prevents capacitation for all possible
bicarbonate concentrations that could be found in the genital
tract of the mammals (Maas et al., 1977), which is not the case
when instead sNHE is 95% inhibited. This stronger effect of SLO3
inhibition on capacitation is not surprising as we may expect
inhibition of ion channels to have a much larger impact on
membrane potential than the inhibition of a carrier system like
sNHE, which has a much lower turnover rate for ion transport. It
appears therefore that the inhibition of SLO3 is a better candidate
for the development of non-hormonal male contraception. The
human sperm however is different from the mouse as hSLO3 is
strongly activated by calcium and less by pH (Brenker et al.,
2014). Our model could be adapted and applied to human sperm
by adjusting the activation curves of SLO3 and taking into
account the voltage-gated hydrogen channel 1, HV1, which
has been shown to be the dominant proton conductance in
human sperm (Lishko et al., 2010). However, as this
transporter is not activated by hyperpolarization as it is the
case for sNHE, another feedback loop could take place,
between hSLO3 and Catsper, as it has been shown that the
variations in hyperpolarization and intracellular calcium
concentration of human spermatozoa are interconnected
during capacitation (Balestrini et al., 2021).

The proposed minimal model has allowed us to identify the
core molecular mechanism which is likely to control murine
sperm capacitation. It may be extended to include calcium
dynamics and further refined to the human case. Concerning
the increase in intracellular calcium during capacitation, the
feedback loop between sNHE and SLO3, which robustly
switches the state of the sperm to an elevated intracellular pH,
is likely to keep the pHi-sensitive Catsper channel activated
during capacitation, and moreover, the reversibility of the
switch implies that this capacitation’s aspect of calcium influx
can be reversed back. In addition, as in a first approximation we
have modeled the soluble adenylyl cyclase activity only through
the increase in intracellular bicarbonate concentration and not by
explicit increases in intracellular calcium concentration which are
known to activate this adenylyl cyclase (Litvin et al., 2003), an
extended version of the model, explicitly including Catsper, could
take into account this additional feedback. In this field, a first
mathematical model of mouse sperm intracellular calcium
dynamics has been established by Olson et al. (2010). In their
model, they explain the tail to head Ca2+ signal propagation
following the activation of Catsper, as well as the subsequent
sustained calcium increase in the sperm’s head. To address this,
they take into account the Ca2+ release from the redundant
nuclear envelope which was modeled to be indirectly gated by
variations in intracellular Ca2+ concentration through the
production of inositol 1,4,5-trisphosphate from the
phospholipase C. Recently, the inclusion of Catsper into a
more complex mathematical model of mouse sperm
capacitation has been carried out by Aguado-García et al.
(2021) in a comprehensive study of early steps of capacitation.
Interestingly, this latter study predicts that if capacitation is
impaired by in silico SLO3’s loss of function, it can not be

recovered by overactivation of sNHE. On the contrary, they
show that the overactivation of SLO3 can recover the
capacitation response of sNHE’s loss of function. This result is
now corroborated by our modeling study, highlighting that SLO3
is essential for the capacitation process. Yet we emphasize here
again that our model describes the states of the sperm reached
after long durations of incubations.

To conclude, using a modeling approach, we have identified
a possible core molecular mechanism underlying the transition
between the uncapacitated and capacitated state in mouse
sperm and studied its dynamic as well as identified
pharmacological targets regulating this process. These
results may be relevant in the possible development of
treatments of male infertility and non-hormonal male
contraception, as the inhibition or stimulation of these
actors of sperm’s capacitation can modulate the ability of
sperm to fertilize the egg. For this, the proposed model
should be extended to the human case.

Such a minimal model gives direction for further experimental
studies aimed at understanding various aspects of sperm
dynamics, and moreover, additional phosphorylation and
transport mechanisms of interest could be studied by adding
explicitly their contribution to this model.
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